1
|
Zheng T, Lu F, Cai T, Chen H, Zhang R, Wang G, Li X. The interconnection between periodontitis and HIV-1 latency: Molecular mechanisms and therapeutic insights. Int Immunopharmacol 2024; 143:113402. [PMID: 39437490 DOI: 10.1016/j.intimp.2024.113402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Periodontitis is one of the major global public health problems associated with the occurrence and development of diverse systemic diseases, especially acquired immune deficiency syndrome (AIDS), necessitating further research and clinical attention. The persistence of HIV-1 latency poses a significant challenge to the attainment of a functional cure for AIDS, despite the introduction of highly active antiretroviral therapy (HAART). A similar mechanistic basis between periodontitis and HIV-1 latency has been revealed by many studies, suggesting possible mechanisms whereby periodontitis and HIV-1 latency may mutually influence each other. Therefore, we aimed to systematically summarize the current research on periodontitis and HIV-1 latency to investigate their potential correlations. This study revealed several common hubs for periodontitis and HIV-1 latency in the nuclear factor kappa-B (NF-κB) signaling pathway and other signaling pathways, including the Wnt/β-catenin pathway, bromodomain-containing protein 4 (BRD4), protein kinase C (PKC), the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, programmed cell death protein 1 (PD-1), histone deacetylases (HDACs), and the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. Furthermore, we will discuss the hypothesis that periodontal pathogens may represent the unifying mechanism elucidating the intricate interconnection between periodontitis and HIV-1 latency. This article presents a detailed and comprehensive overview of the relationship underlying periodontitis and HIV-1 latency in terms of molecular mechanisms, which may provide novel theoretical insight into the pathogenesis of periodontitis and HIV-1 latency and reveal suitable therapeutic targets for the two diseases.
Collapse
Affiliation(s)
- Tengyi Zheng
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fumiao Lu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tiange Cai
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huaxue Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Guixiang Wang
- Department of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Xin Li
- Department of Endodontics, Southern Medical University Stomatological Hospital, Guangzhou, China.
| |
Collapse
|
2
|
Zhu Y, Chen M, Liu F, Li B, He Y. Overexpression of programmed cell death ligand 1 reduces LPS-induced inflammatory cytokine upregulation and enhances osteo/odontogenic-differentiation of human dental pulp stem cells via upregulation of CCCTC-binding factor. Arch Oral Biol 2024; 165:106031. [PMID: 38905870 DOI: 10.1016/j.archoralbio.2024.106031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVE The aim of this study was to explore the effect and mechanism of programmed cell death ligand 1 (PD-L1) in promoting the proliferation and osteo/odontogenic-differentiation of human dental pulp stem cells (hDPSCs) by mediating CCCTC-binding factor (CTCF) expression. DESIGN The interaction between PD-L1 and CTCF was verified through co-immunoprecipitation. hDPSCs transfected with PD-L1 overexpression and CTCF knockdown vectors were treated with lipopolysaccharide or an osteogenic-inducing medium. Inflammatory cytokines and osteo/odontogenic-differentiation related genes were measured. Osteo/odontogenic-differentiation of hDPSCs was assessed using alkaline phosphatase (ALP) and alizarin red S staining. RESULTS Overexpression of PD-L1 inhibited LPS-induced pro-inflammatory cytokine upregulation, cell proliferation, ALP activity, and calcium deposition in hDPSCs and elevated the expression of osteo/odontogenic-differentiation related genes; however, such expression patterns could be reversed by CTCF knockdown. Co-immunoprecipitation results confirmed the binding of PD-L1 to CTCF, indicating that PD-L1 overexpression in hDPSCs increases CTCF expression, thus inhibiting the inflammatory response and increasing osteo/odontogenic-differentiation of hDPSCs. CONCLUSION PD-L1 overexpression in hDPSCs enhances the proliferation and osteo/odontogenic-differentiation of hDPSCs and inhibit the inflammatory response by upregulating CTCF expression.
Collapse
Affiliation(s)
- Yinan Zhu
- VIP Center, Changsha Stomatological Hospital, Changsha, Hunan, China; School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Minmin Chen
- Department of General Stomatology, Hunan Xiangya Stomatological Hospital Central South University, Changsha, Hunan, China
| | - Fang Liu
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, China; Medical Support Department, Changsha Stomatological Hospital, Changsha, Hunan, China
| | - Buyun Li
- VIP Center, Changsha Stomatological Hospital, Changsha, Hunan, China; School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yanwen He
- VIP Center, Changsha Stomatological Hospital, Changsha, Hunan, China; School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
Liu X, Yang L, Tan X. PD-1/PD-L1 pathway: A double-edged sword in periodontitis. Biomed Pharmacother 2023; 159:114215. [PMID: 36630848 DOI: 10.1016/j.biopha.2023.114215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Periodontitis is a disease caused by infection and immunological imbalance, which often leads to the destruction of periodontal tissue. Programmed death protein 1 (PD-1) and its ligand: programmed death ligand 1 (PD-L1) are important "immune checkpoint" proteins that have a negative regulatory effect on T cells and are targets of immunotherapy. Studies have shown that the expression of PD-1 and PD-L1 in patients with periodontitis is higher than that in healthy individuals. The keystone pathogen Porphyromonas gingivalis (P. gingivalis) is believed to be the main factor driving the upregulation of PD-1/PD-L1. High expression of PD-1/PD-L1 can inhibit the inflammatory response and reduce the destruction of periodontal supporting tissues, but conversely, it can promote the "immune escape" of P. gingivalis, thus magnifying infections. In addition, the PD-1/PD-L1 pathway is also associated with various diseases, such as cancer and Alzheimer's disease. In this review, we discuss the influence and mechanism of the PD-1/PD-L1 pathway as a "double-edged sword" affecting the occurrence and development of periodontitis, as well as its function in periodontitis-related systemic disorders. The PD-1/PD-L1 pathway could be a new avenue for periodontal and its related systemic disorders therapy.
Collapse
Affiliation(s)
- Xiaowei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuelian Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Operative Dentistry and Endodontics West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Vaishampayan P, Curiel-Lewandrowski C, Dickinson SE. Review: PD-L1 as an emerging target in the treatment and prevention of keratinocytic skin cancer. Mol Carcinog 2023; 62:52-61. [PMID: 36121318 PMCID: PMC9771956 DOI: 10.1002/mc.23464] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 02/03/2023]
Abstract
Recent advances in the understanding and targeting of immune checkpoints have led to great progress in immune therapies against many forms of cancer. While many types of immune checkpoints are currently targeted in the clinic, this review will focus on recent research implicating the programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) axis as an emerging focus for the treatment of keratinocytic tumors. PD-L1 is of particular interest in nonmelanoma skin cancer (NMSC), as it is not only upregulated in these tumors but is stimulated by environmental ultraviolet exposure. This response may also make PD-L1 an excellent target for photochemoprevention using topically applied small molecule inhibitors. Here, we summarize recent investigations on PD-L1 expression and clinically relevant immune checkpoint inhibitor treatment in cutaneous squamous cell carcinoma, basal cell carcinoma, and head and neck squamous cell carcinoma, as well as small molecule agents targeting PD-L1 that may be useful for clinical development aiming at treatment or prevention of NMSC.
Collapse
Affiliation(s)
| | - Clara Curiel-Lewandrowski
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
- Division of Dermatology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Sally E Dickinson
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| |
Collapse
|
5
|
Ikeda E, Tanaka D, Glogauer M, Tenenbaum HC, Ikeda Y. Healing effects of monomer and dimer resveratrol in a mouse periodontitis model. BMC Oral Health 2022; 22:460. [PMID: 36319994 PMCID: PMC9623911 DOI: 10.1186/s12903-022-02499-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background The antioxidant and anti-inflammatory effects of resveratrol have been reported previously. Particularly, monomeric trans-resveratrol has been demonstrated to produce positive effects in various pathological processes. We reported previously that resveratrol dimer-rich melinjo extract, among others, caused bone healing, decreased local oxidative damage, and activated antioxidants nuclear factor erythroid 2-related factor 2 (Nrf2) pathways in a mouse model of experimentally induced periodontitis (EP). This study aimed to compare the bone-healing effects of the resveratrol monomer to the resveratrol dimer (gnetin C found in melinjo seed extract) in a model of EP and investigate the involvement of Nrf2 for effects of either form of resveratrol. Methods EP was induced experimentally in mice by placement of a 9 − 0 silk ligature around the left second molar. Mice received 10 mg/kg of either resveratrol monomer or dimer intraperitoneally on day 15 after induction of EP. The bone level around the ligated teeth was measured over time, and levels of proinflammatory cytokines and oxidative stress were measured in the periodontal tissues around the ligated teeth. Results Resveratrol dimer induced greater periodontal bone healing as compared to that related to use of the resveratrol monomer. It appears that healing of periodontal bone in either group was likely related to master regulation of antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) significantly. Downregulation of IL-1β, a proinflammatory cytokine was also demonstrated in the resveratrol dimer group. Conclusion Our results showed that administration of resveratrol in either dimer form or the monomeric form reduced periodontal bone loss with greater inhibition of bone loss being demonstrated in the dimer group as compared to the monomer group and that these effects were related in all likelihood to decreased oxidative stress and hence reduction in local inflammation.
Collapse
Affiliation(s)
- Eri Ikeda
- grid.265073.50000 0001 1014 9130Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, 113-8549 Bunkyo, Tokyo, Japan ,grid.265073.50000 0001 1014 9130Department of Molecular Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, 113-8549 Bunkyo, Tokyo, Japan
| | - Daiki Tanaka
- grid.265073.50000 0001 1014 9130Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, 113-8549 Bunkyo, Tokyo, Japan
| | - Michael Glogauer
- grid.17063.330000 0001 2157 2938Faculty of Dentistry, University of Toronto, 124 Edward St, M5G 1G6 Toronto, ON Canada ,grid.415224.40000 0001 2150 066XDepartment of Dental Oncology and Maxillofacial Prosthetics University Health Network - Princess Margaret Cancer Centre, 610 University Avenue, M5G 2M9 Toronto, ON Canada
| | - Howard C Tenenbaum
- grid.17063.330000 0001 2157 2938Faculty of Dentistry, University of Toronto, 124 Edward St, M5G 1G6 Toronto, ON Canada ,grid.416166.20000 0004 0473 9881Centre for Advanced Dental Research and Care, Department of Dentistry, Mount Sinai Hospital, 600 University Avenue, M5G 1X5 Toronto, ON Canada
| | - Yuichi Ikeda
- grid.265073.50000 0001 1014 9130Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, 113-8549 Bunkyo, Tokyo, Japan
| |
Collapse
|
6
|
Yong J, Gröger S, von Bremen J, Meyle J, Ruf S. PD-L1, a Potential Immunomodulator Linking Immunology and Orthodontically Induced Inflammatory Root Resorption (OIIRR): Friend or Foe? Int J Mol Sci 2022; 23:ijms231911405. [PMID: 36232704 PMCID: PMC9570182 DOI: 10.3390/ijms231911405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Orthodontically induced inflammatory root resorption (OIIRR) is considered an undesired and inevitable complication induced by orthodontic forces. This inflammatory mechanism is regulated by immune cells that precede orthodontic tooth movement (OTM) and can influence the severity of OIIRR. The process of OIIRR is based on an immune response. On some occasions, the immune system attacks the dentition by inflammatory processes during orthodontic treatment. Studies on the involvement of the PD-1/PD-L1 immune checkpoint have demonstrated its role in evading immune responses, aiming to identify possible novel therapeutic approaches for periodontitis. In the field of orthodontics, the important question arises of whether PD-L1 has a role in the development of OIIRR to amplify the amount of resorption. We hypothesize that blocking of the PD-L1 immune checkpoint could be a suitable procedure to reduce the process of OIIRR during orthodontic tooth movement. This review attempts to shed light on the regulation of immune mechanisms and inflammatory responses that could influence the pathogenesis of OIIRR and to acquire knowledge about the role of PD-L1 in the immunomodulation involved in OIIRR. Possible clinical outcomes will be discussed in relation to PD-L1 expression and immunologic changes throughout the resorption process.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Correspondence: or ; Tel.: +49-641-99-46131
| | - Sabine Gröger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Julia von Bremen
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
7
|
Yong J, Gröger S, von Bremen J, Meyle J, Ruf S. Immunorthodontics: PD-L1, a Novel Immunomodulator in Cementoblasts, Is Regulated by HIF-1α under Hypoxia. Cells 2022; 11:cells11152350. [PMID: 35954195 PMCID: PMC9367578 DOI: 10.3390/cells11152350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recent studies have revealed that hypoxia alters the PD-L1 expression in periodontal cells. HIF-1α is a key regulator for PD-L1. As hypoxia presents a hallmark of an orthodontically induced microenvironment, hypoxic stimulation of PD-L1 expression may play vital roles in immunorthodontics and orthodontically induced inflammatory root resorption (OIIRR). This study aims to investigate the hypoxic regulation of PD-L1 in cementoblasts, and its interaction with hypoxia-induced HIF-1α expression. The cementoblast (OCCM-30) cells (M. Somerman, NIH, NIDCR, Bethesda, Maryland) were cultured in the presence and absence of cobalt (II) chloride (CoCl2). Protein expression of PD-L1 and HIF-1α as well as their gene expression were evaluated by Western blotting and RT-qPCR. Immunofluorescence was applied to visualize the localization of the proteins within cells. The HIF-1α inhibitor (HY-111387, MedChemExpress) was added, and CRISPR/Cas9 plasmid targeting HIF-1α was transferred for further investigation by flow cytometry analysis. Under hypoxic conditions, cementoblasts undergo an up-regulation of PD-L1 expression at protein and mRNA levels. Silencing of HIF-1α using CRISPR/Cas9 indicated a major positive correlation with HIF-1α in regulating PD-L1 expression. Taken together, these findings show the influence of hypoxia on PD-L1 expression is modulated in a HIF-1α dependent manner. The HIF-1α/PD-L1 pathway may play a role in the immune response of cementoblasts. Thus, combined HIF-1α/PD-L1 inhibition could be of possible therapeutic relevance for OIIRR prevention.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.G.); (J.v.B.); (S.R.)
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310003, China
- Correspondence: or ; Tel.: +49-641-99-46131
| | - Sabine Gröger
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.G.); (J.v.B.); (S.R.)
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Julia von Bremen
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.G.); (J.v.B.); (S.R.)
| | - Joerg Meyle
- Department of Periodontology, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (S.G.); (J.v.B.); (S.R.)
| |
Collapse
|
8
|
Jiang C, Yao S, Guo Y, Ma L, Wang X, Chen Y, Zhang H, Cao Z. Angiopoietin-like protein 2 deficiency promotes periodontal inflammation and alveolar bone loss. J Periodontol 2021; 93:1525-1539. [PMID: 34709660 DOI: 10.1002/jper.21-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/29/2021] [Accepted: 10/21/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Human periodontitis is a highly prevalent inflammatory disease that leads to connective tissue degradation, alveolar bone resorption, and tooth loss. Angiopoietin-like 2 (ANGPTL2) regulates chronic inflammation in various diseases and is functionally involved in maintaining tissue homeostasis and promoting tissue regeneration, but there is limited information about its function in periodontitis. Here we investigated the expression and explicit role of ANGPTL2 in periodontitis. METHODS Immunohistochemistry and quantitative real-time PCR (qRT-PCR) were used to detect the ANGPTL2 expression in periodontal tissues and periodontal ligament cells (PDLCs). A ligature-induced periodontitis model was generated in wild-type and ANGPTL2 knockout mice. qRT-PCR and enzyme-linked immunosorbent assay were used to assess the production of inflammatory cytokines and matrix metalloproteinases (MMPs) in cultured PDLCs. Western blot was performed to detect proteins in relevant signaling pathways. RESULTS Increased ANGPTL2 expression was observed in inflamed periodontal tissues and PDLCs. ANGPTL2 deficiency promoted alveolar bone loss with enhanced osteoclastogenesis and inflammatory reactions in ligature-induced periodontitis. Downregulation of ANGPTL2 remarkably enhanced expression levels of interleukin (IL)-6, IL-8, MMP1, and MMP13 in Porphyromonas gingivalis lipopolysaccharide-induced PDLCs, whereas ANGPTL2-overexpressing PDLCs showed opposite trends. ANGPTL2 downregulation activated STAT3 and nuclear factor-κB pathways and blocked Akt signaling under inflammatory environment. Treatment with a STAT3 inhibitor partially suppressed the inflammatory reaction of PDLCs mediated by ANGPTL2 knockdown. CONCLUSIONS Our study provides the first evidence of an anti-inflammatory effect of ANGPTL2 in murine periodontitis. The findings demonstrate the critical and protective role of ANGPTL2 in alveolar bone loss and periodontal inflammation.
Collapse
Affiliation(s)
- Chenxi Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Siqi Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yi Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuan Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huihui Zhang
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) and Key Laboratory for Oral Biomedical Engineering of Ministry of Education (KLOBME), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|