1
|
Bedogni G, Garcia P, Seremeta K, Okulik N, Salomon C. Preformulation and Long-Term Stability Studies of an Optimized Palatable Praziquantel Ethanol-Free Solution for Pediatric Delivery. Pharmaceutics 2023; 15:2050. [PMID: 37631264 PMCID: PMC10458622 DOI: 10.3390/pharmaceutics15082050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
To date, the treatment for cysticercosis and neurocysticercosis consists of a single oral intake of praziquantel (5-10 mg/kg), which since it is only available as tablets, hinders its administration to pediatric patients. Praziquantel is a poorly water-soluble drug which represents a challenge for its formulation in solution, particularly for the pediatric population. Thus, this study aimed to develop a palatable solution for praziquantel using pharmaceutical-accepted co-solvent systems. A design of experiments approach was applied to identify the optimal conditions for achieving a suitable amount of praziquantel in solution using co-solvent mixtures. Thus, praziquantel solubility increased from 0.38 up to 43.50 mg/mL in the optimized system. A taste masking assay in healthy human volunteers confirmed a successful reduction of drug bitterness after the addition of selected flavors and a sweetener. Stability studies were also conducted at different temperatures (4, 25, and 40 °C) for 12 months Even though the presence of the three known impurities of praziquantel was observed, their amounts never exceeded the acceptance criteria of the USP. Thus, this novel approach should be considered a valuable alternative for further preclinical studies considering the high prevalence of this infection worldwide.
Collapse
Affiliation(s)
- Giselle Bedogni
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, Rosario 2000, Argentina;
| | - Paula Garcia
- Planta Piloto de Producción de Medicamentos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, Rosario 2000, Argentina;
| | - Katia Seremeta
- Instituto de Investigaciones en Procesos Tecnológicos Avanzados, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Chaco Austral (INIPTA-CONICET-UNCAUS), Cte. Fernández 755, Presidencia Roque Sáenz Peña 3700, Argentina; (K.S.); (N.O.)
| | - Nora Okulik
- Instituto de Investigaciones en Procesos Tecnológicos Avanzados, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Chaco Austral (INIPTA-CONICET-UNCAUS), Cte. Fernández 755, Presidencia Roque Sáenz Peña 3700, Argentina; (K.S.); (N.O.)
| | - Claudio Salomon
- Instituto de Química Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIR-CONICET), Suipacha 531, Rosario 2000, Argentina;
- Área Técnica Farmacéutica, Departamento de Farmacia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
2
|
Bhanushali JS, Bharate SS. Estimating thermodynamic equilibrium solubility and solute-solvent interactions of niclosamide in eight mono-solvents at different temperatures. J Mol Liq 2022; 367:120359. [PMID: 36128020 PMCID: PMC9477609 DOI: 10.1016/j.molliq.2022.120359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/06/2022] [Accepted: 09/10/2022] [Indexed: 12/05/2022]
Abstract
Niclosamide is an FDA-approved oral anthelmintic drug currently being repurposed for COVID-19 infection. Its interesting applicability in multiple therapeutic indications has sparked interest in this drug/ scaffold. Despite its therapeutic use for several years, its detailed solubility information from Chemistry Manufacturing & Controls perspective is unavailable. Thus, the present study is intended to determine the mole fraction solubility of niclosamide in commonly used solvents and cosolvents at a temperature range of 298.15–323.15 K. The polymorphic changes from crystalline to monohydrate forms post-equilibration in various solvents were observed. The maximum mole fraction solubility of niclosamide at 323.15 K is 1.103 × 10-3 in PEG400, followed by PEG200 (5.272 × 10-4), 1-butanol (3.047 × 10-4), 2-propanol (2.42 × 10-4), ethanol (1.66 × 10-4), DMSO (1.52 × 10-4), methanol (7.78 × 10-5) and water (3.27 × 10-7). The molecular electrostatic potential showed a linear correlation with the solubility. PEG400 has higher electrostatic potential, and H-bond acceptor count, which forms a hydrogen bond with phenolic –OH of niclosamide and thus enhances its solubility. This data is valuable for the drug discovery and development teams working on the medicinal chemistry and process chemistry of this scaffold.
Collapse
Key Words
- ATChI, acetyl thiocholine iodide
- Chemistry manufacturing & controls
- DMSO, dimethyl sulfoxide
- DSC, differential scanning calorimetry
- DTNB, 5,5′-dithio-bis-[2-nitrobenzoic acid
- Drug discovery and lead optimization
- EeAChE, Electric eel acetylcholinesterase
- FDA, Food and Drug Administration
- IUPAC, International Union of Pure and Applied Chemistry
- Mole fraction solubility
- Niclosamide
- PEG200, propylene glycol 200
- PEG400, propylene glycol 400
- Process chemistry
- Thermodynamic solubility
Collapse
Affiliation(s)
- Jigar S Bhanushali
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| | - Sonali S Bharate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, India
| |
Collapse
|
3
|
Shah RP, Bharate SS. Thermodynamic solubility determination of khellin in eight mono-solvents at the range of 298.15 to 323.15 K. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Price DJ, Ditzinger F, Koehl NJ, Jankovic S, Tsakiridou G, Nair A, Holm R, Kuentz M, Dressman JB, Saal C. Approaches to increase mechanistic understanding and aid in the selection of precipitation inhibitors for supersaturating formulations – a PEARRL review. J Pharm Pharmacol 2018; 71:483-509. [DOI: 10.1111/jphp.12927] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/16/2018] [Indexed: 12/23/2022]
Abstract
Abstract
Objectives
Supersaturating formulations hold great promise for delivery of poorly soluble active pharmaceutical ingredients (APIs). To profit from supersaturating formulations, precipitation is hindered with precipitation inhibitors (PIs), maintaining drug concentrations for as long as possible. This review provides a brief overview of supersaturation and precipitation, focusing on precipitation inhibition. Trial-and-error PI selection will be examined alongside established PI screening techniques. Primarily, however, this review will focus on recent advances that utilise advanced analytical techniques to increase mechanistic understanding of PI action and systematic PI selection.
Key findings
Advances in mechanistic understanding have been made possible by the use of analytical tools such as spectroscopy, microscopy and mathematical and molecular modelling, which have been reviewed herein. Using these techniques, PI selection can be guided by molecular rationale. However, more work is required to see widespread application of such an approach for PI selection.
Summary
Precipitation inhibitors are becoming increasingly important in enabling formulations. Trial-and-error approaches have seen success thus far. However, it is essential to learn more about the mode of action of PIs if the most optimal formulations are to be realised. Robust analytical tools, and the knowledge of where and how they can be applied, will be essential in this endeavour.
Collapse
Affiliation(s)
- Daniel J Price
- Merck KGaA, Darmstadt, Germany
- Frankfurt Goethe University, Frankfurt, Germany
| | - Felix Ditzinger
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Niklas J Koehl
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sandra Jankovic
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Georgia Tsakiridou
- Pharmathen SA, Product Design & Evaluation, Athens, Greece
- Department of Pharmacy, University of Athens, Athens, Greece
| | | | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson and Johnson, Beerse, Belgium
| | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | | | | |
Collapse
|
5
|
Discovery Formulations: Approaches and Practices in Early Preclinical Development. DISCOVERING AND DEVELOPING MOLECULES WITH OPTIMAL DRUG-LIKE PROPERTIES 2015. [DOI: 10.1007/978-1-4939-1399-2_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Solubility of amiodarone HCl in propylene glycol+ethanol, propylene glycol+water and their ternary solvent mixtures at 25 and 37°C. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2013.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJH. Strategies to address low drug solubility in discovery and development. Pharmacol Rev 2013; 65:315-499. [PMID: 23383426 DOI: 10.1124/pr.112.005660] [Citation(s) in RCA: 1031] [Impact Index Per Article: 85.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drugs with low water solubility are predisposed to low and variable oral bioavailability and, therefore, to variability in clinical response. Despite significant efforts to "design in" acceptable developability properties (including aqueous solubility) during lead optimization, approximately 40% of currently marketed compounds and most current drug development candidates remain poorly water-soluble. The fact that so many drug candidates of this type are advanced into development and clinical assessment is testament to an increasingly sophisticated understanding of the approaches that can be taken to promote apparent solubility in the gastrointestinal tract and to support drug exposure after oral administration. Here we provide a detailed commentary on the major challenges to the progression of a poorly water-soluble lead or development candidate and review the approaches and strategies that can be taken to facilitate compound progression. In particular, we address the fundamental principles that underpin the use of strategies, including pH adjustment and salt-form selection, polymorphs, cocrystals, cosolvents, surfactants, cyclodextrins, particle size reduction, amorphous solid dispersions, and lipid-based formulations. In each case, the theoretical basis for utility is described along with a detailed review of recent advances in the field. The article provides an integrated and contemporary discussion of current approaches to solubility and dissolution enhancement but has been deliberately structured as a series of stand-alone sections to allow also directed access to a specific technology (e.g., solid dispersions, lipid-based formulations, or salt forms) where required.
Collapse
Affiliation(s)
- Hywel D Williams
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
8
|
John CT, Xu W, Lupton LK, Harmon PA. Formulating Weakly Basic HCl Salts: Relative Ability of Common Excipients to Induce Disproportionation and the Unique Deleterious Effects of Magnesium Stearate. Pharm Res 2013; 30:1628-41. [DOI: 10.1007/s11095-013-1002-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/06/2013] [Indexed: 11/30/2022]
|
9
|
Hughey JR, Keen JM, Miller DA, Brough C, McGinity JW. Preparation and characterization of fusion processed solid dispersions containing a viscous thermally labile polymeric carrier. Int J Pharm 2012; 438:11-9. [PMID: 22960321 DOI: 10.1016/j.ijpharm.2012.08.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/26/2012] [Accepted: 08/18/2012] [Indexed: 11/30/2022]
Abstract
The primary aim of the present study was to investigate the ability of hydroxypropyl and methoxyl substituted cellulose ethers to stabilize supersaturated concentrations of itraconazole (ITZ), a poorly water-soluble weak base, after an acid-to-neutral pH transition. A secondary aim of the study was to evaluate the effect of fusion processes on polymer stability and molecular weight. Polymer screening studies showed that stabilization of ITZ supersaturation was related to the molecular weight of the polymer and levels of hydroxypropyl and methoxyl substitution. METHOCEL E50LV (E50LV), which is characterized as having a high melt viscosity, was selected for solid dispersion formulation studies. Hot-melt extrusion processing of E50LV based compositions resulted in high torque loads, low material throughput and polymer degradation. KinetiSol Dispersing, a novel fusion based processing technique, was evaluated as a method to prepare the solid dispersions with reduced levels of polymer degradation. An experimental design revealed that polymer molecular weight was sensitive to shearing forces and high temperatures. However, optimal processing conditions resulted in significantly reduced E50LV degradation relative to HME processing. The technique was effectively utilized to prepare homogenous solid solutions of E50LV and ITZ, characterized as having a single glass transition temperature over a wide range of drug loadings. All prepared compositions provided for a high degree of ITZ supersaturation stabilization.
Collapse
Affiliation(s)
- Justin R Hughey
- The University of Texas at Austin, College of Pharmacy, 1 University Station., Mailstop A 1920, Austin, TX 78712, United States.
| | | | | | | | | |
Collapse
|
10
|
Formation of bicalutamide nanodispersion for dissolution rate enhancement. Int J Pharm 2010; 404:257-63. [PMID: 21093558 DOI: 10.1016/j.ijpharm.2010.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/15/2010] [Accepted: 11/11/2010] [Indexed: 11/21/2022]
Abstract
Bicalutamide was loaded on hydrophilic excipients to form nanodispersions via a combination of anti-solvent precipitation and spray drying method. The particle size, BET surface area, contact angles and dissolution rate of the nanodispersions were analyzed. The results indicated that lactose was a suitable matrix to prevent the bicalutamide particles growth and aggregation. The lactose loaded particles had a mean size of 330 nm within a narrow distribution. X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR) characterization indicated the nanodispersion exhibited unchanged crystalline and chemical structure. Dissolution rate of bicalutamide nanodispersion was significantly faster than that of commercial products. It increased to 94% in 10 min while both commercial formulas Casodex and bicalutamide tablets dissolved 60% and 38% respectively at the same period. It was proposed that the enhanced dissolution rate of bicalutamide nanodispersion contribute to high surface area and well-wetted state of drug particles.
Collapse
|
11
|
|
12
|
Al-Mohizea AM. Influence of intestinal efflux pumps on the absorption and transport of furosemide. Saudi Pharm J 2010; 18:97-101. [PMID: 23960725 DOI: 10.1016/j.jsps.2010.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 01/19/2010] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Furosemide is a commonly used diuretic which is used in the treatment of edema, congestive heart failure, hypertension and renal failure. Its absorption exhibits inter- and intra-subject variability that can be attributed to many factors including the intestinal efflux pumps such as the P-glycoprotein (P-gp). This study was done due to the great disagreement between what is published in the literature regarding the influence of P-gp on furosemide and at the same time due to the importance of this drug in the treatment of different conditions as described above. In addition, an investigation of the effect of two of the commonly used pharmaceutical excipients (hydroxypropyl β-cyclodextrin [HPβCD] and Tween 80) and also a P-gp inhibitor (verapamil hydrochloride) on the intestinal absorption of this drug were also done. METHODS The study utilized the everted intestinal sacs technique to investigate both the effect of the efflux transporter (P-gp) on furosemide absorption and also the effect of the chosen excipients. RESULTS The absorption of furosemide was significantly influenced by the P-gp as confirmed by the everted vis the non-everted sacs together with the verapamil study in which the transport of furosemide was inhibited by verapamil. In addition, Tween 80 was also shown to inhibit the P-gp pump whereas the HPβCD did not significantly influence the efflux of furosemide in this study. CONCLUSIONS P-glycoprotein and some of the used excipients in the formulation play a very important role in the transport of furosemide and other drugs. Thus excipients that affect the activity of P-gp should be avoided when formulating drugs that are substrate for the P-gp or other efflux pumps.
Collapse
Affiliation(s)
- Abdullah M Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Eteshola E, Pandian RP, Lee SC, Kuppusamy P. Polymer coating of paramagnetic particulates for in vivo oxygen-sensing applications. Biomed Microdevices 2009; 11:379-87. [PMID: 19083100 DOI: 10.1007/s10544-008-9244-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Crystalline lithium phthalocyanine (LiPc) can be used to sense oxygen. To enhance biocompatibility/stability of LiPc, we encapsulated LiPc in Teflon AF (TAF), cellulose acetate (CA), and polyvinyl acetate (PVAc) (TAF, previously used to encapsulate LiPc, was a comparator). We identified water-miscible solvents that don't dissolve LiPc crystals, but are solvents for the polymers, and encapsulated crystals by solvent evaporation. Oxygen sensitivity of films was characterized in vitro and in vivo. Encapsulation did not change LiPc oximetry properties in vitro at anoxic conditions or varying partial pressures of oxygen (pO2). EPR linewidth of encapsulated particles was linear with pO2, responding to pO2 changes quickly and reproducibly for dynamic measurements. Encapsulated LiPc was unaffected by biological oxidoreductants, stable in vivo for four weeks. Oximetry, stability and biocompatibility properties of LiPc films were comparable, but both CA and PVAc films are cheaper, and easier to fabricate and handle than TAF films, making them superior.
Collapse
Affiliation(s)
- Edward Eteshola
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
14
|
Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS. Hydroxypropyl Methylcellulose Acetate Succinate-Based Spray-Dried Dispersions: An Overview. Mol Pharm 2008; 5:1003-19. [DOI: 10.1021/mp8000793] [Citation(s) in RCA: 473] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dwayne T. Friesen
- Bend Research Inc., 64550 Research Road, Bend, Oregon 97701, and Pfizer Inc., Global R&D, World Wide Pharmaceutical Sciences, Groton, Connecticut 06340
| | - Ravi Shanker
- Bend Research Inc., 64550 Research Road, Bend, Oregon 97701, and Pfizer Inc., Global R&D, World Wide Pharmaceutical Sciences, Groton, Connecticut 06340
| | - Marshall Crew
- Bend Research Inc., 64550 Research Road, Bend, Oregon 97701, and Pfizer Inc., Global R&D, World Wide Pharmaceutical Sciences, Groton, Connecticut 06340
| | - Daniel T. Smithey
- Bend Research Inc., 64550 Research Road, Bend, Oregon 97701, and Pfizer Inc., Global R&D, World Wide Pharmaceutical Sciences, Groton, Connecticut 06340
| | - W. J. Curatolo
- Bend Research Inc., 64550 Research Road, Bend, Oregon 97701, and Pfizer Inc., Global R&D, World Wide Pharmaceutical Sciences, Groton, Connecticut 06340
| | - J. A. S. Nightingale
- Bend Research Inc., 64550 Research Road, Bend, Oregon 97701, and Pfizer Inc., Global R&D, World Wide Pharmaceutical Sciences, Groton, Connecticut 06340
| |
Collapse
|
15
|
Formulation in Drug Discovery. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1016/s0065-7743(08)00024-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|