1
|
Lashkarizadeh N, Mohammadi M, Mohyadin Z, Kalantari M, Kakooei S, Karamoozian A. Histological study of the effect of different hydration times of bone allograft and xenograft particles on the rate of bone formation in critical size defects in the rat calvarium. Int J Implant Dent 2025; 11:23. [PMID: 40138157 PMCID: PMC11947333 DOI: 10.1186/s40729-025-00610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
PURPOSE The aim of this study was to investigate the effect of different bone graft hydration times on bone regeneration. METHODS Five-mm defects were created on either side of the sagittal plane in the calvaria of 40 rats. In each rat, the right and left defects were filled with allograft (Cenobone®) and xenograft (Cerabone®) particles, respectively, based on the grouping that was randomly assigned in the study (no hydration of bone graft, 2-minute saline hydration, 10-minute saline hydration, 30-minute saline hydration, and 2-minute blood hydration). Histological and histomorphometrical analyses were performed eight weeks after surgery. The amount of new bone formation, remaining graft, and connective tissue were analyzed using the general linear model (GLM) and Bonferroni test. RESULTS There was no significant difference regarding the mean of new bone, remaining graft, and connective tissue between the xenograft samples in different hydration groups. In the allograft groups, the mean new bone formation of the no-hydration and 2-minute saline-hydrated groups was significantly lower than 30-minute saline-hydrated and blood hydrated groups (P = 0.03 and P = 0.03, respectively). Regarding the variable of the remaining graft particles, the results were almost similar. CONCLUSIONS The results of this study showed that, the method of bone graft hydration before it is used in treating bone lesions affects osteogenesis. Especially in the case of allograft, rehydration before usage at least for 10 min is recommended.
Collapse
Affiliation(s)
- Nazila Lashkarizadeh
- Oral and Dental Diseases Research Center, Department of Periodontics, Kerman Dental School, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Mohammadi
- Oral and Dental Diseases Research Center, Department of Periodontics, Kerman Dental School, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Mohyadin
- Department of Periodontics, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mahsa Kalantari
- Department of Oral and Maxillofacial Pathology, Oral and Dental Diseases Research Center, Kerman Dental School, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Kakooei
- Oral and Dental Diseases Research Center, Department of Periodontics, Kerman Dental School, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Karamoozian
- Department of Biostatistics and Epidemiology, Kerman University of Medical Sciences, Kerman, Iran
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Hassanzadeh-Tabrizi SA. Alginate based hemostatic materials for bleeding management: A review. Int J Biol Macromol 2024; 274:133218. [PMID: 38901512 DOI: 10.1016/j.ijbiomac.2024.133218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Severe bleeding has caused significant financial losses as well as a major risk to the lives and health of military and civilian populations. Under some situations, the natural coagulation mechanism of the body is unable to achieve fast hemostasis without the use of hemostatic drugs. Thus, the development of hemostatic materials and techniques is essential. Improving the quality of life and survival rate of patients and minimizing bodily damage requires fast, efficient hemostasis and prevention of bleeding. Alginate is regarded as an outstanding hemostatic polymer because of its non-immunogenicity, biodegradability, good biocompatibility, simple gelation, non-toxicity, and easy availability. This review summarizes the basics of hemostasis and emphasizes the recent developments regarding alginate-based hemostatic systems. Structural modifications and mixing with other materials have widely been used for the improvement of hemostatic characteristics of alginate and for making multifunctional medical devices that not only prevent uncontrolled bleeding but also have antibacterial characteristics, drug delivery abilities, and curing effects. This review is hoped to prepare critical insights into alginate modifications for better hemostatic properties.
Collapse
Affiliation(s)
- S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| |
Collapse
|
3
|
Shi S, Chang Y, Fu K, Fu N, Hu X, Zhao B, Chen B, Yun X, Shi E. A multifunctional thermosensitive hydrogel based on phototherapy for promoting the healing of dental extraction wounds. RSC Adv 2024; 14:19134-19146. [PMID: 38882475 PMCID: PMC11177182 DOI: 10.1039/d4ra03211j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Post-extraction wound infections are a common complication of dental extractions. More specifically, infection in the alveolar socket after tooth extraction accelerates the resorption and destruction of the alveolar bone, and ultimately affects the final restoration results. Currently, the main clinical treatment approaches applied to the socket after tooth extraction include mechanical wound debridement, chemical rinses (e.g., chlorhexidine), filling of the extraction socket with absorbent gelatin sponges, and the systemic application of antibiotics. However, these traditional treatment modalities have some limitations and their therapeutic effects are unsatisfactory. In this study, a phototherapeutic temperature-sensitive hydrogel material was constructed for injection using a tea polyphenol (TP)-modified poly-N-isopropylacrylamide (PNIPAM) hydrogel skeleton loaded with the photosensitiser indocyanine green (ICG). The resulting PNIPAM-TP/ICG system exhibited an excellent injectability and temperature-sensitive properties. In addition, it stopped haemorrhaging and acted as a wound astringent. The hydrogel steadily released ICG into the oral environment to exert photothermal/photodynamic effects along with synergistic antibacterial and anti-inflammatory properties when combined with tea polyphenols. In vivo experiments demonstrated that the application of PNIPAM-TP/ICG to infected dental extraction wounds in rats rapidly stopped the bleeding and accelerated wound healing. Overall, this study describes a drug-loaded, temperature-sensitive hydrogel for the treatment of open wound infections, and shows promise as a reference for the treatment of tooth extraction wounds.
Collapse
Affiliation(s)
- Shurui Shi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration Tianjin 300070 China
| | - Yunhan Chang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration Tianjin 300070 China
| | - Kaiyu Fu
- Department of Pediatric Dentistry, Tianjin Stomatological Hospital, School of Medicine, Nankai University Tianjin 300041 China
| | - Ning Fu
- Jingnan Medical Area, Chinese PLA General Hospital Beijing 100071 China
| | - Xin Hu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration Tianjin 300070 China
| | - Borui Zhao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration Tianjin 300070 China
| | - Bo Chen
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration Tianjin 300070 China
| | - Xinyue Yun
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration Tianjin 300070 China
| | - Enyu Shi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration Tianjin 300070 China
| |
Collapse
|
4
|
Wang D, Sun Y, Zhang D, Kong X, Wang S, Lu J, Liu F, Lu S, Qi H, Zhou Q. Root-shaped antibacterial alginate sponges with enhanced hemostasis and osteogenesis for the prevention of dry socket. Carbohydr Polym 2023; 299:120184. [PMID: 36876799 DOI: 10.1016/j.carbpol.2022.120184] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022]
Abstract
Tooth extraction commonly causes uncontrolled bleeding, loss of blood clots, and bacterial infection, leading to the dry socket and bone resorption. Thus, it is highly attractive to design a bio-multifunctional scaffold with outstanding antimicrobial, hemostatic, and osteogenic performances for avoiding dry sockets in clinical applications. Herein, alginate (AG)/quaternized chitosan (Qch)/diatomite (Di) sponges were fabricated via electrostatic interaction, Ca2+ cross-linking, as well as lyophilization methods. The composite sponges are facilely made into the shape of the tooth root, which could be well integrated into the alveolar fossa. The sponge shows a highly interconnected and hierarchical porous structure at the macro/micro/nano levels. The prepared sponges also possess enhanced hemostatic and antibacterial abilities. Moreover, in vitro cellular assessment indicates that the developed sponges have favorable cytocompatibility and significantly facilitate osteogenesis by upregulating the formation of alkaline phosphatase and calcium nodules. The designed bio-multifunctional sponges display great potential for trauma treatment after tooth extraction.
Collapse
Affiliation(s)
- Danyang Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Yinyin Sun
- Oral Medicine, The People's Hospital of Jimo, Qingdao, Qingdao 266200, China
| | - Dongjie Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiaowen Kong
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Sainan Wang
- School of Stomatology, Qingdao University, Qingdao 266003, China; Oral Department of Qingdao Municipal Hospital, Qingdao 266011, China
| | - Jinglin Lu
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Fengyuan Liu
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Shulai Lu
- Oral Department of Qingdao Municipal Hospital, Qingdao 266011, China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China.
| | - Qihui Zhou
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China; School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| |
Collapse
|
5
|
Nishida K, Anada T, Tanaka M. Roles of interfacial water states on advanced biomedical material design. Adv Drug Deliv Rev 2022; 186:114310. [PMID: 35487283 DOI: 10.1016/j.addr.2022.114310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
When biomedical materials come into contact with body fluids, the first reaction that occurs on the material surface is hydration; proteins are then adsorbed and denatured on the hydrated material surface. The amount and degree of denaturation of adsorbed proteins affect subsequent cell behavior, including cell adhesion, migration, proliferation, and differentiation. Biomolecules are important for understanding the interactions and biological reactions of biomedical materials to elucidate the role of hydration in biomedical materials and their interaction partners. Analysis of the water states of hydrated materials is complicated and remains controversial; however, knowledge about interfacial water is useful for the design and development of advanced biomaterials. Herein, we summarize recent findings on the hydration of synthetic polymers, supramolecular materials, inorganic materials, proteins, and lipid membranes. Furthermore, we present recent advances in our understanding of the classification of interfacial water and advanced polymer biomaterials, based on the intermediate water concept.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Japan(1)
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
Yan M, Pan Y, Lu S, Li X, Wang D, Shao T, Wu Z, Zhou Q. Chitosan-CaP microflowers and metronidazole loaded calcium alginate sponges with enhanced antibacterial, hemostatic and osteogenic properties for the prevention of dry socket after tooth removal. Int J Biol Macromol 2022; 212:134-145. [PMID: 35588978 DOI: 10.1016/j.ijbiomac.2022.05.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
Tooth removal, particularly for patients with severe periodontitis, can frequently cause massive bleeding, postoperative infection, and bone resorption, resulting in a dry socket. Thus, developing bio-multifunctional materials with excellent antibacterial, hemostatic, and osteogenic characteristics for the prevention of dry sockets after tooth removal is highly desirable in clinical applications. Herein, chitosan-CaP microflowers (CM) and metronidazole (MD) loaded calcium alginate (CA) sponges (CA@CM/MD) with enhanced antibacterial, hemostatic, and osteogenic properties were developed via Ca2+ crosslinking, lyophilization, and electrostatic interaction for the prevention of dry socket after tooth removal. The fabricated CM particles display 3-dimensional, relatively homogeneous, and flower-shaped architectures. The CA@CM/MD composite sponges were facilely shaped into the tooth root as well as exhibit interconnected porous and lamellar structures with remarkable porosity, suitable maximum swelling ratio, as well as excellent compressive and hemostatic performance. Besides, the in vitro cellular assessment demonstrates that the prepared CA@CM/MD composite sponges possess satisfactory cytocompatibility. Importantly, the designed sponges significantly suppress the growth of S. aureus and E. coli, as well as promote cellular osteogenic differentiation by upregulating the formation of alkaline phosphatase. Our findings indicate that the tooth root-shaped composite sponges hold great promise for wound management after tooth removal.
Collapse
Affiliation(s)
- Mingzhe Yan
- Department of Human Anatomy, Histology and Embryology, School of basic medicine, Qingdao University, Qingdao 266073, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Yingxiao Pan
- School of Stomatology, Qingdao University, Qingdao 266003, China; Oral department of Qingdao Municipal Hospital, Qingdao 266011, China
| | - Shulai Lu
- Oral department of Qingdao Municipal Hospital, Qingdao 266011, China
| | - Xin Li
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Danyang Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Tianyi Shao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China
| | - Zhihang Wu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China; Department of Biomedical Engineering, The University of Melbourne, Victoria 3010, Australia
| | - Qihui Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266021, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
7
|
Zheng S, Zhong H, Cheng H, Li X, Zeng G, Chen T, Zou Y, Liu W, Sun C. Engineering Multifunctional Hydrogel With Osteogenic Capacity for Critical-Size Segmental Bone Defect Repair. Front Bioeng Biotechnol 2022; 10:899457. [PMID: 35615472 PMCID: PMC9124794 DOI: 10.3389/fbioe.2022.899457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
Treating critical-size segmental bone defects is an arduous challenge in clinical work. Preparation of bone graft substitutes with notable osteoinductive properties is a feasible strategy for critical-size bone defects. Herein, a biocompatible hydrogel was designed by dynamic supramolecular assembly of polyvinyl alcohol (PVA), sodium tetraborate (Na2B4O7), and tetraethyl orthosilicate (TEOS). The characteristics of the supramolecular hydrogel were evaluated by rheological analysis, swelling ratio, degradation experiments, and scanning electron microscopy (SEM). In in vitro experiments, this TEOS-hydrogel had self-healing property, low swelling rate, degradability, good biocompatibility, and induced osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by upregulating the expression of Runx-2, Col-1, OCN, and osteopontin (OPN). In segmental bone defect rabbit models, the TEOS-containing hydrogel accelerated bone regeneration, thus restoring the continuity of bone and recanalization of the medullary cavity. The abovementioned results demonstrated that this TEOS-hydrogel has the potential to realize bone healing in critical-size segmental bone defects.
Collapse
Affiliation(s)
- Shaowei Zheng
- Department of Orthopaedic, Huizhou First Hospital, Guangdong Medical University, Huizhou, China
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haobo Zhong
- Department of Orthopaedic, Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| | - Hao Cheng
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xu Li
- Department of Orthopaedic, Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| | - Guowei Zeng
- Graduate School, Guangdong Medical University, Zhanjiang, China
| | - Tianyu Chen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yucong Zou
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Weile Liu
- Department of Orthopaedic, Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| | - Chunhan Sun
- Department of Orthopaedic, Huizhou First Hospital, Guangdong Medical University, Huizhou, China
| |
Collapse
|
8
|
Maurel DB, Fénelon M, Aid-Launais R, Bidault L, Le Nir A, Renard M, Fricain JC, Letourneur D, Amédée J, Catros S. Bone regeneration in both small and large preclinical bone defect models using an injectable polymer-based substitute containing hydroxyapatite and reconstituted with saline or autologous blood. J Biomed Mater Res A 2021; 109:1840-1848. [PMID: 33797182 DOI: 10.1002/jbm.a.37176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 01/12/2023]
Abstract
Microbeads consisting of pullulan and dextran supplemented with hydroxyapatite have recently been developed for bone tissue engineering applications. Here, we evaluate the bone formation in two different preclinical models after injection of microbeads reconstituted with either saline buffer or autologous blood. Addition of saline solution or autologous blood to dried microbeads packaged into syringes allowed an easy injection. In the first rat bone defect model performed in the femoral condyle, microcomputed tomography performed after 30 and 60 days revealed an important mineralization process occurring around and within the core of the microbeads in both conditions. Bone volume/total volume measurements revealed no significant differences between the saline solution and the autologous blood groups. Histologically, osteoid tissue was evidenced around and in contact of the microbeads in both conditions. Using the sinus lift model performed in sheep, cone beam computed tomography revealed an important mineralization inside the sinus cavity for both groups after 3 months of implantation. Representative Masson trichrome staining images showed that bone formation occurs at the periphery and inside the microbeads in both conditions. Quantitative evaluation of the new bone formation displayed no significant differences between groups. In conclusion, reconstitution of microbeads with autologous blood did not enhance the regenerative capacity of these microbeads compared to the saline buffer group. This study is of particular interest for clinical applications in oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Delphine B Maurel
- Tissue Bioengineering, INSERM U1026, University of Bordeaux, Bordeaux, France
| | - Mathilde Fénelon
- Tissue Bioengineering, INSERM U1026, University of Bordeaux, Bordeaux, France.,Department of Oral Surgery, CHU Bordeaux, Bordeaux, France
| | - Rachida Aid-Launais
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, X Bichat Hospital, Université de Paris, Paris, France.,INSERM UMS-34, FRIM, X Bichat School of Medicine, Université de Paris, Paris, France
| | | | - Alice Le Nir
- Tissue Bioengineering, INSERM U1026, University of Bordeaux, Bordeaux, France.,Department of Oral Surgery, CHU Bordeaux, Bordeaux, France
| | | | - Jean-Christophe Fricain
- Tissue Bioengineering, INSERM U1026, University of Bordeaux, Bordeaux, France.,Department of Oral Surgery, CHU Bordeaux, Bordeaux, France
| | - Didier Letourneur
- INSERM U1148, LVTS, Université Sorbonne Paris Nord, X Bichat Hospital, Université de Paris, Paris, France.,SA, Zac de la Nau, SILTISS, Saint-Viance, France
| | - Joëlle Amédée
- Tissue Bioengineering, INSERM U1026, University of Bordeaux, Bordeaux, France
| | - Sylvain Catros
- Tissue Bioengineering, INSERM U1026, University of Bordeaux, Bordeaux, France.,Department of Oral Surgery, CHU Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
Durual S, Schaub L, Mekki M, Manoil D, Martinelli-Kläy CP, Sailer I, Scherrer SS, Marger L. Pre-Treat Xenogenic Collagenous Blocks of Bone Substitutes with Saline Facilitate Their Manipulation and Guarantee High Bone Regeneration Rates, Qualitatively and Quantitatively. Biomedicines 2021; 9:biomedicines9030308. [PMID: 33802656 PMCID: PMC8002590 DOI: 10.3390/biomedicines9030308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Deproteinized bovine bone mineral particles embedded in collagen (DBBM-C) are widely used for bone regenerations with excellent, albeit sometimes variable clinical outcomes. Clinicians usually prepare DBBM-C by mixing with blood. Replacing blood by saline represents an alternative. We investigated if saline treatment could improve DBBM-C i. handling in vitro and ii. biological performances in a rabbit calvarial model. In vitro, DBBM-C blocks soaked in saline or blood were submitted to compression tests. In vivo, four poly ether ether ketone (PEEK)cylinders were placed on 16 rabbit skulls, filled with DBBM-C soaked in blood or saline for 2-4-8-12 weeks before histomorphometry. DBBM-C blocks were fully hydrated after 30 s in saline when 120 s in blood could not hydrate blocks core. Stiffness gradually decreased 2.5-fold after blood soaking whereas a six-fold decrease was measured after 30 s in saline. In vivo, saline treatment allowed 50% more bone regeneration during the first month when compared to blood soaking. This difference was then no longer visible. New bone morphology and maturity were equivalent in both conditions. DBBM-C saline-soaking facilitated its handling and accelerated bone regeneration of highly qualitative tissues when compared to blood treatment. Saline pretreatment thus may increase the clinical predictability of bone augmentation procedures.
Collapse
Affiliation(s)
- Stephane Durual
- Biomaterials Laboratory, Division of Fixed Prosthodontics and Biomaterials, University of Geneva, University Clinics of Dental Medicine, 1, rue Michel Servet, 1204 Geneva, Switzerland; (L.S.); (M.M.); (S.S.S.); (L.M.)
- Correspondence: ; Tel.: +41-22-379-40-93
| | - Leandra Schaub
- Biomaterials Laboratory, Division of Fixed Prosthodontics and Biomaterials, University of Geneva, University Clinics of Dental Medicine, 1, rue Michel Servet, 1204 Geneva, Switzerland; (L.S.); (M.M.); (S.S.S.); (L.M.)
| | - Mustapha Mekki
- Biomaterials Laboratory, Division of Fixed Prosthodontics and Biomaterials, University of Geneva, University Clinics of Dental Medicine, 1, rue Michel Servet, 1204 Geneva, Switzerland; (L.S.); (M.M.); (S.S.S.); (L.M.)
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Carla P. Martinelli-Kläy
- Laboratory of Oral & Maxillofacial Pathology, Division of Oral and Maxillofacial Surgery (HUG), Department of Surgery, University of Geneva, University Clinics of Dental Medicine, 1, rue Michel Servet, 1204 Geneva, Switzerland;
| | - Irena Sailer
- Division of Fixed Prosthodontics and Biomaterials, University of Geneva, University Clinics of Dental Medicine, 1, rue Michel Servet, 1204 Geneva, Switzerland;
| | - Susanne S. Scherrer
- Biomaterials Laboratory, Division of Fixed Prosthodontics and Biomaterials, University of Geneva, University Clinics of Dental Medicine, 1, rue Michel Servet, 1204 Geneva, Switzerland; (L.S.); (M.M.); (S.S.S.); (L.M.)
| | - Laurine Marger
- Biomaterials Laboratory, Division of Fixed Prosthodontics and Biomaterials, University of Geneva, University Clinics of Dental Medicine, 1, rue Michel Servet, 1204 Geneva, Switzerland; (L.S.); (M.M.); (S.S.S.); (L.M.)
| |
Collapse
|