1
|
Alzamami A, Alturki NA, Khan K, Basharat Z, Mashraqi MM. Screening inhibitors against the Ef-Tu of Fusobacterium nucleatum: a docking, ADMET and PBPK assessment study. Mol Divers 2024; 28:4259-4276. [PMID: 38457020 DOI: 10.1007/s11030-024-10815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/21/2024] [Indexed: 03/09/2024]
Abstract
The oral pathogen Fusobacterium nucleatum has recently been associated with an elevated risk of colorectal cancer (CRC), endometrial metastasis, chemoresistance, inflammation, metastasis, and DNA damage, along with several other diseases. This study aimed to explore the disruption of protein machinery of F. nucleatum via inhibition of elongation factor thermo unstable (Ef-Tu) protein, through natural products. No study on Ef-Tu inhibition by natural products or in Fusobacterium spp. exists till todate. Ef-Tu is an abundant specialized drug target in bacteria that varies from human Ef-Tu. Elfamycins target Ef-Tu and hence, Enacyloxin IIa was used to generate pharmacophore for virtual screening of three natural product libraries, Natural Product Activity and Species Source (NPASS) (n = 30000 molecules), Tibetan medicinal plant database (n = 54 molecules) and African medicinal plant database (n > 6000 molecules). Peptaibol Septocylindrin B (NPC141050), Hirtusneanoside, and ZINC95486259 were prioritized from these libraries as potential therapeutic candidates. ADMET profiling was done for safety assessment, physiological-based pharmacokinetic modeling in human and mouse for getting insight into drug interaction with body tissues and molecular dynamics was used to assess stability of the best hit NPC141050 (Septocylindrin B). Based on the promising results, we propose further in vitro, in vivo and pharmacokinetic testing on the lead Septocylindrin B, for possible translation into therapeutic interventions.
Collapse
Affiliation(s)
- Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Shaqra University, 11961, Al-Quwayiyah, Saudi Arabia
| | - Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Zarrin Basharat
- Alpha Genomics (Private) Limited, Islamabad, 45710, Pakistan.
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 61441, Najran, Saudi Arabia.
| |
Collapse
|
2
|
Shen S, Sun T, Ding X, Gu X, Wang Y, Ma X, Li Z, Gao H, Ge S, Feng Q. The exoprotein Gbp of Fusobacterium nucleatum promotes THP-1 cell lipid deposition by binding to CypA and activating PI3K-AKT/MAPK/NF-κB pathways. J Adv Res 2024; 57:93-105. [PMID: 37100345 PMCID: PMC10918358 DOI: 10.1016/j.jare.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
INTRODUCTION Growing evidence has shown the correlation between periodontitis and atherosclerosis, while our knowledge on the pathogenesis of periodontitis-promoting atherosclerosis is far from sufficient. OBJECTIVES Illuminate the pathogenic effects of Fusobacterium nucleatum (F. nucleatum) on intracellular lipid deposition in THP-1-derived macrophages and elucidate the underlying pathogenic mechanism of how F. nucleatum promoting atherosclerosis. METHODS AND RESULTS F. nucleatum was frequently detected in different kinds of atherosclerotic plaques and its abundance was positively correlated with the proportion of macrophages. In vitro assays showed F. nucleatum could adhere to and invade THP-1 cells, and survive continuously in macrophages for 24 h. F. nucleatum stimulation alone could significantly promote cellular inflammation, lipid uptake and inhibit lipid outflow. The dynamic gene expression of THP-1 cells demonstrated that F. nucleatum could time-serially induce the over-expression of multiple inflammatory related genes and activate NF-κB, MAPK and PI3K-AKT signaling pathways. The exoprotein of F. nucleatum, D-galactose-binding protein (Gbp), acted as one of the main pathogenic proteins to interact with the Cyclophilin A (CypA) of THP-1 cells and induced the activation of the NF- κB, MAPK and PI3K-AKT signaling pathways. Furthermore, use of six candidate drugs targeting to the key proteins in NF- κB, MAPK and PI3K-AKT pathways could dramatically decrease F. nucleatum induced inflammation and lipid deposition in THP-1 cells. CONCLUSIONS This study suggests that the periodontal pathogen F. nucleatum can activate macrophage PI3K-AKT/MAPK/NF-κB signal pathways, promotes inflammation, enhances cholesterol uptake, reduces lipid excretion, and promotes lipid deposition, which may be one of its main strategies promoting the development of atherosclerosis.
Collapse
Affiliation(s)
- Song Shen
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Tianyong Sun
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xiangjiu Ding
- Department of Vascular Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiufeng Gu
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Yushang Wang
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xiaomei Ma
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Zixuan Li
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Haiting Gao
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Shaohua Ge
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China.
| | - Qiang Feng
- Department of Human Microbiome & Periodontology & Implantology & Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Iwashita M. Association between Periodontal Disease and Arteriosclerosis-Related Diseases. J Atheroscler Thromb 2023; 30:1517-1524. [PMID: 37648470 PMCID: PMC10627774 DOI: 10.5551/jat.rv22010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 09/01/2023] Open
Abstract
Periodontitis, a major inflammatory disease of the oral cavity that can cause low-grade systemic inflammation, has been suggested to influence the development of comorbidities. Multiple systemic inflammatory mechanisms are common in the development of periodontal disease and atherosclerosis. Observational studies conducted worldwide have reported that periodontal disease may independently influence the progression of atherosclerotic disease. However, there is still insufficient evidence to demonstrate the causal relationship. This review describes the association between periodontal disease and arteriosclerosis-related diseases with the latest findings.
Collapse
Affiliation(s)
- Misaki Iwashita
- Department of Periodontology and Endodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
4
|
Huang X, Xie M, Lu X, Mei F, Song W, Liu Y, Chen L. The Roles of Periodontal Bacteria in Atherosclerosis. Int J Mol Sci 2023; 24:12861. [PMID: 37629042 PMCID: PMC10454115 DOI: 10.3390/ijms241612861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Atherosclerosis (AS) is an inflammatory vascular disease that constitutes a major underlying cause of cardiovascular diseases (CVD) and stroke. Infection is a contributing risk factor for AS. Epidemiological evidence has implicated individuals afflicted by periodontitis displaying an increased susceptibility to AS and CVD. This review concisely outlines several prevalent periodontal pathogens identified within atherosclerotic plaques, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Fusobacterium nucleatum. We review the existing epidemiological evidence elucidating the association between these pathogens and AS-related diseases, and the diverse mechanisms for which these pathogens may engage in AS, such as endothelial barrier disruption, immune system activation, facilitation of monocyte adhesion and aggregation, and promotion of foam cell formation, all of which contribute to the progression and destabilization of atherosclerotic plaques. Notably, the intricate interplay among bacteria underscores the complex impact of periodontitis on AS. In conclusion, advancing our understanding of the relationship between periodontal pathogens and AS will undoubtedly offer invaluable insights and potential therapeutic avenues for the prevention and management of AS.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yang Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (X.H.); (M.X.); (X.L.); (F.M.); (W.S.)
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
5
|
Liu C, Yang Z, Tang X, Zhao F, He M, Liu C, Zhou D, Wang L, Gu B, Yuan Y, Chen X. Colonization of Fusobacterium nucleatum is an independent predictor of poor prognosis in gastric cancer patients with venous thromboembolism: a retrospective cohort study. Thromb J 2023; 21:2. [PMID: 36600287 PMCID: PMC9811730 DOI: 10.1186/s12959-022-00447-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) often colonizes cancerous gastric tissues and is characterized by the promotion of platelet aggregation and the development of visceral thrombosis. Venous thromboembolism (VTE) leads to a significant increase in the mortality of gastric cancer (GC) patients. However, the relationship between the colonization of F. nucleatum and the prognosis of GC patients is still unknown. AIM The aim of this study was to explore whether the colonization of F. nucleatum is related to the prognosis of GC patients complicated with VTE and to explore other potential risk factors. METHODS From 2017-2021, the data of 304 patients with new VTEs during the treatment of GC at the Affiliated Cancer Hospital of Zhengzhou University were collected. Fluorescence in situ hybridization of F. nucleatum was performed on pathological sections of cancer tissues from the patients. Survival analysis methods, including the Kaplan‒Meier method and Cox proportional hazard model, were performed. RESULTS F. nucleatum colonization was significantly associated with splanchnic vein thrombosis, higher platelet-lymphocyte ratio (PLR), and lower absolute lymphocyte count. In the multivariable Cox model, F. nucleatum colonization was found to be an independent risk factor for the prognosis of GC, with an adjusted HR of 1.77 (95% CI, 1.17 to 2.69 [P = 0.007]). In addition, patients with high PLR (HR: 2.65, P = 0.004) or VTE occurring during four cycles of chemotherapy (HR: 2.32, P = 0.012) exhibited shorter survival. Conversely, those experiencing VTE later (HR per month from diagnosis of GC: 0.95, P = 0.006) or using IVC filters (HR: 0.27, P = 0.011) had longer survival. CONCLUSION Colonization of F. nucleatum in GC tissues was associated with lower absolute lymphocyte count and higher PLR in GC patients with VTE. F. nucleatum colonization also appeared to be associated with the development of VTE in specific sites, in particular the splanchnic vein. Colonization of F. nucleatum may potentially represent an independent predictor of poor prognosis in GC patients. Additional research is necessary to validate these findings.
Collapse
Affiliation(s)
- Chang Liu
- grid.284723.80000 0000 8877 7471The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280 China ,grid.414008.90000 0004 1799 4638Department of Critical Care Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008 China
| | - Zhou Yang
- grid.284723.80000 0000 8877 7471Department of Biostatistics, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong 510515 China
| | - Xiance Tang
- grid.414008.90000 0004 1799 4638Department of Medical Records, Office for DRGs, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008 China
| | - Fangfang Zhao
- grid.414008.90000 0004 1799 4638Department of Gastrointestinal Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, Henan 450008 China
| | - Mengke He
- grid.414008.90000 0004 1799 4638Department of Critical Care Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008 China
| | - Changpeng Liu
- grid.414008.90000 0004 1799 4638Department of Medical Records, Office for DRGs, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008 China
| | - Dongmin Zhou
- grid.414008.90000 0004 1799 4638Department of Critical Care Medicine, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008 China
| | - Lifeng Wang
- grid.414008.90000 0004 1799 4638Department of Medical Imaging, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008 China
| | - Bo Gu
- grid.414008.90000 0004 1799 4638Department of Ultrasound Therapy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008 China
| | - Yiqiang Yuan
- grid.284723.80000 0000 8877 7471The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510280 China ,grid.284723.80000 0000 8877 7471Department of Cardiovascular Medicine, The 7th People’s Hospital of Zhengzhou, Henan Cardiovascular Hospital Affiliated to Southern Medical University/The Second School of Clinical Medicine, Southern Medical University, No.17 Jingnanwu Road, Zhengzhou, Henan 450016 China ,grid.459614.bDepartment of Cardiovascular Medicine, Henan Provincial Chest Hospital, No.1 Weiwu Road, Zhengzhou, Henan 450008 China
| | - Xiaobing Chen
- grid.414008.90000 0004 1799 4638Department of Gastrointestinal Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127 Dongming Road, Zhengzhou, Henan 450008 China
| |
Collapse
|
6
|
Zhou J, Liu L, Wu P, Zhao L, Wu Y. Identification and characterization of non-coding RNA networks in infected macrophages revealing the pathogenesis of F. nucleatum-associated diseases. BMC Genomics 2022; 23:826. [PMID: 36513974 DOI: 10.1186/s12864-022-09052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND F. nucleatum, as an important periodontal pathogen, is not only closely associated with the development of periodontitis, but also implicated in systemic diseases. Macrophages may act as an important mediator in the pathogenic process of F. nucleatum infection. As non-coding RNAs (ncRNAs) have attracted extensive attention as important epigenetic regulatory mechanisms recently, we focus on the competing endogenous RNA (ceRNA) regulatory networks to elucidate the pathogenesis of F. nucleatum-associated diseases. RESULTS We screen abnormally expressed mRNAs, miRNAs, lncRNAs and circRNAs in macrophages after F. nucleatum infection via the whole transcriptome sequencing technology, including 375 mRNAs, 5 miRNAs, 64 lncRNAs, and 180 circRNAs. The accuracy of RNA-seq and microRNA-seq result was further verified by qRT-PCR analysis. GO and KEGG analysis show that the differentially expressed genes were mainly involved in MAPK pathway, Toll-like receptor pathway, NF-κB pathway and apoptosis. KEGG disease analysis reveals that they were closely involved in immune system diseases, cardiovascular disease, cancers, inflammatory bowel disease (IBD) et al. We constructed the underlying lncRNA/circRNA-miRNA-mRNA networks to understand their interaction based on the correlation analysis between the differentially expressed RNAs, and then screen the core non-coding RNAs. In which, AKT2 is controlled by hsa_circ_0078617, hsa_circ_0069227, hsa_circ_0084089, lncRNA NUP210, lncRNA ABCB9, lncRNA DIXDC1, lncRNA ATXN1 and lncRNA XLOC_237387 through miR-150-5p; hsa_circ_0001165, hsa_circ_0008460, hsa_circ_0001118, lncRNA XLOC_237387 and lncRNA ATXN1 were identified as the ceRNAs of hsa-miR-146a-3p and thereby indirectly modulating the expression of MITF. CONCLUSIONS Our data identified promising candidate ncRNAs responsible for regulating immune response in the F. nucleatum-associated diseases, offering new insights regarding the pathogenic mechanism of this pathogen.
Collapse
Affiliation(s)
- Jieyu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiyao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|