1
|
Thammasut W, Rojviriya C, Chaiya P, Phaechamud T, Limsitthichaikoon S. Moxifloxacin HCl -loaded Cellulose Acetate Butylate In Situ Forming Gel for Periodontitis Treatment. AAPS PharmSciTech 2024; 25:242. [PMID: 39402367 DOI: 10.1208/s12249-024-02960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Periodontitis presents significant treatment challenges due to its complexity and potential complications. In response, an in situ forming gel (ISG) loaded with moxifloxacin HCl (Mx) and cellulose acetate butyrate (CAB) was developed for targeted periodontitis therapy. Mx-loaded 10-45% CAB-based ISGs were developed, and their physicochemical properties such as rheology, viscosity, contact angle, gel morphology and gel formation, interface interaction were investigated. Moreover, the formulation performance studies including drug release and kinetics, in vitro degradation, and antimicrobial activities were also evaluated. The Mx-loaded ISGs containing 25-45% CAB demonstrated rapid matrix formation in both macroscopic and microscopic examinations and presented plastic deformation matrix. Tracking with sodium fluorescein and Nile red fluorescence probes indicated delayed solvent movement owing to CAB matrix formation. Adequate CAB content sustained Mx release for one week, following Peppas-Sahlin model and indicating a predominantly Fickian diffusion mechanism. Higher CAB content likely contributed to a denser matrix structure, leading to a slower in vitro degradation rate. Synchrotron radiation X-ray tomographic and SEM imaging provided insights into the CAB matrix structure and porous network formation. These ISG formulations effectively inhibited Staphylococcus aureus, Escherichia coli, Candida albicans, and Porphyromonas gingivalis. The Mx-loaded 40% CAB-based ISG shows promise as a dosage form for treating periodontitis. Further clinical trials are necessary to ensure the safety of this new ISG formulation, despite existing safety data for other medicinal uses of CAB. HIGHLIGHTS: Moxifloxacin HCl-loaded 10-45% cellulose acetate butyrate (CAB)-based in situ forming gels (ISG) were developed. They were evaluated for physicochemical properties, drug release, in vitro degradation, and antimicrobial activities. ISGs with 25-45% CAB showed swift matrix formation and plastic deformation Adequate CAB content sustained Mx release with Fickian diffusion mechanism They promise for periodontitis treatment because of effective inhibition of related pathogens.
Collapse
Affiliation(s)
- Warakon Thammasut
- Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Catleya Rojviriya
- Synchrotron Light Research Institute, Nakhon Ratchasima, 30000, Thailand
| | - Pornsit Chaiya
- School of Pharmacy, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Thawatchai Phaechamud
- Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Natural Products Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Sucharat Limsitthichaikoon
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani, 12000, Thailand.
| |
Collapse
|
2
|
Study by DFT of the functionalization of amylose/amylopectin with glycerin monoacetate: Characterization by FTIR, electronic and adsorption properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Fortunatti-Montoya M, Sánchez FA, Hegel PE, Pereda S. Fractionation of glycerol acetates with supercritical CO2. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Sun B, Zhang M, Shen J, He Z, Fatehi P, Ni Y. Applications of Cellulose-based Materials in Sustained Drug Delivery Systems. Curr Med Chem 2019; 26:2485-2501. [DOI: 10.2174/0929867324666170705143308] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/08/2017] [Accepted: 03/25/2017] [Indexed: 11/22/2022]
Abstract
Bio-compatible, bio-degradable, and bio-available excipients are of critical interest
for drug delivery systems. Cellulose and its derivative-based excipients have been
well studied due to their green/natural and unique encapsulation/binding properties. They
are often used in controlled/sustained drug delivery systems. In these applications, cellulose
and its derivatives function generally can modify the solubility/gelling behavior of
drugs, resulting in different mechanisms for controlling the release profiles of drugs. In
this paper, the current knowledge in the structure and chemistry of conventional cellulose
derivatives, and their applications in drug delivery systems are briefly reviewed. The development
of innovative cellulose-based materials, including micro-cellulose (MC) and
nano-cellulose (NC) in the applications of sustained drug delivery, is also discussed.
Collapse
Affiliation(s)
- Bo Sun
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China
| | - Min Zhang
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, China
| | - Jing Shen
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Zhibin He
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Pedram Fatehi
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| |
Collapse
|
5
|
Williams DBG, Mason JM, Tristram CJ, Hinkley SFR. Cellulose as a Source of Water Dispersible Renewable Film-Forming Materials. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D. Bradley G. Williams
- The Ferrier Research
Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Jennifer M. Mason
- The Ferrier Research
Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Cameron J. Tristram
- The Ferrier Research
Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| | - Simon F. R. Hinkley
- The Ferrier Research
Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5010, New Zealand
| |
Collapse
|
6
|
Zhao Y, Aarnink AJA, De Jong MCM, Groot Koerkamp PWG. Airborne Microorganisms From Livestock Production Systems and Their Relation to Dust. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2014; 44:1071-1128. [PMID: 32288664 PMCID: PMC7113898 DOI: 10.1080/10643389.2012.746064] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Large amounts of airborne microorganisms are emitted from livestock production. These emitted microorganisms may associate with dust, and are suspected to pose a risk of airborne infection to humans in vicinity and to animals on other farms. However, the extent to which airborne transmission may play a role in the epidemic, and how dust acts as a carrier of microorganisms in the transmission processes is unknown. The authors present the current knowledge of the entire process of airborne transmission of microorganisms-from suspension and transportation until deposition and infection-and their relation to dust. The sampling and the mitigation techniques of airborne microorganisms and dust in livestock production systems are introduced as well.
Collapse
Affiliation(s)
- Yang Zhao
- Wageningen UR Livestock Research, Lelystad, the Netherlands
- Department of Agricultural and Biosystems EngineeringIowa State University, Ames, IA, USA
| | | | - Mart C. M. De Jong
- Quantitative Veterinary Epidemiology, Wageningen University, Wageningen, the Netherlands
| | - Peter W. G. Groot Koerkamp
- Wageningen UR Livestock Research, Lelystad, the Netherlands
- Farm Technology Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
7
|
Reddy KM, Babu VR, Sairam M, Subha MCS, Mallikarjuna NN, Kulkarni PV, Aminabhavi TM. Development of chitosan-guar gum semi-interpenetrating polymer network microspheres for controlled release of cefadroxil. Des Monomers Polym 2012. [DOI: 10.1163/156855506778538047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
8
|
Dev R, Kumar A, Pathak K. Solubility-modulated asymmetric membrane tablets of triprolidine hydrochloride: statistical optimization and evaluation. AAPS PharmSciTech 2012; 13:174-83. [PMID: 22183255 PMCID: PMC3299447 DOI: 10.1208/s12249-011-9738-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 11/29/2011] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to develop asymmetric membrane (AM) tablets for controlled delivery of highly water-soluble antihistaminic drug triprolidine hydrochloride. The solubility of triprolidine hydrochloride was modulated through the incorporation of coated sodium chloride crystals encapsulated with asymmetric membrane coating polymer, cellulose acetate butyrate. Formulation of AM tablets was based on a 2(3) factorial design to study the effect of formulation variables, namely, polymer concentration, level of pore former, and amount of osmogen on the in vitro release. Core tablets prepared by wet granulation and coated with asymmetric membrane by a dip coating method were evaluated. Statistical analysis was done with the Design Expert Software 8.0.2 (USA), and the polynomial equation generated by Pareto charts was used for validation of the experimental design. The interaction chart and response surface plots deduced the simultaneous effect of independent variables on in vitro drug release. The in vitro drug release was inversely proportional and directly related to the level(s) of polymer and pore former in the membrane, respectively. The level of osmogen not only increased the osmotic pressure but also controlled the drug release due to a common ion effect. The drug release of the optimized formulation (F6) followed zero-order kinetics, which would be capable of reducing the administration, and was stable over 3 months. SEM photographs revealed asymmetry in membrane structure.
Collapse
Affiliation(s)
- Rahul Dev
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, National Highway #2, P.O. Chhattikara, Mathura, Uttar Pradesh 281001 India
| | - Anil Kumar
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, National Highway #2, P.O. Chhattikara, Mathura, Uttar Pradesh 281001 India
| | - Kamla Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, National Highway #2, P.O. Chhattikara, Mathura, Uttar Pradesh 281001 India
| |
Collapse
|
9
|
Nutan MTH, Vaithiyalingam SR, Khan MA. Controlled Release Multiparticulate Beads Coated with Starch Acetate: Material Characterization, and Identification of Critical Formulation and Process Variables. Pharm Dev Technol 2008; 12:307-20. [PMID: 17613894 DOI: 10.1080/10837450701247483] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The objectives of the present investigation were to prepare and characterize starch acetate (SA) with high degree of substitution (dS) and to study its prospect as film-forming agent in a controlled-release multiparticulate drug delivery system. As a part of the development process by quality by design, the objectives also included identification of critical formulation and process variables that affect the release of a drug. SA, a relatively new polymer, was characterized because it showed good film-forming properties. SA with dS 2.9 was synthesized from corn starch by paste disruption technique. It was compared with the raw material, starch, by Fourier transform infrared spectroscopy, X-ray diffraction, and molecular mass analysis. Viscosity of SA solution increased logarithmically with the polymer concentration. At higher polymer concentrations (1.5-5.0%), the solutions showed pseudoplastic behavior. Among the plasticizers tested, triacetin and triethyl citrate yielded free films with acceptable mechanical properties. The glass transition temperature (Tg) of the films could be well controlled by these plasticizers. Unplasticized film showed a Tg of 31.8 degrees C. A trend was found that increase in triacetin concentration in SA films resulted in increase in permeability coefficient for tritiated water. Scanning electron microscopic photographs showed a clear and smooth plasticized film compared to rough unplasticized film. Dyphylline-loaded beads were coated with highly substituted SA to evaluate the main effects of the formulation and process variables on the release of the drug and to figure out the reliability of the screening design. A seven-factor, twelve-run Plackett-Burman screening design was used. The response variables were cumulative percent of drug released in 0.5, 1, 4, 8, and 12 hr. Quantitative evaluation of the design revealed that coating weight gain, plasticizer concentration, and post-drying temperature had greater influence on the drug release than the others. The main effects on drug release after 12 hr decreased in the following order: coating weight gain (-7.81), plasticizer concentration (4.96), postdrying temperature (-2.51), SA concentration (-0.80), inlet temperature (0.51), postdrying time (-0.31), and atomizing pressure (-0.28).
Collapse
Affiliation(s)
- Mohammad T H Nutan
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Health Science Center, Kingsville, TX, USA
| | | | | |
Collapse
|
10
|
Guo H, Heinämäki J, Yliruusi J. Stable aqueous film coating dispersion of zein. J Colloid Interface Sci 2008; 322:478-84. [DOI: 10.1016/j.jcis.2007.11.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 10/28/2007] [Accepted: 11/25/2007] [Indexed: 11/25/2022]
|
11
|
Ramesh Babu V, Sairam M, Hosamani KM, Aminabhavi TM. Preparation of sodium alginate–methylcellulose blend microspheres for controlled release of nifedipine. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2006.09.027] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Gallardo V, Morales ME, López-Viota J, Durán JDG, Ruiz MA. Rheological properties of ethylcellulose latex. J Appl Polym Sci 2006. [DOI: 10.1002/app.24389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Ramesh Babu V, Krishna Rao KSV, Sairam M, Naidu BVK, Hosamani KM, Aminabhavi TM. pH sensitive interpenetrating network microgels of sodium alginate-acrylic acid for the controlled release of ibuprofen. J Appl Polym Sci 2005. [DOI: 10.1002/app.22760] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Ma D, Wasylaschuk WR, Beasley C, Zhao ZZ, Harmon PA, Ballard JM, Pitzenberger SM, Varga SL, Reed RA. Identification and quantitation of extractables from cellulose acetate butyrate (CAB) and estimation of their in vivo exposure levels. J Pharm Biomed Anal 2004; 35:779-88. [PMID: 15193722 DOI: 10.1016/j.jpba.2004.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 03/05/2004] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
The purpose of this study was to qualitatively and quantitatively determine potential cellulose acetate butyrate (CAB) extractables in a way to meaningfully predict the in vivo exposure resulting from clinical administration. Extractions of CAB-381-20 were performed in several solvent systems, consistently resulting in the detection of three extractables. The extractables have been identified as acetic acid, butyric acid, and E-2-ethyl-2-hexenoic acid (E-EHA) by LC/UV, LC/MS and NMR. Extraction studies of CAB powders in acetonitrile/phosphate buffer demonstrated quantitative extraction in 1 h for acetic acid (approximately 150 microg/g), butyric acid (approximately 200 microg/g), and EHA (approximately 20 microg/g). Subsequently, extraction studies for CAB powders and coated tablets in USP simulated gastric and intestinal fluids were performed to evaluate potential in vivo exposure. Similarly, acetic and butyric acids were quantitatively extracted from CAB-381-20 powder after 24 h exposure in both USP simulated fluids. The amounts of EHA extracted from CAB powder after 24 h were determined to be 2 and 16 microg/g in USP simulated gastric and intestinal fluids, respectively. After 24 h exposure in USP simulated fluids, the maximum amount of EHA extracted corresponds to < 0.3 microg of EHA per tablet. Pepsin and pancreatin in USP simulated fluids had no effect on EHA extraction and quantitation.
Collapse
Affiliation(s)
- Decheng Ma
- Merck Research Laboratories, Pharmaceutical Analysis and Control, P.O. Box 4, WP14-2E, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tarvainen M, Peltonen S, Mikkonen H, Elovaara M, Tuunainen M, Paronen P, Ketolainen J, Sutinen R. Aqueous starch acetate dispersion as a novel coating material for controlled release products. J Control Release 2004; 96:179-91. [PMID: 15063040 DOI: 10.1016/j.jconrel.2004.01.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Accepted: 01/22/2004] [Indexed: 11/24/2022]
Abstract
The aim of this study was to evaluate film-formation properties of a novel, organic solvent-free aqueous dispersion of potato starch acetate (SA; degree of substitution 2.8) and its ability to control drug release from a coated tablet. Initially, film-formation mechanisms and drug permeabilities of both organic solvent and dispersion-based SA free films (prepared by cast or spraying techniques) were investigated. The SA dispersion was suitable for the fluid-bed coating process, forming strong films with complete coalescent polymeric spheres. The model compounds predominantly permeated via the micro-pores of SA free films, which resulted from the leaching of water-soluble excipients from the dispersion. Thus, the permeation rate depended on the film structure rather than the physico-chemical properties of the penetrant. In the case of SA-coated tablet, drug release was sustained when the coating level was increased (from 12% to 20%, stated as a weight gain), and also as lipophilicity of the drug increased. When compared to the reference polymer dispersion (Surelease), SA coatings showed better mechanical properties against the osmotic pressure caused by a hydrophilic core tablet. These results clearly demonstrate that SA dispersion has high utility as a novel aqueous coating material for controlled release products.
Collapse
Affiliation(s)
- Maarit Tarvainen
- Department of Pharmaceutics, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | | | | | | | |
Collapse
|