1
|
De Gaetano F, Leggio L, Celesti C, Genovese F, Falcone M, Giofrè SV, Iraci N, Iraci N, Ventura CA. Study of Host-Guest Interaction and In Vitro Neuroprotective Potential of Cinnamic Acid/Randomly Methylated β-Cyclodextrin Inclusion Complex. Int J Mol Sci 2024; 25:12778. [PMID: 39684490 DOI: 10.3390/ijms252312778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Cinnamic acid (CA) has many beneficial effects on human health. However, its poor water solubility (0.23 g/L, at 25 °C) is responsible for its poor bioavailability. This drawback prevents its clinical use. To overcome the solubility limits of this extraordinary natural compound, in this study, we developed a highly water-soluble inclusion complex of CA with randomly methylated-β-cyclodextrin (RAMEB). The host-guest interaction was explored in liquid and solid states by UV-Vis titration, phase solubility analysis, FT-IR spectroscopy, and 1H-NMR. Additionally, molecular modeling studies were carried out. Both experimental and theoretical studies revealed a 1:1 CA/RAMEB inclusion complex, with a high apparent stability constant equal to 15,169.53 M-1. The inclusion complex increases the water solubility of CA by about 250-fold and dissolves within 5 min. Molecular modeling demonstrated that CA inserts its phenyl ring into the RAMEB cavity with its propyl-2-enoic acid tail leaning from the wide rim. Finally, a biological in vitro study of the inclusion complex, compared to the free components, was performed on the neuroblastoma SH-SY5Y cell line. None of them showed cytotoxic effects at the assayed concentrations. Of note, the pretreatment of SH-SY5Y cells with CA/RAMEB at 10, 30, and 125 µM doses significantly counteracted the effect of the neurotoxin MPP+, whilst CA and RAMEB alone did not show any neuroprotection. Overall, our data demonstrated that inclusion complexes overcome CA solubility problems, supporting their use for clinical applications.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Fabio Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Marco Falcone
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy
| | - Salvatore Vincenzo Giofrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, Torre Biologica, Via Santa Sofia 97, 95125 Catania, Italy
| | - Nunzio Iraci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
2
|
Riccio BVF, Meneguin AB, Baveloni FG, de Antoni JA, Robusti LMG, Gremião MPD, Ferrari PC, Chorilli M. Biopharmaceutical and nanotoxicological aspects of cyclodextrins for non-invasive topical treatments: A critical review. J Appl Toxicol 2023; 43:1410-1420. [PMID: 36579752 DOI: 10.1002/jat.4429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Cyclodextrins are nanometric cyclic oligosaccharides with amphiphilic characteristics that increase the stability of drugs in pharmaceutical forms and bioavailability, in addition to protecting them against oxidation and UV radiation. Some of their characteristics are low toxicity, biodegradability, and biocompatibility. They are divided into α-, β-, and γ-cyclodextrins, each with its own particularities. They can undergo surface modifications to improve their performances. Furthermore, their drug inclusion complexes can be made by various methods, including lyophilization, spray drying, magnetic stirring, kneading, and others. Cyclodextrins can solve several problems in drug stability when incorporated into dosage forms (including tablets, gels, films, nanoparticles, and suppositories) and allow better topical biological effects of drugs at administration sites such as skin, eyeballs, and oral, nasal, vaginal, and rectal cavities. However, as they are nanostructured systems and some of them can cause mild toxicity depending on the application site, they must be evaluated for their nanotoxicology and nanosafety aspects. Moreover, there is evidence that they can cause severe ototoxicity, killing cells from the ear canal even when applied by other administration routes. Therefore, they should be avoided in otologic administration and should have their permeation/penetration profiles and the in vivo hearing system integrity evaluated to certify that they will be safe and will not cause hearing loss.
Collapse
Affiliation(s)
- Bruno Vincenzo Fiod Riccio
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Franciele Garcia Baveloni
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Leda Maria Gorla Robusti
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
3
|
Braga SS. Cyclodextrins as Multi-Functional Ingredients in Dentistry. Pharmaceutics 2023; 15:2251. [PMID: 37765220 PMCID: PMC10534413 DOI: 10.3390/pharmaceutics15092251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclodextrins are present in a variety of oral hygiene compositions. The present work describes the role of cyclodextrins in several toothpastes and mouthwashes that are already available in the market, as well as their prospective use in other applications as investigated in studies in the literature. Moreover, cyclodextrins are under study for the development of materials used in various techniques of dental repair, such as fillings, cements and binders therein. Their role in each of the innovative materials is presented. Finally, the prospect of the use of cyclodextrin-based delivery systems for the oral cavity is introduced, with a focus on new cyclodextrin molecules with dual action as bone-targeting agents and osteogenic drugs, and on new cross-linked cyclodextrin particles with a high drug loading and sustained drug delivery profile for the treatment of diseases that require prolonged action, such as periodontitis. In conclusion, cyclodextrins are herein demonstrated to act as versatile and multi-action ingredients with a broad range of applications in dentistry.
Collapse
Affiliation(s)
- Susana Santos Braga
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
4
|
Erdoğar N, Akkın S, Varan G, Bilensoy E. Erlotinib complexation with randomly methylated β-cyclodextrin improves drug solubility, intestinal permeability, and therapeutic efficacy in non-small cell lung cancer. Pharm Dev Technol 2021; 26:797-806. [PMID: 34219578 DOI: 10.1080/10837450.2021.1946695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to investigate the impact of anticancer drug erlotinib-randomly methylated-β-cyclodextrin complex (ERL-RAMEB CD) on drug solubility and dissolution rate. Phase solubility study showed erlotinib displayed maximum solubility in RAMEB CD solution and the stability constant (Kc) was calculated to be 370 ± 16 M-1. The optimal formulation was obtained with ERL-RAMEB CD in a 1:1 molar ratio using the co-lyophilization technique. Differential scanning calorimetry (DSC) and Scanning electron microscopy (SEM) verified the inclusion of complex formation. In vitro dissolution study confirmed ERL-RAMEB CD as a favorable approach to increase drug dissolution with a 1.5-fold increase than free ERL at 1 h. An improved dissolution with ∼88.4% drug release at 1 h was observed, in comparison with Erlotinib with ∼58.7% release in 45 min. The in vitro cytotoxicity results indicated that the ERL-RAMEB CD inclusion complex reduced cell viability than free erlotinib. Caco-2 cell uptake that is indicative of drug intestinal permeability resulted in a 5-fold higher uptake of ERL-RAMEB CD inclusion complex than the ERL solution. Hence, ERL-RAMEB CD complexation displays a strong potential to increase dissolution and permeability of erlotinib leading eventually to enhanced oral bioavailability.
Collapse
Affiliation(s)
- Nazlı Erdoğar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Safiye Akkın
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Gamze Varan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Prajapati M, Christensen G, Paquet-Durand F, Loftsson T. Cytotoxicity of β-Cyclodextrins in Retinal Explants for Intravitreal Drug Formulations. Molecules 2021; 26:molecules26051492. [PMID: 33803405 PMCID: PMC7967144 DOI: 10.3390/molecules26051492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/24/2022] Open
Abstract
Cyclodextrins (CDs) have been widely used as pharmaceutical excipients for formulation purposes for different delivery systems. Recent studies have shown that CDs are able to form complexes with a variety of biomolecules, such as cholesterol. This has subsequently paved the way for the possibility of using CDs as drugs in certain retinal diseases, such as Stargardt disease and retinal artery occlusion, where CDs could absorb cholesterol lumps. However, studies on the retinal toxicity of CDs are limited. The purpose of this study was to examine the retinal toxicity of different beta-(β)CD derivatives and their localization within retinal tissues. To this end, we performed cytotoxicity studies with two different CDs—2-hydroxypropyl-βCD (HPβCD) and randomly methylated β-cyclodextrin (RMβCD)—using wild-type mouse retinal explants, the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, and fluorescence microscopy. RMβCD was found to be more toxic to retinal explants when compared to HPβCD, which the retina can safely tolerate at levels as high as 10 mM. Additionally, studies conducted with fluorescent forms of the same CDs showed that both CDs can penetrate deep into the inner nuclear layer of the retina, with some uptake by Müller cells. These results suggest that HPβCD is a safer option than RMβCD for retinal drug delivery and may advance the use of CDs in the development of drugs designed for intravitreal administration.
Collapse
Affiliation(s)
- Manisha Prajapati
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland;
| | - Gustav Christensen
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 5-7, 72076 Tübingen, Germany; (G.C.); (F.P.-D.)
| | - François Paquet-Durand
- Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 5-7, 72076 Tübingen, Germany; (G.C.); (F.P.-D.)
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland;
- Correspondence: ; Tel.: +354-525-4464; Fax: +354-525-4071
| |
Collapse
|
6
|
Cyclodextrin–phytochemical inclusion complexes: Promising food materials with targeted nutrition and functionality. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Volkova TV, Perlovich GL. Comparative analysis of solubilization and complexation characteristics for new antifungal compound with cyclodextrins. Impact of cyclodextrins on distribution process. Eur J Pharm Sci 2020; 154:105531. [PMID: 32871213 DOI: 10.1016/j.ejps.2020.105531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 11/24/2022]
Abstract
From a pharmaceutical standpoint, cyclodextrin-based products have deservedly gained substantial market share due to their ability to improve undesirable physicochemical properties of drugs. In this study the solubility of a potenial antifungal compound (L-173) has been improved essentially by addition of β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), and heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) in aqueous solutions (pH 2.0 and pH 7.4) at 298.15-313.15 K. The phase solubility diagrams were constructed. The stoichiometric ratio of the complexes was determined as 1:1. The stability constants of L-173 with all three CDs in acidic medium belong to the range optimal for the improvement of the bioavailability of hydrophobic drugs. DM-β-CD was assigned as the best solubilizer for L-173. The driving forces of the solubilization and complexation process were revealed by evaluating the thermodynamic parameters. The distribution behavior of L-173 in the 1-octanol/buffer and 1-hexane buffer systems at pH 2.0 and pH 7.4 in the presence of different CDs concentrations was studied. The reduction of the distribution coefficients with the increasing of CD concentration was detected due to complex formation. Based on the analysis of the solubility-distribution relationship, the L-173 partitioning between the biological tissues and penetration through the biological membranes in case when cyclodextrins are used as solubilizers was evaluated, and the optimal CD concentrations were proposed.
Collapse
Affiliation(s)
- Tatyana V Volkova
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia
| | - German L Perlovich
- G.A. Krestov Institute of Solution Chemistry RAS, 153045 Ivanovo, Russia..
| |
Collapse
|
8
|
Karimian R, Aghajani M. Cyclodextrins and their Derivatives as Carrier Molecules in Drug and Gene Delivery Systems. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190627115422] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides containing
six (α-CD), seven (β-CD), eight (γ-CD) and more glucopyranose units linked with α-(1,4)
bonds, having a terminal hydrophilic part and central lipophilic cavity. α-, β- and γ-CDs
are widely used in many industrial products, technologies and analytical methods owing to
their unique, versatile and tunable characteristics. In the pharmaceutical industry, CDs are
used as complexing agents to enhance aqueous solubility, physico-chemical stability and
bio-availability of administered drugs. Herein, special attention is given to the use of α-, β-
and γ-CDs and their derivatives in different areas of drug and gene delivery systems in the
past few decades through various routes of administration with a major emphasis on the
more recent developments.
Collapse
Affiliation(s)
- Ramin Karimian
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Milad Aghajani
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Chakravarthy KV, Boehm FJ, Christo PJ. Nanotechnology: A Promising New Paradigm for the Control of Pain. PAIN MEDICINE 2019; 19:232-243. [PMID: 29036629 DOI: 10.1093/pm/pnx131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective The objective of this article is to critically review both preclinical and clinical studies that focus on the use of nanotechnology for both acute and chronic pain management, surveying both diagnostic and therapeutic applications. The article also provides information on nanotechnology for pain practitioners, so that they may better understand how this technology works and how it may be applied to their day-to-day clinical practice. Study Design Narrative review. Methods The Pubmed NCBI and EMBASE databases were utilized to review published reports of in vivo and clinical studies that focus on using nanotechnology for pain management applications in both the acute and chronic pain settings. Results Articles were screened by title, abstract, and full article review. They were then analyzed by specific clinical indications, and appropriate data were presented based on a critical analysis of those articles. Conclusions As the development of nanomedical applications in acute and chronic pain management continues, medical practitioners should consider their growing potential to enhance the care of patients who are consistently living with pain. Current barriers to implementation include manufacturing scale-up for commercial viability, long-term nanoparticle toxicity considerations, and high cost for successful passage through clinical trials. These challenges will need to be overcome with ongoing translational research efforts in collaboration with industry and government bodies such as the Food and Drug Administration (FDA).
Collapse
Affiliation(s)
- Krishnan V Chakravarthy
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Johns Hopkins Institute for NanoBioTechnology (INBT), Baltimore, Maryland
| | | | - Paul J Christo
- Department of Anesthesiology and Critical Care Medicine, Division of Pain Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Ho DK, Costa A, De Rossi C, de Souza Carvalho-Wodarz C, Loretz B, Lehr CM. Polysaccharide Submicrocarrier for Improved Pulmonary Delivery of Poorly Soluble Anti-infective Ciprofloxacin: Preparation, Characterization, and Influence of Size on Cellular Uptake. Mol Pharm 2018; 15:1081-1096. [PMID: 29425049 DOI: 10.1021/acs.molpharmaceut.7b00967] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The majority of the currently used and developed anti-infectives are poorly water-soluble molecules. The poor solubility might lead to limited bioavailability and pharmacological action of the drug. Novel pharmaceutical materials have thus been designed to solve those problems and improve drug delivery. In this study, we propose a facile method to produce submicrocarriers (sMCs) by electrostatic gelation of anionic ß-cyclodextrin (aß-CD) and chitosan. The average hydrodynamic size ranged from 400 to 900 nm by carefully adjusting polymer concentrations and N/C ratio. The distinct host-guest reaction of cyclodextrin derivative is considered as a good approach to enhance solubility, and prevent drug recrystallization, and thus was used to develop sMC to improve the controlled release profile of a poorly soluble and clinically relevant anti-infective ciprofloxacin. The optimal molar ratio of ciprofloxacin to aß-CD was found to be 1:1, which helped maximize encapsulation efficiency (∼90%) and loading capacity (∼9%) of ciprofloxacin loaded sMCs. Furthermore, to recommend the future application of the developed sMCs, the dependence of cell uptake on sMCs size (500, 700, and 900 nm) was investigated in vitro on dTHP-1 by both flow cytometry and confocal microscopy. The results demonstrate that, regardless of their size, an only comparatively small fraction of the sMCs were taken up by the macrophage-like cells, while most of the carriers were merely adsorbed to the cell surface after 2 h incubation. After continuing the incubation to reach 24 h, the majority of the sMCs were found intracellularly. However, the sMCs had been designed to release sufficient amount of drug within 24 h, and the subsequent phagocytosis of the carrier may be considered as an efficient pathway for its safe degradation and elimination. In summary, the developed sMC is a suitable system with promising perspectives recommended for pulmonary extracellular infection therapeutics.
Collapse
Affiliation(s)
- Duy-Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , D-66123 Saarbrücken , Germany.,Department of Pharmacy , Saarland University , D-66123 Saarbrücken , Germany
| | - Ana Costa
- I3S, Instituto de Investigação e Inovação em Saúde Universidade do Porto , 4200-135 Porto , Portugal.,Instituto Nacional de Engenharia Biomédica (INEB), Universidade do Porto , 4200-135 Porto , Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , 4050-313 Porto , Portugal
| | - Chiara De Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , D-66123 Saarbrücken , Germany
| | - Cristiane de Souza Carvalho-Wodarz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , D-66123 Saarbrücken , Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , D-66123 Saarbrücken , Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , D-66123 Saarbrücken , Germany.,Department of Pharmacy , Saarland University , D-66123 Saarbrücken , Germany
| |
Collapse
|
11
|
Muankaew C, Loftsson T. Cyclodextrin-Based Formulations: A Non-Invasive Platform for Targeted Drug Delivery. Basic Clin Pharmacol Toxicol 2017; 122:46-55. [PMID: 29024354 DOI: 10.1111/bcpt.12917] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022]
Abstract
Cyclodextrins (CDs) are recognized as promising pharmaceutical excipients due to their unique ability to form water-soluble inclusion complexes with various poorly soluble compounds. The numerous investigations on CDs and their use in nanomedicine have received considerable attention in the last three decades, leading to the rapid development of new CD-containing formulations that significantly facilitate targeted drug delivery and controlled drug release, with consequent improvements in drug bioavailability. This MiniReview highlights the efficacy and recent uses of CDs for non-invasive drug delivery. Using ophthalmic and nasal drug delivery as examples, an overview of chemical properties, mechanisms of CDs on drug solubilization, stabilization and permeation, along with their toxicological profiles relevant to nasal and ocular administration, are provided and discussed. The recent development and application of CD-based nanocarrier systems for targeted drug delivery are summarized.
Collapse
Affiliation(s)
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
12
|
Crumling MA, King KA, Duncan RK. Cyclodextrins and Iatrogenic Hearing Loss: New Drugs with Significant Risk. Front Cell Neurosci 2017; 11:355. [PMID: 29163061 PMCID: PMC5676048 DOI: 10.3389/fncel.2017.00355] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Cyclodextrins are a family of cyclic oligosaccharides with widespread usage in medicine, industry and basic sciences owing to their ability to solubilize and stabilize guest compounds. In medicine, cyclodextrins primarily act as a complexing vehicle and consequently serve as powerful drug delivery agents. Recently, uncomplexed cyclodextrins have emerged as potent therapeutic compounds in their own right, based on their ability to sequester and mobilize cellular lipids. In particular, 2-hydroxypropyl-β-cyclodextrin (HPβCD) has garnered attention because of its cholesterol chelating properties, which appear to treat a rare neurodegenerative disorder and to promote atherosclerosis regression related to stroke and heart disease. Despite the potential health benefits, use of HPβCD has been linked to significant hearing loss in several species, including humans. Evidence in mice supports a rapid onset of hearing loss that is dose-dependent. Ototoxicity can occur following central or peripheral drug delivery, with either route resulting in the preferential loss of cochlear outer hair cells (OHCs) within hours of dosing. Inner hair cells and spiral ganglion cells are spared at doses that cause ~85% OHC loss; additionally, no other major organ systems appear adversely affected. Evidence from a first-to-human phase 1 clinical trial mirrors animal studies to a large extent, indicating rapid onset and involvement of OHCs. All patients in the trial experienced some permanent hearing loss, although a temporary loss of function can be observed acutely following drug delivery. The long-term impact of HPβCD use as a maintenance drug, and the mechanism(s) of ototoxicity, are unknown. β-cyclodextrins preferentially target membrane cholesterol, but other lipid species and proteins may be directly or indirectly involved. Moreover, as cholesterol is ubiquitous in cell membranes, it remains unclear why OHCs are preferentially susceptible to HPβCD. It is possible that HPβCD acts upon several targets—for example, ion channels, tight junctions (TJ), membrane integrity, and bioenergetics—that collectively increase the sensitivity of OHCs over other cell types.
Collapse
Affiliation(s)
- Mark A Crumling
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States
| | - Kelly A King
- Audiology Unit, Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - R Keith Duncan
- Department of Otolaryngology-Head & Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Development and characterization of fast dissolving tablets of oxaprozin based on hybrid systems of the drug with cyclodextrins and nanoclays. Int J Pharm 2017; 531:640-649. [PMID: 28522425 DOI: 10.1016/j.ijpharm.2017.05.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 01/26/2023]
Abstract
Previous studies highlighted an increase of the randomly-methylated-ß-cyclodextrin (RAMEB) solubilizing power towards oxaprozin when used in combination with L-arginine (ARG) or sepiolite nanoclay (SV). Therefore, the aim of this work was to investigate the possibility of maximising the RAMEB solubilizing efficacy by a joined approach based on the entrapment in SV of the drug-RAMEB-ARG complex. The quaternary nanocomposite was prepared by different techniques and characterized for solid state and dissolution properties, compared to ternary drug combinations with RAMEB-ARG, RAMEB-SV or ARG-SV. The dissolution rank order was drug-RAMEB-ARG-SV>>drug-RAMEB-ARG≈drug-RAMEB-SV>>drug-ARG-SV. The new hybrid nanocomposite enabled an increase from 60 up to 90% of oxaprozin dissolution parameters compared to the ternary systems with RAMEB-ARG and RAMEB-SV. Moreover, the lowest solubilizing efficacy of ternary systems with ARG-SV evidenced the specific synergic effect of both ARG and SV with RAMEB in enhancing oxaprozin dissolution properties. The superior performance of the quaternary nanocomposite was maintained after incorporation in a tablet formulation. In vivo studies on rats proved that the developed fast-dissolving tablet formulation, containing oxaprozin as cofused system with RAMEB, ARG and SV was more effective than the marketed tablet in terms of faster and more intense pain relieving effect in the treatment of adjuvant-induced arthritis.
Collapse
|
14
|
Leclercq L. Interactions between cyclodextrins and cellular components: Towards greener medical applications? Beilstein J Org Chem 2016; 12:2644-2662. [PMID: 28144335 PMCID: PMC5238526 DOI: 10.3762/bjoc.12.261] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/25/2016] [Indexed: 11/23/2022] Open
Abstract
In the field of host-guest chemistry, some of the most widely used hosts are probably cyclodextrins (CDs). As CDs are able to increase the water solubility of numerous drugs by inclusion into their hydrophobic cavity, they have been widespread used to develop numerous pharmaceutical formulations. Nevertheless, CDs are also able to interact with endogenous substances that originate from an organism, tissue or cell. These interactions can be useful for a vast array of topics including cholesterol manipulation, treatment of Alzheimer's disease, control of pathogens, etc. In addition, the use of natural CDs offers the great advantage of avoiding or reducing the use of common petroleum-sourced drugs. In this paper, the general features and applications of CDs have been reviewed as well as their interactions with isolated biomolecules leading to the formation of inclusion or exclusion complexes. Finally, some potential medical applications are highlighted throughout several examples.
Collapse
Affiliation(s)
- Loïc Leclercq
- Univ. Lille, CNRS, ENSCL, UMR 8181 – UCCS - Equipe CÏSCO, F-59000 Lille, France
| |
Collapse
|
15
|
Duchêne D, Bochot A. Thirty years with cyclodextrins. Int J Pharm 2016; 514:58-72. [DOI: 10.1016/j.ijpharm.2016.07.030] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/13/2016] [Accepted: 07/15/2016] [Indexed: 01/05/2023]
|
16
|
Franz-Montan M, Ribeiro LNDM, Volpato MC, Cereda CMS, Groppo FC, Tofoli GR, de Araújo DR, Santi P, Padula C, de Paula E. Recent advances and perspectives in topical oral anesthesia. Expert Opin Drug Deliv 2016; 14:673-684. [DOI: 10.1080/17425247.2016.1227784] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Ferreira LEN, Muniz BV, dos Santos CP, Volpato MC, de Paula E, Groppo FC. Comparison of liposomal and 2-hydroxypropyl-β-cyclodextrin–lidocaine on cell viability and inflammatory response in human keratinocytes and gingival fibroblasts. J Pharm Pharmacol 2016; 68:791-802. [DOI: 10.1111/jphp.12552] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/29/2016] [Indexed: 01/27/2023]
Abstract
Abstract
Objectives
The aim of this study was to observe the effect multilamellar liposomes (MLV) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in the in-vitro effects of lidocaine in cell viability, pro-inflammatory cytokines and prostaglandin E2 release of both human keratinocytes (HaCaT) and gingival fibroblasts (HGF) cells.
Methods
HaCaT and HGF cells were exposed to lidocaine 100–1 μm in plain, MLV and HP-β-CD formulations for 6 h or 24 h. The formulation effects in cell viability were measured by XTT assay and by fluorescent labelling. Cytokines (IL-8, IL-6 and TNF-α) and PGE2 release were quantified by ELISA.
Key findings
MLV and HP-β-CD formulations did not affect the HaCaT viability, which was significantly decreased by plain lidocaine after 24 h of exposure. Both drug carriers increased all cytokines released by HGF after 24-h exposure, and none of the carriers was able to reduce the PGE2 release induced by lidocaine.
Conclusion
The effect of drug carrier in the lidocaine effects was dependent on the cell type, concentration and time of exposure. MLV and HP-β-CD showed benefits in improving cell viability; however, both of them showed a tendency to increase cytokine release when compared to the plain solution.
Collapse
Affiliation(s)
- Luiz Eduardo Nunes Ferreira
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP, Piracicaba, São Paulo, Brazil
| | - Bruno Vilela Muniz
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP, Piracicaba, São Paulo, Brazil
| | - Cleiton Pita dos Santos
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP, Piracicaba, São Paulo, Brazil
| | - Maria Cristina Volpato
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP, Piracicaba, São Paulo, Brazil
| | - Eneida de Paula
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP, Piracicaba, São Paulo, Brazil
| | - Francisco Carlos Groppo
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas – UNICAMP, Piracicaba, São Paulo, Brazil
| |
Collapse
|
18
|
Imperiale JC, Sosnik AD. Cyclodextrin complexes for treatment improvement in infectious diseases. Nanomedicine (Lond) 2016; 10:1621-41. [PMID: 26008196 DOI: 10.2217/nnm.15.16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infectious diseases are a heterogeneous group of maladies that represent a serious burden to healthcare systems worldwide. Most of the available antimicrobial drugs display poor biopharmaceutical properties that compromise their effectiveness. Cyclodextrins (CDs) are cyclic oligosaccharides of glucopyranose formed by a variable number of repeating units that combine a hydrophilic surface with a hydrophobic cavity. The production of drug/CD complexes has become one of the most extensively investigated technology approaches to improve the stability, solubility, dissolution rate and bioavailability of drugs. The present work overviews the applications of CDs for the formulation of anti-infective agents along with the most relevant administration routes. Finally, an update on the complexes with CDs available on the market to treat infectious diseases is presented.
Collapse
|
19
|
Vecsernyés M, Fenyvesi F, Bácskay I, Deli MA, Szente L, Fenyvesi É. Cyclodextrins, blood-brain barrier, and treatment of neurological diseases. Arch Med Res 2014; 45:711-29. [PMID: 25482528 DOI: 10.1016/j.arcmed.2014.11.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
Biological barriers are the main defense systems of the homeostasis of the organism and protected organs. The blood-brain barrier (BBB), formed by the endothelial cells of brain capillaries, not only provides nutrients and protection to the central nervous system but also restricts the entry of drugs, emphasizing its importance in the treatment of neurological diseases. Cyclodextrins are increasingly used in human pharmacotherapy. Due to their favorable profile to form hydrophilic inclusion complexes with poorly soluble active pharmaceutical ingredients, they are present as excipients in many marketed drugs. Application of cyclodextrins is widespread in formulations for oral, parenteral, nasal, pulmonary, and skin delivery of drugs. Experimental and clinical data suggest that cyclodextrins can be used not only as excipients for centrally acting marketed drugs like antiepileptics, but also as active pharmaceutical ingredients to treat neurological diseases. Hydroxypropyl-β-cyclodextrin received orphan drug designation for the treatment of Niemann-Pick type C disease. In addition to this rare lysosomal storage disease with neurological symptoms, experimental research revealed the potential therapeutic use of cyclodextrins and cyclodextrin nanoparticles in neurodegenerative diseases, stroke, neuroinfections and brain tumors. In this context, the biological effects of cyclodextrins, their interaction with plasma membranes and extraction of different lipids are highly relevant at the level of the BBB.
Collapse
Affiliation(s)
- Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Mária A Deli
- Department of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Lajos Szente
- Cyclolab Cyclodextrin Research and Development Laboratory Ltd., Budapest, Hungary
| | - Éva Fenyvesi
- Cyclolab Cyclodextrin Research and Development Laboratory Ltd., Budapest, Hungary
| |
Collapse
|
20
|
Takizawa Y, Kishimoto H, Nakagawa M, Sakamoto N, Tobe Y, Furuya T, Tomita M, Hayashi M. Effects of pharmaceutical excipients on membrane permeability in rat small intestine. Int J Pharm 2013; 453:363-70. [DOI: 10.1016/j.ijpharm.2013.05.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 05/14/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
|
21
|
Mathiron D, Marçon F, Dubaele JM, Cailleu D, Pilard S, DjedaÏni-pilard F. Benefits of Methylated Cyclodextrins in the Development of Midazolam Pharmaceutical Formulations. J Pharm Sci 2013; 102:2102-11. [DOI: 10.1002/jps.23558] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/27/2013] [Accepted: 04/02/2013] [Indexed: 01/19/2023]
|
22
|
Ball C, Krogstad E, Chaowanachan T, Woodrow KA. Drug-eluting fibers for HIV-1 inhibition and contraception. PLoS One 2012; 7:e49792. [PMID: 23209601 PMCID: PMC3509119 DOI: 10.1371/journal.pone.0049792] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/12/2012] [Indexed: 01/06/2023] Open
Abstract
Multipurpose prevention technologies (MPTs) that simultaneously prevent sexually transmitted infections (STIs) and unintended pregnancy are a global health priority. Combining chemical and physical barriers offers the greatest potential to design effective MPTs, but integrating both functional modalities into a single device has been challenging. Here we show that drug-eluting fiber meshes designed for topical drug delivery can function as a combination chemical and physical barrier MPT. Using FDA-approved polymers, we fabricated nanofiber meshes with tunable fiber size and controlled degradation kinetics that facilitate simultaneous release of multiple agents against HIV-1, HSV-2, and sperm. We observed that drug-loaded meshes inhibited HIV-1 infection in vitro and physically obstructed sperm penetration. Furthermore, we report on a previously unknown activity of glycerol monolaurate (GML) to potently inhibit sperm motility and viability. The application of drug-eluting nanofibers for HIV-1 prevention and sperm inhibition may serve as an innovative platform technology for drug delivery to the lower female reproductive tract.
Collapse
Affiliation(s)
- Cameron Ball
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Emily Krogstad
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Thanyanan Chaowanachan
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
| | - Kim A. Woodrow
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
23
|
Boyle M, O’Donnell M, Russell R, Coleman D. Lack of cytotoxicity by Trustwater Ecasol™ used to maintain good quality dental unit waterline output water in keratinocyte monolayer and reconstituted human oral epithelial tissue models. J Dent 2010; 38:930-40. [DOI: 10.1016/j.jdent.2010.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/05/2010] [Accepted: 08/06/2010] [Indexed: 11/16/2022] Open
|
24
|
|
25
|
Preparation and solid-state characterization of bupivacaine hydrochloride cyclodextrin complexes aimed for buccal delivery. J Pharm Biomed Anal 2010; 52:9-18. [DOI: 10.1016/j.jpba.2009.11.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
|
26
|
Figueiras A, Sarraguça JMG, Pais AACC, Carvalho RA, Veiga JF. The role of L-arginine in inclusion complexes of omeprazole with cyclodextrins. AAPS PharmSciTech 2010; 11:233-40. [PMID: 20135244 DOI: 10.1208/s12249-009-9375-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 12/22/2009] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigate how the effect of L-arginine (ARG) and cyclodextrins upon omeprazole (OME) stability and solubility. The effect of the presence of ARG on the apparent stability constants (K(1:1)) of the inclusion complexes formed between OME and each cyclodextrin, beta-cyclodextrin (betaCD), and methyl-beta-cyclodextrin (MbetaCD) is studied by phase solubility diagrams and nuclear magnetic resonance (NMR) spectroscopy. The interaction of OME with those cyclodextrins, in the presence of ARG, is characterized using NMR spectroscopy and molecular dynamics simulations. ARG significantly increases the drug solubility and complex stability, in comparison to inclusion complexes formed in its absence. The effect is more pronounced for the OME:betaCD complex. ARG also contributes to a larger stability of OME when free in aqueous solution. The combination of ARG with cyclodextrins can represent an important tool to develop stable drug formulations.
Collapse
|
27
|
Sohi H, Ahuja A, Ahmad FJ, Khar RK. Critical evaluation of permeation enhancers for oral mucosal drug delivery. Drug Dev Ind Pharm 2010. [DOI: 10.3109/03639040903117348] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Jug M, Bećirević-Laćan M, Bengez S. Novel cyclodextrin-based film formulation intended for buccal delivery of atenolol. Drug Dev Ind Pharm 2009; 35:796-807. [DOI: 10.1080/03639040802596212] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Ribeiro A, Figueiras A, Santos D, Veiga F. Preparation and solid-state characterization of inclusion complexes formed between miconazole and methyl-beta-cyclodextrin. AAPS PharmSciTech 2008; 9:1102-9. [PMID: 18975116 DOI: 10.1208/s12249-008-9143-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 08/20/2008] [Indexed: 11/30/2022] Open
Abstract
The aim of this study is to confirm the formation of inclusion complexes between miconazole (MCZ) and two derivatives of beta-cyclodextrin, methyl-beta-cyclodextrin (MbetaCD) and 2-hydroxypropyl-beta-cyclodextrin (HPbetaCD) in aqueous solution by phase solubility studies. Inclusion complexes with MbetaCD in the solid state were then prepared by different methods, i.e., kneading, coevaporation (COE), spray-drying (SD), and lyophilization (LPh). The physicochemical properties of these complexes were subsequently studied by means of differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction techniques. Phase solubility diagrams with MbetaCD and HPbetaCD were classified as A(P) type, indicating the formation of 1:1 and 1:2 stoichiometric inclusion complexes. The apparent stability constants (K(S)) calculated from the phase solubility diagram were 145.69 M(-1) (K(1:1)) and 11.11 M(-1) (K(1:2)) for MbetaCD and 126.94 M(-1) (K(1:1)) and 2.20 M(-1) (K(1:2)) for HPbetaCD. The method of preparation of the inclusion complexes in the solid state was shown to greatly affect the properties of the formed complex. Hence, the LPh, SD, and COE methods produce true inclusion complexes between MCZ and MbetaCD. In contrast, crystalline drug was still clearly detectable in the kneaded (KN) product.
Collapse
|
30
|
Mallick S, Pattnaik S, Swain K, De PK. Current Perspectives of Solubilization: Potential for Improved Bioavailability. Drug Dev Ind Pharm 2008; 33:865-73. [PMID: 17729104 DOI: 10.1080/03639040701429333] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This review focuses on the recent techniques of solubilization for the attainment of effective absorption and improved bioavailability. Solubilization may be affected due to cosolvent water interaction or altered crystal structure by cosolvent addition. Micellar solubilization could be affected by both ionic strength and pH. Addition of cosolvents to the surfactant solutions offers only a small advantage because of the decrease in the solubilization capacity of the micelles. Polymorphism is known to influence dissolution and bioavailability of the drugs. Molecular modeling study of cyclodextrin inclusion complexations can predict the inclusion modes, stoichiometry of the complex, and the relative complexing efficiency of cyclodextrins with various drug molecules.
Collapse
Affiliation(s)
- Subrata Mallick
- Formulation Development and Drug Delivery Systems, Department of Pharmaceutics, College of Pharmaceutical Sciences, Mohuda, Berhampur, Orissa, India.
| | | | | | | |
Collapse
|
31
|
Li L, Cui G, Zhao M, Wang Y, Wang H, Li W, Peng S. Assembly of beta-cyclodextrin with 3S-tetrahydro-beta-carboline-3-carboxylic acid and self-assembly of 6-(3'S-carboline-3'-carboxylaminoethylamino)-6-deoxy-beta-cyclodextrin: approaches to enhance anti-oxidation stability and anti-thrombotic potency. J Phys Chem B 2008; 112:12139-47. [PMID: 18754637 DOI: 10.1021/jp8025495] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3 S-1,2,3,4-Tetrahydro-beta-carboline-3-carboxylic acid (THCA) isolated from Bulbus allii macrostemi was identified as the active antiplatelet aggregation ingredient. However, the very poor water solubility and the shortcoming of being oxidized easily in vivo seriously limit the clinical application of THCA. In the present study, two strategies were used to reduce this tendency. First, the inclusion complex of THCA with beta-cyclodextrin (beta-CD) was prepared. Spectral studies identified that the inclusion complex (beta-CD1,2/THCA) was in equilibrium between beta-CD/THCA and beta-CD2/THCA, and the proportion of two isomers was beta-CD concentration dependent; it was 89% vs 11% in our study. The oxidation of both THCA and beta-CD1,2/THCA by H2O2 followed first-order kinetics, and 35% of THCA and 33% of beta-CD1,2/THCA were oxidized during the monitoring period. In vitro antiplatelet aggregation and in vivo oral administration antithrombotic activity of THCA was largely increased via inclusion complexation with beta-CD. Second, a novel conjugate 6-(3' S-carboline-3'-carboxyamino-ethylamino)-6-deoxy-beta-CD (5-monomer) was prepared. Spectral characterizations demonstrated that 5-monomer was able to self-assemble into 5-dimer, which was coexisting with the monomer with a ratio of 79% vs 21% in solution. The in vitro oxidation of 5-monomer/5-dimer by H2O2 did not occur during the monitoring period. The in vitro antiplatelet aggregation and in vivo antithrombotic assays of 5-monomer /5-dimer demonstrated that the bioactivity of THCA was remarkably increased via conjugation with 6-ethylamino-6-deoxy-beta-CD and produced greater in vitro and in vivo effectiveness than that of the inclusion complex beta-CD1,2/THCA at the same dose. The significant improvement of the bioactivity and stability of THCA indicates that inclusion complexation and conjugation with beta-CD provide promising approaches to improve the practical use of THCA in clinical applications.
Collapse
Affiliation(s)
- Li Li
- College of Pharmaceutical Sciences, Capital Medical Univesity, Beijing 100069, PR China
| | | | | | | | | | | | | |
Collapse
|
32
|
Shen YC, Cheng SY, Kuo YH, Hwang TL, Chiang MY, Khalil AT. Chemical transformation and biological activities of ambrein, a major product of ambergris from Physeter macrocephalus (sperm whale). JOURNAL OF NATURAL PRODUCTS 2007; 70:147-53. [PMID: 17315955 DOI: 10.1021/np068029p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Ten new derivatives (2-11) of ambrein (1), isolated from ambergris, were prepared by chemical transformation. Oxidation and/or cyclization were effected by reactions with selenium oxide or p-toluenesulfonyl chloride or with the use of shortwave UV light. The structures of 2-12 were elucidated by spectroscopic analysis, with the structure and relative configuration of 9 confirmed by single-crystal X-ray crystallography. The cytotoxic activities of 1-12 were investigated against human liver carcinoma (Hepa59T/VGH), colon adenocarcinoma (WiDr), lung carcinoma (A-549), and human breast adenocarcinoma (MCF-7) cell lines. The anti-inflammatory activities of 1-11, in terms of the inhibition of human neutrophil function, were also evaluated.
Collapse
Affiliation(s)
- Ya-Ching Shen
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan 100, Republic of China.
| | | | | | | | | | | |
Collapse
|
33
|
Ulloth JE, Almaguel FG, Padilla A, Bu L, Liu JW, De Leon M. Characterization of methyl-beta-cyclodextrin toxicity in NGF-differentiated PC12 cell death. Neurotoxicology 2007; 28:613-21. [PMID: 17292476 PMCID: PMC1994916 DOI: 10.1016/j.neuro.2007.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 12/21/2006] [Accepted: 01/04/2007] [Indexed: 12/17/2022]
Abstract
Cyclodextrins (CDs) are used to deliver hydrophobic molecules in aqueous environments. Methyl-beta-cyclodextrin (MbetaCD), a member of this family of molecules, has been proposed to be a good carrier to deliver fatty acids to cells in culture. This report focuses on studying the in vitro effects of MbetaCD on nerve growth factor-differentiated PC12 (NGFDPC12) cells, a tissue culture model to study neuronal survival and differentiation. The main findings are: (1) NGFDPC12 cells have normal viability when exposed to 0.12% MbetaCD but showed a significant loss in cell viability at higher concentrations; (2) NGFDPC12 cells exposed to 0.25% MbetaCD exhibit nuclear condensation, blebbing and apoptotic bodies, and whole cell lysates exhibited an increase in caspase-3-like activity and high levels of Bax and Bcl-X(L) protein expression compared to control. Cultures treated with 0.25% MbetaCD also showed cleavage of normal 21-kDa Bax protein into a 18-kDa fragment. (3) Experiments using 0.12% MbetaCD to deliver oleic acid did not affect cell viability, in contrast NGFDPC12 cultures in which 0.25% MbetaCD concentration is used exhibited similar loss of cell viability as observed with 0.25% MbetaCD alone. Treating these cultures with caspase-3 inhibitor z-VAD-fmk did not protect the cells from MbetaCD toxic effects. (4) Immortalized Schwann cells (iSC) exposed to MbetaCD 0.12% did not show loss of cell viability while 0.25% MbetaCD triggered a significant toxicity but with a different dose and time course dynamic than NGFDPC12 cells. Thus, NGFDPC12 or iSC cell cultures exposed to 0.12% MbetaCD exhibits normal viability while higher concentrations increase in cell death and apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Marino De Leon
- *Corresponding author address: Center for Health Disparities and Molecular Medicine, 142 Mortensen Hall, 11085 Campus Street, Loma Linda University, School of Medicine, Loma Linda CA, 92350. Tel: 909–558–8777. Fax: 909–558–0177.
| |
Collapse
|
34
|
Schönfelder U, Radestock A, Elsner P, Hipler UC. Cyclodextrin-induced apoptosis in human keratinocytes is caspase-8 dependent and accompanied by mitochondrial cytochromecrelease. Exp Dermatol 2006; 15:883-90. [PMID: 17002685 DOI: 10.1111/j.1600-0625.2006.00481.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides that are able to form inclusion complexes with a variety of substances. For pharmaceutical applications, CD-based drug formulations offer important advantages compared with uncomplexed drugs. These include improved water solubility of lipophilic drug molecules, increased chemical stability, as well as enhanced bioavailability and absorption rate. Also, a number of topical formulations for dermal and transdermal drug delivery contain CDs. However, the most frequently used CDs - beta-CD and MbetaCD - are known to extract cholesterol from plasma membranes and thus to cause cellular damage and cell death. In the present study, the influence of various CDs and CD derivatives on the human keratinocyte cell line HaCaT was assessed. We found that beta-CD and MbetaCD induce apoptosis via the activator caspase-8, which subsequently activates the effector caspases-3/-7. Furthermore, beta-CD-induced apoptosis is accompanied by mitochondrial cytochrome c release. A significant shift from mitochondria into the cytosol was found. These findings may provide further rationale to the use of CDs in topical formulations for dermal and transdermal drug delivery or as raw material in order to functionalize textiles for medical applications.
Collapse
Affiliation(s)
- Ute Schönfelder
- Department of Dermatology, Friedrich Schiller University of Jena, Jena, Germany.
| | | | | | | |
Collapse
|
35
|
Smistad G, Jacobsen J, Sande SA. Multivariate toxicity screening of liposomal formulations on a human buccal cell line. Int J Pharm 2006; 330:14-22. [PMID: 16997516 DOI: 10.1016/j.ijpharm.2006.08.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 08/18/2006] [Accepted: 08/25/2006] [Indexed: 11/23/2022]
Abstract
The influence of various formulation factors on the in vitro cellular toxicity of liposomes on human buccal cells (TR146), were studied by using the concept of statistical experimental design and multivariate evaluation. The factors investigated were the type of main phospholipid (egg-PC, DMPC, DPPC), lipid concentration, the type of charge, liposome size, and amount and nature of the charged component (diacyl-PA, diacyl-PG, diacyl-PS, stearylamine (SA), diacyl-TAP) in the liposomes. Both full factorial design and D-optimal designs were created. Several significant main factors and interactions were revealed. Positively charged liposomes were shown to be toxic. The toxicity of negatively charged liposomes was relatively low. Diacyl-TAP was less toxic than SA, and DPPC was less toxic than DMPC. Low level of positively charged component was favourable and essential when using egg-PC as the main lipid. The amount of negatively charged component, the liposome size, and the total lipid concentration did not affect the toxicity within the experimental room. DPPC appeared to be a good candidate when formulating both positively and negatively charged liposomes with low cellular toxicity. The concept of statistical experimental design and multivariate evaluation was shown to be a useful approach in cell toxicity screening studies.
Collapse
Affiliation(s)
- Gro Smistad
- University of Oslo, School of Pharmacy, Department of Pharmaceutics, Oslo, Norway.
| | | | | |
Collapse
|
36
|
Nordone SK, Peacock JW, Kirwan SM, Staats HF. Capric acid and hydroxypropylmethylcellulose increase the immunogenicity of nasally administered peptide vaccines. AIDS Res Hum Retroviruses 2006; 22:558-68. [PMID: 16796531 DOI: 10.1089/aid.2006.22.558] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Immunization by the nasal route is an established method for the induction of mucosal and systemic humoral and cell-mediated antigen-specific responses. However, the effectiveness of nasal immunization is often hampered by the need for increased doses of antigen. Bioadhesives and absorption enhancers were investigated for their ability to enhance immune responses in mice after nasal immunization with model HIV-1 peptide and protein immunogens. Two additives, hydroxypropylmethylcellulose (HPMC) and capric acid, consistently enhanced antigen-specific serum IgG endpoint titers under conditions in which antigen dose was limiting. Nasal immunization of mice with 20 microg of an HIV-1 peptide immunogen plus cholera toxin (CT) as adjuvant induced serum antipeptide IgG titers of 1:9.5log2 after four immunizations while the addition of CA or HPMC to the vaccine formulation increased serum antipeptide IgG titers to 1:15.4log2 and 1:17.6log2, respectively. When 5 microg recombinant HIV-1 gp41 was used as the immunogen, the addition of CA or HPMC to the vaccine formulation increased serum anti-gp41 IgG titers to 1:11.6log2 and 1:8.8log2, respectively, compared to 1:5.2log2 after three nasal immunizations with 5 microg gp41 + CT alone. Thus, HPMC and capric acid may be useful additives that increase the immunogenicity of nasally administered vaccines and permit less antigen to be used with each immunization.
Collapse
Affiliation(s)
- Sushila K Nordone
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
37
|
Mannila J, Järvinen T, Järvinen K, Tervonen J, Jarho P. Sublingual administration of Delta9-tetrahydrocannabinol/beta-cyclodextrin complex increases the bioavailability of Delta9-tetrahydrocannabinol in rabbits. Life Sci 2005; 78:1911-4. [PMID: 16266727 DOI: 10.1016/j.lfs.2005.08.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 08/25/2005] [Indexed: 11/22/2022]
Abstract
The bioavailability of Delta(9)-tetrahydrocannabinol (THC) was determined after its sublingual administration as solid THC/beta-cyclodextrin (THC/beta-CD) complex, and was compared to oral administration of ethanolic THC, in rabbits. The absolute bioavailability of THC after sublingual administration of solid THC/beta-CD complex powder (16.0 +/- 7.5%; mean +/- SD; n = 4) is higher than the bioavailability of THC after oral administration of ethanolic THC solution (1.3 +/- 1.4%; mean +/- SD; n = 4). The results suggest that sublingual administration of THC/beta-CD complex is a useful tool in improving absolute bioavailability of THC.
Collapse
Affiliation(s)
- Janne Mannila
- Department of Pharmaceutical Chemistry, University of Kuopio, P.O. Box 1627, FIN-70211, Kuopio, Finland.
| | | | | | | | | |
Collapse
|