Darter BJ, Syrett ED, Foreman KB, Kubiak E, Sinclair S. Changes in frontal plane kinematics over 12-months in individuals with the Percutaneous Osseointegrated Prosthesis (POP).
PLoS One 2023;
18:e0281339. [PMID:
36812173 PMCID:
PMC9946262 DOI:
10.1371/journal.pone.0281339]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 01/13/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND
A bone-anchored prosthesis (BAP) eliminates the need for a conventional socket by attaching a prosthesis directly to the user's skeleton. Currently, limited research addresses changes in gait mechanics post BAP implantation.
OBJECTIVE
Examine changes in frontal plane movement patterns after BAP implantation.
METHODS
Participants were individuals with unilateral transfemoral amputation (TFA) enrolled in the US Food and Drug Administration (FDA) Early Feasibility Study examining the Percutaneous Osseointegrated Prosthesis (POP). The participants completed overground gait assessments using their conventional socket and at 6-weeks, 12-weeks, 6-months, and 12-months following POP implantation. Statistical parameter mapping techniques were used in examining changes in frontal plane kinematics over the 12-months and differences with reference values for individuals without limb loss.
RESULTS
Statistically significant deviations were found pre-implantation compared to reference values for hip and trunk angles during prosthetic limb stance phase, and for pelvis and trunk relative to the pelvis angles during prosthetic limb swing. At 6-weeks post-implantation, only the trunk angle demonstrated a statistically significant reduction in the percent of gait cycle with deviations relative to reference values. At 12-months post-implantation, results revealed frontal plane movements were no longer statistically different across the gait cycle for the trunk angle compared to reference values, and less of the gait cycle was statistically different compared to reference values for all other frontal plane patterns analyzed. No statistically significant within-participant differences were found for frontal plane movement patterns between pre-implantation and 6-weeks or 12-months post-implantation.
CONCLUSIONS
Deviations from reference values displayed prior to device implantation were reduced or eliminated 12-months post-implantation in all frontal plane patterns analyzed, while within-participant changes over the 12-month period did not reach statistical significance. Overall, the results suggest the transition to a BAP aided in normalizing gait patterns in a sample of relatively high functioning individuals with TFA.
Collapse