1
|
Zhou H, Ren Y, Zou K, Jin Y, Liu H, Jiang H, Shi L, Sheng X, Weeks J, Wang H, Xue T, Schwarz EM, Xie C, Deng Z, Wang L, Chu L. Efficacy of pH-Responsive Surface Functionalized Titanium Screws in Treating Implant-associated S. aureus Osteomyelitis with Biofilms Formation. Adv Healthc Mater 2025; 14:e2403261. [PMID: 39604325 PMCID: PMC11773098 DOI: 10.1002/adhm.202403261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Implant-associated Staphylococcus aureus (S. aureus) osteomyelitis (IASO) leads to high orthopedic implant failure rates due to the formation of Staphylococcal abscess community within the bone marrow and bacterial colonization in the osteocyte lacuno-canalicular network (OLCN). To address this, antimicrobial peptides (HHC36)-loaded titania nanotubes (NTs) are developed on titanium screws (Ti-NTs-P-A), which integrate pH-responsive polymethacrylic acid to control HHC36 release for eradicating bacteria in IASO. Colony-forming unit assay confirmed that Ti-NTs-P-A screws maintained sustainable antibacterial effectiveness, killing over 65% of S. aureus even after multiple bacterial solution replacements. Notably, Ti-NTs-P-A screws exhibit significant pH-responsive HHC36 release behavior and bactericidal activity, consistent with the phenotype of peptides-killed bacteria from scanning electron microscopy. Transcriptome sequencing results reveal that Ti-NTs-P-A screws interfered with ribosome formation and disrupted the arginine biosynthesis, which is crucial for bacterial survival in acidic environments. In the non-infected implant model, the bone-implant contact ratio of the Ti-NTs-P-A screw is 2.3 times that of the clinically used titanium screw. In an IASO model, Ti-NTs-P-A screws effectively eradicated bacteria within the OLCN, achieving an 80% infection control rate and desirable osteointegration. Collectively, Ti-NTs-P-A screws with pH-responsive antibacterial properties exhibit great potential for eradicating bacteria and achieving osseointegration in IASO.
Collapse
Affiliation(s)
- Hang Zhou
- Department of OrthopaedicsThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Youliang Ren
- Department of OrthopaedicsThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Kaixiong Zou
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Ying Jin
- Department of OrthopaedicsThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Hang Liu
- Department of OrthopaedicsThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Haitao Jiang
- Department of OrthopaedicsThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Lei Shi
- Department of OrthopaedicsThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Xiaomin Sheng
- Department of OrthopaedicsThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Jason Weeks
- Department of OrthopaedicsNew York Medical CollegeNew YorkNY10595USA
| | - Hannah Wang
- Department of Orthopaedics, Center for Musculoskeletal ResearchUniversity of Rochester Medical CenterRochesterNY14642USA
| | - Thomas Xue
- Department of Orthopaedics, Center for Musculoskeletal ResearchUniversity of Rochester Medical CenterRochesterNY14642USA
| | - Edward M. Schwarz
- Department of Orthopaedics, Center for Musculoskeletal ResearchUniversity of Rochester Medical CenterRochesterNY14642USA
| | - Chao Xie
- Department of Orthopaedics, Center for Musculoskeletal ResearchUniversity of Rochester Medical CenterRochesterNY14642USA
| | - Zhongliang Deng
- Department of OrthopaedicsThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Lei Chu
- Department of OrthopaedicsThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010P. R. China
| |
Collapse
|
2
|
Otero JE, Dombrowski ME, Brown TS, Courtney PM, Kamath AF, Nandi S, Fehring KA. What's New in Musculoskeletal Infection. J Bone Joint Surg Am 2024; 106:1249-1255. [PMID: 38781349 DOI: 10.2106/jbjs.24.00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Affiliation(s)
- Jesse E Otero
- OrthoCarolina Hip and Knee Center, Charlotte, North Carolina
- Atrium Health Musculoskeletal Institute, Charlotte, North Carolina
| | - Malcolm E Dombrowski
- Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Timothy S Brown
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, Texas
| | | | - Atul F Kamath
- Orthopaedic & Rheumatologic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Sumon Nandi
- University of Maryland School of Medicine, Baltimore, Maryland
| | - Keith A Fehring
- OrthoCarolina Hip and Knee Center, Charlotte, North Carolina
| |
Collapse
|
3
|
Lekkala S, Ren Y, Weeks J, Lee K, Jia Hui Tay A, Liu B, Xue T, Rainbolt J, Xie C, Schwarz EM, Yeh SCA. A semi-automated cell tracking protocol for quantitative analyses of neutrophil swarming to sterile and S. aureus contaminated bone implants in a mouse femur model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570663. [PMID: 38105961 PMCID: PMC10723476 DOI: 10.1101/2023.12.07.570663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Implant-associated osteomyelitis remains a major orthopaedic problem. As neutrophil swarming to the surgical site is a critical host response to prevent infection, visualization and quantification of this dynamic behavior at the native microenvironment of infection will elucidate previously unrecognized mechanisms central to understanding the host response. We recently developed longitudinal intravital imaging of the bone marrow (LIMB) to visualize fluorescent S. aureus on a contaminated transfemoral implant and host cells in live mice, which allows for direct visualization of bacteria colonization of the implant and host cellular responses using two-photon laser scanning microscopy. To the end of rigorous and reproducible quantitative outcomes of neutrophil swarming kinetics in this model, we developed a protocol for robust segmentation, tracking, and quantifications of neutrophil dynamics adapted from Trainable Weka Segmentation and TrackMate, two readily available Fiji/ImageJ plugins. In this work, Catchup mice with tdTomato expressing neutrophils received a transfemoral pin with or without ECFP-expressing USA300 methicillin-resistant Staphylococcus aureus (MRSA) to obtain 30-minute LIMB videos at 2-, 4-, and 6-hours post-implantation. The developed semi-automated neutrophil tracking protocol was executed independently by two users to quantify the distance, displacement, speed, velocity, and directionality of the target cells. The results revealed high inter-reader reliability for all outcomes (ICC > 0.98; p > 0.05). Consistent with the established paradigm on increased neutrophil swarming during active infection, the results also demonstrated increased neutrophil speed and velocity at all measured time points, and increased displacement at later time points (6 hours) in infected versus uninfected mice (p < 0.05). Neutrophils and bacteria also exhibit directionality during migration in the infected mice. The semi-automated cell tracking protocol provides a streamlined approach to robustly identify and track individual cells across diverse experimental settings and eliminates inter-observer variability.
Collapse
Affiliation(s)
- Sashank Lekkala
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Youliang Ren
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Jason Weeks
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Kevin Lee
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Allie Jia Hui Tay
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Bei Liu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas Xue
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Joshua Rainbolt
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M. Schwarz
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Shu-Chi A. Yeh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Physiology/Pharmacology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|