1
|
Palmioli A, Airoldi C. An NMR Toolkit to Probe Amyloid Oligomer Inhibition in Neurodegenerative Diseases: From Ligand Screening to Dissecting Binding Topology and Mechanisms of Action. Chempluschem 2024; 89:e202400243. [PMID: 38712695 DOI: 10.1002/cplu.202400243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
The aggregation of amyloid peptides and proteins into toxic oligomers is a hallmark of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Machado-Joseph's disease, and transmissible spongiform encephalopathies. Inhibition of amyloid oligomers formation and interactions with biological counterparts, as well as the triggering of non-toxic amorphous aggregates, are strategies towards preventive interventions against these pathologies. NMR spectroscopy addresses the need for structural characterization of amyloid proteins and their aggregates, their binding to inhibitors, and rapid screening of compound libraries for ligand identification. Here we briefly discuss the solution experiments constituting the NMR spectroscopist's toolkit and provide examples of their application.
Collapse
Affiliation(s)
- Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano - Bicocca, P.zza della Scienza 2, 20126, Milan, Italy
| |
Collapse
|
2
|
Taylor R, Swift T, Wilkinson D, Afarinkia K. A method for estimation of plasma protein binding using diffusion ordered NMR spectroscopy (DOSY). RSC Med Chem 2024; 15:2372-2379. [PMID: 39026647 PMCID: PMC11253862 DOI: 10.1039/d4md00244j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
The plasma protein binding (PPB) of a drug plays a key role in both its pharmacokinetic and pharmacodynamic properties. During lead optimisation, medium and high throughput methods for the early determination of PPB can provide important information about potential PKPD profile within a chemotype or between different chemotype series. Diffusion ordered spectroscopy (DOSY) is an NMR spectroscopic technique that measures the diffusion of a molecule through the magnetic field gradient, according to its molecular size/weight. Here, we describe the use of DOSY for a rapid and straightforward method to evaluate the PPB of drug molecules, using their binding to bovine serum albumin (BSA) as a model.
Collapse
Affiliation(s)
- Rachel Taylor
- Institute of Cancer Therapeutics, University of Bradford Richmond Road BD7 1DP UK
| | - Thomas Swift
- Polymer and Biomaterials Laboratories, School of Chemistry and Bioscience, University of Bradford Richmond Road BD7 1DP UK
| | | | - Kamyar Afarinkia
- Institute of Cancer Therapeutics, University of Bradford Richmond Road BD7 1DP UK
- School of Medicine and Biosciences, University of West London Saint Mary's Road London W5 5RF UK
| |
Collapse
|
3
|
Marshall LJ, Wallace M, Mahmoudi N, Ciccone G, Wilson C, Vassalli M, Adams DJ. Hierarchical Composite Self-Sorted Supramolecular Gel Noodles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211277. [PMID: 36720202 PMCID: PMC11475401 DOI: 10.1002/adma.202211277] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Indexed: 05/17/2023]
Abstract
Multicomponent supramolecular systems can be used to achieve different properties and new behaviors compared to their corresponding single component systems. Here, a two-component system is used, showing that a non-gelling component modifies the assembly of the gelling component, allowing access to co-assembled structures that cannot be formed from the gelling component alone. The systems are characterized across multiple length scales, from the molecular level by NMR and CD spectroscopy to the microstructure level by SANS and finally to the material level using nanoindentation and rheology. By exploiting the enhanced mechanical properties achieved through addition of the second component, multicomponent noodles are formed with superior mechanical properties to those formed by the single-component system. Furthermore, the non-gelling component can be triggered to crystallize within the multicomponent noodles, allowing the preparation of new types of hierarchical composite noodles.
Collapse
Affiliation(s)
| | - Matthew Wallace
- School of PharmacyUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJUK
| | - Najet Mahmoudi
- ISIS Neutron and Muon SourceRutherford Appleton LaboratoryDidcotOX11 0QXUK
| | - Giuseppe Ciccone
- Centre for the Cellular MicroenvironmentAdvanced Research CentreUniversity of GlasgowGlasgowG11 6EWUK
| | - Claire Wilson
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| | - Massimo Vassalli
- Centre for the Cellular MicroenvironmentAdvanced Research CentreUniversity of GlasgowGlasgowG11 6EWUK
| | - Dave J. Adams
- School of ChemistryUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
4
|
Mohana Rao Kakita V, Hosur RV. Mahalanobis distance correlation: A novel approach for quantitating changes in multidimensional NMR spectra in biological applications. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107165. [PMID: 35202919 DOI: 10.1016/j.jmr.2022.107165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/29/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
We present here a novel protocol for quantitating changes in the NMR spectra, which is based on Mahalanobis statistics. In a two dimensional NMR spectrum, the various peaks are taken to represent a distribution, and the two chemical shifts along the orthogonal axes and the peak intensities constitute three observables. All these observables vary in a correlated manner. Taking account of these, the Mahalanobis distance (MD) reflects the distance of any chosen peak from the centre of the distribution. For quantitating changes in a particular spectrum (say A) with N peaks (altered protein NMR spectrum) with respect to a reference spectrum (say B) with M peaks (original protein NMR spectrum), a composite spectrum with N + M peaks is generated. A one-to-one correspondence between N MD values considering all the N peaks in A and the same N peaks in the composite spectrum (A + B) is calculated. The MD distance of corresponding peaks in two different distributions can be correlated to assess the changes in the spectra during the course of a biological phenomenon, or as a result of biomolecular interactions. We have demonstrated these ideas, first, using the 1H-15N HSQC spectrum of Ubiquitin, and then application of these has been demonstrated for monitoring progression of fibrillation of the protein α-Synuclein, in absence and presence of safranal, a known inhibitor of fibrillation of the protein. The method is in general applicable to multidimensional NMR spectra, does not require extensive data collection, and allows quantitative assessment of spectral changes via a single parameter. We believe that the method will have wide ranging applications to monitor many biological phenomena, and will also be useful in an industrial environment for mass comparison of molecules in a rapid manner.
Collapse
Affiliation(s)
- Veera Mohana Rao Kakita
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Mumbai, Maharashtra 400098, India.
| | - Ramakrishna V Hosur
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Mumbai, Maharashtra 400098, India; Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
5
|
From iron to bacterial electroconductive filaments: Exploring cytochrome diversity using Geobacter bacteria. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214284] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Chae YK, Um Y, Kim H. A simple and sensitive detection of the binding ligands by using the receptor aggregation and NMR spectroscopy: a test case of the maltose binding protein. JOURNAL OF BIOMOLECULAR NMR 2021; 75:371-381. [PMID: 34524563 PMCID: PMC8441238 DOI: 10.1007/s10858-021-00381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Protein-ligand interaction is one of the highlights of molecular recognition. The most popular application of this type of interaction is drug development which requires a high throughput screening of a ligand that binds to the target protein. Our goal was to find a binding ligand with a simple detection, and once this type of ligand was found, other methods could then be used to measure the detailed kinetic or thermodynamic parameters. We started with the idea that the ligand NMR signal would disappear if it was bound to the non-tumbling mass. In order to create the non-tumbling mass, we tried the aggregates of a target protein, which was fused to the elastin-like polypeptide. We chose the maltose binding proteinas a test case, and we tried it with several sugars, which included maltose, glucose, sucrose, lactose, galactose, maltotriose, and β-cyclodextrin. The maltose signal in the H-1 NMR spectrum disappeared completely as hoped around the protein to ligand ratio of 1:3 at 298 K where the proteins aggregated. The protein signals also disappeared upon aggregation except for the fast-moving part, which resulted in a cleaner background than the monomeric form. Since we only needed to look for a disappearing signal amongst those from the mixture, it should be useful in high throughput screening. Other types of sugars except for the maltotriose and β-cyclodextrin, which are siblings of the maltose, did not seem to bind at all. We believe that our system would be especially more effective when dealing with a smaller target protein, so both the protein and the bound ligand would lose their signals only when the aggregates formed. We hope that our proposed method would contribute to accelerating the development of the potent drug candidates by simultaneously identifying several binders directly from a mixture.
Collapse
Affiliation(s)
- Young Kee Chae
- Department of Chemistry, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul, 05006, Korea.
| | - Yoonjin Um
- Department of Chemistry, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul, 05006, Korea
| | - Hakbeom Kim
- Department of Chemistry, Sejong University, 209 Neungdong-Ro, Gwangjin-Gu, Seoul, 05006, Korea
| |
Collapse
|
7
|
Lv F, Qi F, Zhang Z, Wen M, Kale J, Piai A, Du L, Wang S, Zhou L, Yang Y, Wu B, Liu Z, Del Rosario J, Pogmore J, Chou JJ, Andrews DW, Lin J, OuYang B. An amphipathic Bax core dimer forms part of the apoptotic pore wall in the mitochondrial␣membrane. EMBO J 2021; 40:e106438. [PMID: 34101209 PMCID: PMC8280806 DOI: 10.15252/embj.2020106438] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/17/2021] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
Bax proteins form pores in the mitochondrial outer membrane to initiate apoptosis. This might involve their embedding in the cytosolic leaflet of the lipid bilayer, thus generating tension to induce a lipid pore with radially arranged lipids forming the wall. Alternatively, Bax proteins might comprise part of the pore wall. However, there is no unambiguous structural evidence for either hypothesis. Using NMR, we determined a high-resolution structure of the Bax core region, revealing a dimer with the nonpolar surface covering the lipid bilayer edge and the polar surface exposed to water. The dimer tilts from the bilayer normal, not only maximizing nonpolar interactions with lipid tails but also creating polar interactions between charged residues and lipid heads. Structure-guided mutations demonstrate the importance of both types of protein-lipid interactions in Bax pore assembly and core dimer configuration. Therefore, the Bax core dimer forms part of the proteolipid pore wall to permeabilize mitochondria.
Collapse
Affiliation(s)
- Fujiao Lv
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fei Qi
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zhi Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Maorong Wen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Justin Kale
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Alessandro Piai
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Lingyu Du
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Liujuan Zhou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaqing Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bin Wu
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Juan Del Rosario
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Justin Pogmore
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jialing Lin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Bo OuYang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Liu C, Seeram NP, Ma H. Small molecule inhibitors against PD-1/PD-L1 immune checkpoints and current methodologies for their development: a review. Cancer Cell Int 2021; 21:239. [PMID: 33906641 PMCID: PMC8077906 DOI: 10.1186/s12935-021-01946-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Programmed death-1/programmed death ligand-1 (PD-1/PD-L1) based immunotherapy is a revolutionary cancer therapy with great clinical success. The majority of clinically used PD-1/PD-L1 inhibitors are monoclonal antibodies but their applications are limited due to their poor oral bioavailability and immune-related adverse effects (irAEs). In contrast, several small molecule inhibitors against PD-1/PD-L1 immune checkpoints show promising blockage effects on PD-1/PD-L1 interactions without irAEs. However, proper analytical methods and bioassays are required to effectively screen small molecule derived PD-1/PD-L1 inhibitors. Herein, we summarize the biophysical and biochemical assays currently employed for the measurements of binding capacities, molecular interactions, and blocking effects of small molecule inhibitors on PD-1/PD-L1. In addition, the discovery of natural products based PD-1/PD-L1 antagonists utilizing these screening assays are reviewed. Potential pitfalls for obtaining false leading compounds as PD-1/PD-L1 inhibitors by using certain binding bioassays are also discussed in this review.
Collapse
Affiliation(s)
- Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Avedisian Hall Lab 440, 7 Greenhouse Road, Kingston, RI, 02881, USA.
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Avedisian Hall Lab 440, 7 Greenhouse Road, Kingston, RI, 02881, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Avedisian Hall Lab 440, 7 Greenhouse Road, Kingston, RI, 02881, USA.
| |
Collapse
|
9
|
Van Rompuy LS, Moons J, Aelbers J, Struyf T, Van den Ende W, Parac‐Vogt TN. Selective Hydrolysis of Terminal Glycosidic Bond in α‐1‐Acid Glycoprotein Promoted by Keggin and Wells–Dawson Type Heteropolyacids. Chemistry 2020; 26:16463-16471. [DOI: 10.1002/chem.202003189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Indexed: 01/18/2023]
Affiliation(s)
| | - Jens Moons
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Jo Aelbers
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Tom Struyf
- Department of Biology Molecular Plant Biology KU Leuven Kasteelpark Arenberg 31 3001 Leuven Belgium
| | - Wim Van den Ende
- Department of Biology Molecular Plant Biology KU Leuven Kasteelpark Arenberg 31 3001 Leuven Belgium
| | | |
Collapse
|
10
|
Polêto MD, Grisci BI, Dorn M, Verli H. ConfID: an analytical method for conformational characterization of small molecules using molecular dynamics trajectories. Bioinformatics 2020; 36:3576-3577. [PMID: 32105299 DOI: 10.1093/bioinformatics/btaa130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/08/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The conformational space of small molecules can be vast and difficult to assess. Molecular dynamics (MD) simulations of free ligands in solution have been applied to predict conformational populations, but their characterization is often based on clustering algorithms or manual efforts. RESULTS Here, we introduce ConfID, an analytical tool for conformational characterization of small molecules using MD trajectories. The evolution of conformational sampling and population frequencies throughout trajectories is calculated to check for sampling convergence while allowing to map relevant conformational transitions. The tool is designed to track conformational transition events and calculate time-dependent properties for each conformational population detected. AVAILABILITY AND IMPLEMENTATION Toolkit and documentation are freely available at http://sbcb.inf.ufrgs.br/confid. CONTACT marcelo.poleto@ufv.br or bigrisci@inf.ufrgs.br. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Marcelo D Polêto
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900.,Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa 36570-000
| | - Bruno I Grisci
- Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil
| | - Marcio Dorn
- Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900, Brazil
| | - Hugo Verli
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-900
| |
Collapse
|
11
|
Monti GA, Correa NM, Falcone RD, Silbestri GF, Moyano F. Understanding Metallic Nanoparticles Stabilization in Water by Imidazolium Salts: A Complete Physicochemical Study. ChemistrySelect 2020. [DOI: 10.1002/slct.202002869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gustavo A. Monti
- Instituto para el desarrollo agroindustrial y de la salud, IDAS, (CONICET – UNRC.). Agencia Postal # 3. C.P. X5804BYA Río Cuarto ARGENTINA
- Departamento de Química. Universidad Nacional de Río Cuarto. Agencia Postal # 3. C.P. X5804BYA Río Cuarto ARGENTINA
| | - N. Mariano Correa
- Instituto para el desarrollo agroindustrial y de la salud, IDAS, (CONICET – UNRC.). Agencia Postal # 3. C.P. X5804BYA Río Cuarto ARGENTINA
- Departamento de Química. Universidad Nacional de Río Cuarto. Agencia Postal # 3. C.P. X5804BYA Río Cuarto ARGENTINA
| | - R. Darío Falcone
- Instituto para el desarrollo agroindustrial y de la salud, IDAS, (CONICET – UNRC.). Agencia Postal # 3. C.P. X5804BYA Río Cuarto ARGENTINA
- Departamento de Química. Universidad Nacional de Río Cuarto. Agencia Postal # 3. C.P. X5804BYA Río Cuarto ARGENTINA
| | - Gustavo F. Silbestri
- Instituto de Química del Sur (INQUISUR) Departamento de Química Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253 B8000CPB Bahía Blanca ARGENTINA
| | - Fernando Moyano
- Instituto para el desarrollo agroindustrial y de la salud, IDAS, (CONICET – UNRC.). Agencia Postal # 3. C.P. X5804BYA Río Cuarto ARGENTINA
- Departamento de Química. Universidad Nacional de Río Cuarto. Agencia Postal # 3. C.P. X5804BYA Río Cuarto ARGENTINA
| |
Collapse
|
12
|
In silico and saturation transfer difference NMR approaches to unravel the binding mode of an andrographolide derivative to K-Ras oncoprotein. Future Med Chem 2020; 12:1611-1631. [PMID: 32892640 DOI: 10.4155/fmc-2020-0104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Andrographolide and its benzylidene derivatives, SRJ09 and SRJ23, potentially bind oncogenic K-Ras to exert anticancer activity. Their molecular interactions with K-Ras oncoproteins that lead to effective biological activity are of major interest. Methods & results: In silico docking and molecular dynamics simulation were performed using Glide and Desmond, respectively; while saturation transfer difference NMR was performed using GDP-bound K-RasG12V. SRJ23 was found to bind strongly and selectively to K-RasG12V, by anchoring to a binding pocket (namely p2) principally via hydrogen bond and hydrophobic interactions. The saturation transfer difference NMR analysis revealed the proximity of protons of functional moieties in SRJ23 to K-RasG12V, suggesting positive binding. Conclusion: SRJ23 binds strongly and interacts stably with K-RasG12V to exhibit its inhibitory activity.
Collapse
|
13
|
Alsiary RA, Alghrably M, Saoudi A, Al-Ghamdi S, Jaremko L, Jaremko M, Emwas AH. Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurol Sci 2020; 41:2389-2406. [PMID: 32328835 PMCID: PMC7419355 DOI: 10.1007/s10072-020-04321-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/29/2020] [Indexed: 12/31/2022]
Abstract
Prion diseases are a group of rare neurodegenerative disorders that develop as a result of the conformational conversion of normal prion protein (PrPC) to the disease-associated isoform (PrPSc). The mechanism that actually causes disease remains unclear. However, the mechanism underlying the conformational transformation of prion protein is partially understood-in particular, there is strong evidence that copper ions play a significant functional role in prion proteins and in their conformational conversion. Various models of the interaction of copper ions with prion proteins have been proposed for the Cu (II)-binding, cell-surface glycoprotein known as prion protein (PrP). Changes in the concentration of copper ions in the brain have been associated with prion diseases and there is strong evidence that copper plays a significant functional role in the conformational conversion of PrP. Nevertheless, because copper ions have been shown to have both a positive and negative effect on prion disease onset, the role played by Cu (II) ions in these diseases remains a topic of debate. Because of the unique properties of paramagnetic Cu (II) ions in the magnetic field, their interactions with PrP can be tracked even at single atom resolution using nuclear magnetic resonance (NMR) spectroscopy. Various NMR approaches have been utilized to study the kinetic, thermodynamic, and structural properties of Cu (II)-PrP interactions. Here, we highlight the different models of copper interactions with PrP with particular focus on studies that use NMR spectroscopy to investigate the role played by copper ions in prion diseases.
Collapse
Affiliation(s)
- Rawiah A. Alsiary
- King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Mawadda Alghrably
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdelhamid Saoudi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Suliman Al-Ghamdi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Lukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Rational drug-design approach supported with thermodynamic studies - a peptide leader for the efficient bi-substrate inhibitor of protein kinase CK2. Sci Rep 2019; 9:11018. [PMID: 31358826 PMCID: PMC6662822 DOI: 10.1038/s41598-019-47404-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous inhibitors of protein kinases act on the basis of competition, targeting the ATP binding site. In this work, we present a procedure of rational design of a bi-substrate inhibitor, complemented with biophysical assays. The inhibitors of this type are commonly engineered by combining ligands carrying an ATP-like part with a peptide or peptide-mimicking fragment that determines specificity. Approach presented in this paper led to generation of a specific system for independent screening for efficient ligands and peptides, by means of thermodynamic measurements, that assessed the ability of the identified ligand and peptide to combine into a bi-substrate inhibitor. The catalytic subunit of human protein kinase CK2 was used as the model target. Peptide sequence was optimized using peptide libraries [KGDE]-[DE]-[ST]-[DE]3-4-NH2, originated from the consensus CK2 sequence. We identified KESEEE-NH2 peptide as the most promising one, whose binding affinity is substantially higher than that of the reference RRRDDDSDDD peptide. We assessed its potency to form an efficient bi-substrate inhibitor using tetrabromobenzotriazole (TBBt) as the model ATP-competitive inhibitor. The formation of ternary complex was monitored using Differential Scanning Fluorimetry (DSF), Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC).
Collapse
|
15
|
Electrochemical Properties of Polyoxometalate (H3PMo12O40)-Functionalized Graphitic Carbon Nitride (g-C3N4). Electrocatalysis (N Y) 2019. [DOI: 10.1007/s12678-019-00523-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Tsafou K, Tiwari PB, Forman-Kay JD, Metallo SJ, Toretsky JA. Targeting Intrinsically Disordered Transcription Factors: Changing the Paradigm. J Mol Biol 2018; 430:2321-2341. [PMID: 29655986 DOI: 10.1016/j.jmb.2018.04.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/21/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022]
Abstract
Increased understanding of intrinsically disordered proteins (IDPs) and protein regions has revolutionized our view of the relationship between protein structure and function. Data now support that IDPs can be functional in the absence of a single, fixed, three-dimensional structure. Due to their dynamic morphology, IDPs have the ability to display a range of kinetics and affinity depending on what the system requires, as well as the potential for large-scale association. Although several studies have shed light on the functional properties of IDPs, the class of intrinsically disordered transcription factors (TFs) is still poorly characterized biophysically due to their combination of ordered and disordered sequences. In addition, TF modulation by small molecules has long been considered a difficult or even impossible task, limiting functional probe development. However, with evolving technology, it is becoming possible to characterize TF structure-function relationships in unprecedented detail and explore avenues not available or not considered in the past. Here we provide an introduction to the biophysical properties of intrinsically disordered TFs and we discuss recent computational and experimental efforts toward understanding the role of intrinsically disordered TFs in biology and disease. We describe a series of successful TF targeting strategies that have overcome the perception of the "undruggability" of TFs, providing new leads on drug development methodologies. Lastly, we discuss future challenges and opportunities to enhance our understanding of the structure-function relationship of intrinsically disordered TFs.
Collapse
Affiliation(s)
- K Tsafou
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - P B Tiwari
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA
| | - J D Forman-Kay
- Molecular Medicine, The Hospital for Sick Children, Toronto M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto M5G 1X8, Canada
| | - S J Metallo
- Department of Chemistry, Georgetown University, Washington, DC 20057, USA
| | - J A Toretsky
- Department of Oncology and Pediatrics, Georgetown University, 3970 Reservoir Road Northwest, Washington, DC 20057, USA.
| |
Collapse
|
17
|
The Preparation and Physicochemical Characterization of Aluminum Hydroxide/TLR7a, a Novel Vaccine Adjuvant Comprising a Small Molecule Adsorbed to Aluminum Hydroxide. J Pharm Sci 2018; 107:1577-1585. [PMID: 29421216 DOI: 10.1016/j.xphs.2018.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/08/2018] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Abstract
Adjuvants are necessary to enable vaccine development against a significant number of challenging pathogens for which effective vaccines are not available. We engineered a novel small-molecule immune potentiator, a benzonaphthyridine agonist targeting toll-like receptor 7 (TLR7), as a vaccine adjuvant. TLR7 agonist (TLR7a) was engineered to be adsorbed onto aluminum hydroxide (AlOH), and the resulting AlOH/TLR7a was evaluated as a vaccine adjuvant. AlOH/TLR7a exploits the flexibility of AlOH formulations, has an application in many vaccine candidates, and induced good efficacy and safety profiles against all tested antigens (bacterial- and viral-derived protein antigens, toxoids, glycoconjugates, and so forth) in many animal models, including nonhuman primates. In this article, we describe the outcome of the physicochemical characterization of AlOH/TLR7a. Reverse-phase ultra performance liquid chromatography, confocal microscopy, flow cytometry, zeta potential, and phosphophilicity assays were used as tools to demonstrate the association of TLR7a to AlOH and to characterize this novel formulation. Raman spectroscopy, nuclear magnetic resonance, and mass spectroscopy were also used to investigate the interaction between TLR7a and AlOH (data not shown). This pivotal work paved the way for AlOH/TLR7a to progress into the clinic for evaluation as an adjuvant platform for vaccines against challenging preventable diseases.
Collapse
|
18
|
Quinn CM, Wang M, Polenova T. NMR of Macromolecular Assemblies and Machines at 1 GHz and Beyond: New Transformative Opportunities for Molecular Structural Biology. Methods Mol Biol 2018; 1688:1-35. [PMID: 29151202 PMCID: PMC6217836 DOI: 10.1007/978-1-4939-7386-6_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
As a result of profound gains in sensitivity and resolution afforded by ultrahigh magnetic fields, transformative applications in the fields of structural biology and materials science are being realized. The development of dual low temperature superconducting (LTS)/high-temperature superconducting (HTS) magnets has enabled the achievement of magnetic fields above 1 GHz (23.5 T), which will open doors to an unprecedented new range of applications. In this contribution, we discuss the promise of ultrahigh field magnetic resonance. We highlight several methodological developments pertinent at high-magnetic fields including measurement of 1H-1H distances and 1H chemical shift anisotropy in the solid state as well as studies of quadrupolar nuclei such as 17O. Higher magnetic fields have advanced heteronuclear detection in solution NMR, valuable for applications including metabolomics and disordered proteins, as well as expanded use of proton detection in the solid state in conjunction with ultrafast magic angle spinning. We also present several recent applications to structural studies of the AP205 bacteriophage, the M2 channel from Influenza A, and biomaterials such as human bone. Gains in sensitivity and resolution from increased field strengths will enable advanced applications of NMR spectroscopy including in vivo studies of whole cells and intact virions.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, 036 Brown Laboratories, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, Pittsburgh, PA, 15261, USA
| | - Mingzhang Wang
- Department of Chemistry and Biochemistry, University of Delaware, 036 Brown Laboratories, Newark, DE, 19716, USA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, Pittsburgh, PA, 15261, USA
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, 036 Brown Laboratories, Newark, DE, 19716, USA.
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
19
|
Ángeles Canales M, Félix Espinosa J. Ligand-detected NMR Methods in Drug Discovery. BIOPHYSICAL TECHNIQUES IN DRUG DISCOVERY 2017. [DOI: 10.1039/9781788010016-00023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This book chapter describes the basic principles of NMR-based techniques for detecting ligand binding and uses examples of the application of these techniques in drug discovery programs for screening, hit validation and optimization to illustrate their utility in characterizing ligand–protein interactions. The binding of small molecules to biological receptors can be observed directly by detecting changes in a particular NMR parameter when the protein is added to a sample containing the ligand, or indirectly, using a “spy” molecule in competitive NMR experiments. Combinations of different NMR experiments can be used to confirm binding and also to obtain structural information that can be used to guide medicinal chemistry decisions. Ligand-observed NMR methods are able to identify weak affinity ligands that cannot be detected by other biophysical techniques, which means that NMR-based methods are extremely valuable tools for fragment-based drug discovery approaches.
Collapse
Affiliation(s)
- María Ángeles Canales
- Department of Química Orgánica I, Universidad Complutense de Madrid Avd. Complutense s/n 28040 Madrid Spain
| | - Juan Félix Espinosa
- Centro de Investigación Lilly Avda. de la Industria 30 28108, Alcobendas, Madrid Spain
| |
Collapse
|
20
|
Leelananda SP, Lindert S. Iterative Molecular Dynamics-Rosetta Membrane Protein Structure Refinement Guided by Cryo-EM Densities. J Chem Theory Comput 2017; 13:5131-5145. [PMID: 28949136 DOI: 10.1021/acs.jctc.7b00464] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Knowing atomistic details of proteins is essential not only for the understanding of protein function but also for the development of drugs. Experimental methods such as X-ray crystallography, NMR, and cryo-electron microscopy (cryo-EM) are the preferred forms of protein structure determination and have achieved great success over the most recent decades. Computational methods may be an alternative when experimental techniques fail. However, computational methods are severely limited when it comes to predicting larger macromolecule structures with little sequence similarity to known structures. The incorporation of experimental restraints in computational methods is becoming increasingly important to more reliably predict protein structure. One such experimental input used in structure prediction and refinement is cryo-EM densities. Recent advances in cryo-EM have arguably revolutionized the field of structural biology. Our previously developed cryo-EM-guided Rosetta-MD protocol has shown great promise in the refinement of soluble protein structures. In this study, we extended cryo-EM density-guided iterative Rosetta-MD to membrane proteins. We also improved the methodology in general by picking models based on a combination of their score and fit-to-density during the Rosetta model selection. By doing so, we have been able to pick models superior to those with the previous selection based on Rosetta score only and we have been able to further improve our previously refined models of soluble proteins. The method was tested with five membrane spanning protein structures. By applying density-guided Rosetta-MD iteratively we were able to refine the predicted structures of these membrane proteins to atomic resolutions. We also showed that the resolution of the density maps determines the improvement and quality of the refined models. By incorporating high-resolution density maps (∼4 Å), we were able to more significantly improve the quality of the models than when medium-resolution maps (6.9 Å) were used. Beginning from an average starting structure root mean square deviation (RMSD) to native of 4.66 Å, our protocol was able to refine the structures to bring the average refined structure RMSD to 1.66 Å when 4 Å density maps were used. The protocol also successfully refined the HIV-1 CTD guided by an experimental 5 Å density map.
Collapse
Affiliation(s)
- Sumudu P Leelananda
- Department of Chemistry and Biochemistry, Ohio State University , Columbus, Ohio 43210, United States
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Twarda-Clapa A, Krzanik S, Kubica K, Guzik K, Labuzek B, Neochoritis CG, Khoury K, Kowalska K, Czub M, Dubin G, Dömling A, Skalniak L, Holak TA. 1,4,5-Trisubstituted Imidazole-Based p53–MDM2/MDMX Antagonists with Aliphatic Linkers for Conjugation with Biological Carriers. J Med Chem 2017; 60:4234-4244. [DOI: 10.1021/acs.jmedchem.7b00104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Aleksandra Twarda-Clapa
- Faculty
of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Sylwia Krzanik
- Faculty
of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Katarzyna Kubica
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow, Poland
| | - Katarzyna Guzik
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow, Poland
| | - Beata Labuzek
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow, Poland
| | - Constantinos G. Neochoritis
- Department
of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Kareem Khoury
- Department
of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Kaja Kowalska
- Max Plank Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Miroslawa Czub
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow, Poland
| | - Grzegorz Dubin
- Faculty
of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Cracow, Poland
| | - Alexander Dömling
- Department
of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9700 AD Groningen, The Netherlands
| | - Lukasz Skalniak
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow, Poland
| | - Tad A. Holak
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Cracow, Poland
- Max Plank Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Cracow, Poland
| |
Collapse
|
22
|
Identification of Excipients for Stabilizing Fiberless Adenovirus as Biopharmaceuticals. J Pharm Sci 2017; 106:1764-1771. [PMID: 28427886 DOI: 10.1016/j.xphs.2017.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 11/24/2022]
Abstract
Reducing the promiscuous tropism of native adenovirus by using fiberless adenovirus is advantageous toward its use as a gene therapy vector or vaccine component. The removal of the fiber protein on native adenovirus abrogates several undesirable interactions; however, this approach decreases the particle's physical stability. To create stable fiberless adenovirus for pharmaceutical use, the effects of temperature and pH on the particle's stability profile must be addressed. Our results indicate that the stability of fiberless adenovirus is increased when it is stored in mildly acidic conditions around pH 6. The stability of fiberless adenovirus can be further enhanced by using excipients. Excipient screening results indicate that the nonionic surfactant Pluronic F-68 and the amino acid glycine are potential stabilizers because of their ability to increase the thermal transition temperature of the virus particle and promote retention of biological activity after exposure to prolonged thermal stress. Our data indicate that the instability of fiberless adenovirus can be ameliorated by storing the virus in the appropriate environment, and it should be possible to further optimize the virus so that it can be used as a biopharmaceutical.
Collapse
|
23
|
Sugiki T, Kobayashi N, Fujiwara T. Modern Technologies of Solution Nuclear Magnetic Resonance Spectroscopy for Three-dimensional Structure Determination of Proteins Open Avenues for Life Scientists. Comput Struct Biotechnol J 2017; 15:328-339. [PMID: 28487762 PMCID: PMC5408130 DOI: 10.1016/j.csbj.2017.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for structural studies of chemical compounds and biomolecules such as DNA and proteins. Since the NMR signal sensitively reflects the chemical environment and the dynamics of a nuclear spin, NMR experiments provide a wealth of structural and dynamic information about the molecule of interest at atomic resolution. In general, structural biology studies using NMR spectroscopy still require a reasonable understanding of the theory behind the technique and experience on how to recorded NMR data. Owing to the remarkable progress in the past decade, we can easily access suitable and popular analytical resources for NMR structure determination of proteins with high accuracy. Here, we describe the practical aspects, workflow and key points of modern NMR techniques used for solution structure determination of proteins. This review should aid NMR specialists aiming to develop new methods that accelerate the structure determination process, and open avenues for non-specialist and life scientists interested in using NMR spectroscopy to solve protein structures.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naohiro Kobayashi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Pawar SK, Jaldappagari S. Probing the mechanism of interaction of metoprolol succinate with human serum albumin by spectroscopic and molecular docking analysis. LUMINESCENCE 2017; 32:942-951. [PMID: 28233399 DOI: 10.1002/bio.3275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/27/2016] [Accepted: 12/08/2016] [Indexed: 11/09/2022]
Abstract
In the present work, the mechanism of the interaction between a β1 receptor blocker, metoprolol succinate (MS) and human serum albumin (HSA) under physiological conditions was investigated by spectroscopic techniques, namely fluorescence, Fourier transform infra-red spectroscopy (FT-IR), fluorescence lifetime decay and circular dichroism (CD) as well as molecular docking and cyclic voltammetric methods. The fluorescence and lifetime decay results indicated that MS quenched the intrinsic intensity of HSA through a static quenching mechanism. The Stern-Volmer quenching constants and binding constants for the MS-HSA system at 293, 298 and 303 K were obtained from the Stern-Volmer plot. Thermodynamic parameters for the interaction of MS with HSA were evaluated; negative values of entropy change (ΔG°) indicated the spontaneity of the MS and HSA interaction. Thermodynamic parameters such as negative ΔH° and positive ΔS° values revealed that hydrogen bonding and hydrophobic forces played a major role in MS-HSA interaction and stabilized the complex. The binding site for MS in HSA was identified by competitive site probe experiments and molecular docking studies. These results indicated that MS was bound to HSA at Sudlow's site I. The efficiency of energy transfer and the distance between the donor (HSA) and acceptor (MS) was calculated based on the theory of Fosters' resonance energy transfer (FRET). Three-dimensional fluorescence spectra and CD results revealed that the binding of MS to HSA resulted in an obvious change in the conformation of HSA. Cyclic voltammograms of the MS-HSA system also confirmed the interaction between MS and HSA. Furthermore, the effects of metal ions on the binding of MS to HSA were also studied.
Collapse
Affiliation(s)
- Suma K Pawar
- Department of Chemistry, Karnatak University, Dharwad, India
| | | |
Collapse
|
25
|
Surmiak E, Twarda-Clapa A, Zak KM, Musielak B, Tomala MD, Kubica K, Grudnik P, Madej M, Jablonski M, Potempa J, Kalinowska-Tluscik J, Dömling A, Dubin G, Holak TA. A Unique Mdm2-Binding Mode of the 3-Pyrrolin-2-one- and 2-Furanone-Based Antagonists of the p53-Mdm2 Interaction. ACS Chem Biol 2016; 11:3310-3318. [PMID: 27709883 DOI: 10.1021/acschembio.6b00596] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The p53 pathway is inactivated in almost all types of cancer by mutations in the p53 encoding gene or overexpression of the p53 negative regulators, Mdm2 and/or Mdmx. Restoration of the p53 function by inhibition of the p53-Mdm2/Mdmx interaction opens up a prospect for a nongenotoxic anticancer therapy. Here, we present the syntheses, activities, and crystal structures of two novel classes of Mdm2-p53 inhibitors that are based on the 3-pyrrolin-2-one and 2-furanone scaffolds. The structures of the complexes formed by these inhibitors and Mdm2 reveal the dimeric protein molecular organization that has not been observed in the small-molecule/Mdm2 complexes described until now. In particular, the 6-chloroindole group does not occupy the usual Trp-23 pocket of Mdm2 but instead is engaged in dimerization. This entirely unique binding mode of the compounds opens new possibilities for optimization of the Mdm2-p53 interaction inhibitors.
Collapse
Affiliation(s)
- Ewa Surmiak
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Aleksandra Twarda-Clapa
- Faculty
of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Krzysztof M. Zak
- Faculty
of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Bogdan Musielak
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Marcin D. Tomala
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Katarzyna Kubica
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Przemyslaw Grudnik
- Faculty
of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Mariusz Madej
- Faculty
of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Mateusz Jablonski
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Jan Potempa
- Faculty
of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | | | - Alexander Dömling
- Faculty
of Mathematics and Natural Sciences, Department of Pharmacy, University of Groningen, 9713AV Groningen, The Netherlands
| | - Grzegorz Dubin
- Faculty
of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| | - Tad A. Holak
- Faculty
of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland
| |
Collapse
|
26
|
Aggarwal V, Lele TP. Intracellular Concentration Gradients That Mirror External Gradients in Microfluidic Flows: A Computational Analysis. Cell Mol Bioeng 2016; 10:198-207. [PMID: 31719860 DOI: 10.1007/s12195-016-0474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/29/2016] [Indexed: 11/28/2022] Open
Abstract
The generation of stable intracellular concentration gradients is a useful method for local control of cell function, selective manipulation of cellular structures and testing hypotheses related to dynamical intracellular processes. Cell culture in a microfluidic device allows the presentation of a stable gradient of small molecules across a single cell. This method has been used to selectively label mitochondria in portions of the cell, trypsinize specific cellular domains, and trigger receptor-mediated endocytosis in specific portions of the cell. Given the small length scales of a typical cell (~30 μm) and short cytoplasmic diffusive time scales of small molecules, it is surprising that cells can be labeled locally with this method. Here we developed models to explore the parametric space over which stable intracellular concentration gradients can be maintained in a microfluidic device. We show that gradients can develop and be maintained indefinitely for high rates of mass transfer across the membrane compared with diffusion, that is, for Sherwood number greater than 1. We show how these gradients can result in gradients in ligand-receptor binding and enzyme substrate binding. This analysis can help interpret and design microfluidic experiments for cytoplasmic partitioning.
Collapse
Affiliation(s)
- Varun Aggarwal
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611 USA
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611 USA
| |
Collapse
|
27
|
Xue Y, Tu F, Shi M, Wu CQ, Ren G, Wang X, Fang W, Song H, Yang M. Redox pathway sensing bile salts activates virulence gene expression in Vibrio cholerae. Mol Microbiol 2016; 102:909-924. [PMID: 27610607 DOI: 10.1111/mmi.13497] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2016] [Indexed: 01/05/2023]
Abstract
Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, has evolved signal transduction systems to control co-ordinately the expression of virulence determinants. It was previously shown that the presence of the bile salts glycocholate and taurocholate in the small intestine causes dimerization of the transmembrane transcription factor TcpP by inducing intermolecular disulphide bonds in the TcpP periplasmic domain. In this study, they further investigated the mechanism of how taurocholate affects V. cholerae virulence determinants. In vitro assay of TcpP oxidation by VcDsbA showed that VcDsbA induced TcpP dimerization in the presence of taurocholate. Taurocholate bound to VcDsbA with a KD of 40 ± 2.5 μM, and also bound other Dsb proteins, including EcDsbA, EcDsbC and VcDsbC. Taurocholate inhibited VcDsbA reductase activity without affecting VcDsbA secondary structure or thermostability. VcDsbA and its substrates were more extensively reduced in the presence of taurocholate, as compared with their redox state in the absence of taurocholate. The data presented here not only provide new insights into the mechanism by which bile salts induce V. cholerae virulence but also suggest a means by which to develop inhibitors against DsbA.
Collapse
Affiliation(s)
- Yuanyuan Xue
- College of Animal Science & Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Fei Tu
- College of Animal Science & Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Mengting Shi
- College of Animal Science & Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Chun-Qin Wu
- College of Animal Science & Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China.,Department of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, China
| | - Guoping Ren
- New England Biolabs Inc, Ipswich, Massachusetts, USA
| | - Xiaojie Wang
- College of Animal Science & Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Weihuan Fang
- Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Houhui Song
- College of Animal Science & Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| | - Menghua Yang
- College of Animal Science & Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, China
| |
Collapse
|
28
|
Yan J, Wu D, Sun P, Ma X, Wang L, Li S, Xu K, Li H. Binding mechanism of the tyrosine-kinase inhibitor nilotinib to human serum albumin determined by 1 H STD NMR, 19 F NMR, and molecular modeling. J Pharm Biomed Anal 2016; 124:1-9. [DOI: 10.1016/j.jpba.2016.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 11/28/2022]
|
29
|
Robertson AW, Forget SM, Martinez-Farina CF, McCormick NE, Syvitski RT, Jakeman DL. JadX is a Disparate Natural Product Binding Protein. J Am Chem Soc 2016; 138:2200-8. [PMID: 26814718 DOI: 10.1021/jacs.5b11286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report that JadX, a protein of previously undetermined function coded for in the jadomycin biosynthetic gene cluster of Streptomyces venezuelae ISP5230, affects both chloramphenicol and jadomycin production levels in blocked mutants. Characterization of recombinant JadX through protein-ligand interactions by chemical shift perturbation and WaterLOGSY NMR spectroscopy resulted in the observation of binding between JadX and a series of jadomycins and between JadX and chloramphenicol, another natural product produced by S. venezuelae ISP5230. These results suggest JadX to be an unusual class of natural product binding protein involved in binding structurally disparate natural products. The ability for JadX to bind two different natural products in vitro and the ability to affect production of these secondary metabolites in vivo suggest a potential role in regulation or signaling. This is the first example of functional characterization of these JadX-like proteins, and provides insight into a previously unobserved regulatory process.
Collapse
Affiliation(s)
| | | | | | | | - Raymond T Syvitski
- Institute for Marine Biosciences, National Research Council of Canada , Halifax, Nova Scotia B3H 3Z1, Canada
| | | |
Collapse
|
30
|
Valensin D, Cau Y, Calandro P, Vignaroli G, Dello Iacono L, Chiariello M, Mori M, Botta M. Molecular insights to the bioactive form of BV02 , a reference inhibitor of 14-3-3σ protein–protein interactions. Bioorg Med Chem Lett 2016; 26:894-898. [DOI: 10.1016/j.bmcl.2015.12.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/16/2015] [Accepted: 12/19/2015] [Indexed: 12/16/2022]
|
31
|
Wätzig H, Oltmann-Norden I, Steinicke F, Alhazmi HA, Nachbar M, El-Hady DA, Albishri HM, Baumann K, Exner T, Böckler FM, El Deeb S. Data quality in drug discovery: the role of analytical performance in ligand binding assays. J Comput Aided Mol Des 2015; 29:847-65. [DOI: 10.1007/s10822-015-9851-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/02/2015] [Indexed: 01/24/2023]
|
32
|
Abstract
Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies.
Collapse
Affiliation(s)
- Rieko Ishima
- Address correspondence to Rieko Ishima: Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Tel: 412-648-9056; Fax: 412-648-9008;
| |
Collapse
|
33
|
Mills BJ, Laurence JS. Stability analysis of an inline peptide-based conjugate for metal delivery: nickel(II)-claMP Tag epidermal growth factor as a model system. J Pharm Sci 2014; 104:416-23. [PMID: 25212829 DOI: 10.1002/jps.24132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/11/2014] [Accepted: 07/30/2014] [Indexed: 01/25/2023]
Abstract
Metals are a key component of many diagnostic imaging and biotechnology applications, and the majority of cancer patients receive a platinum-based drug as part of their treatment. Significant effort has been devoted to developing tight binding synthetic chelators to enable effective targeted delivery of metal-based conjugates, with most successes involving lanthanides rather than transition metals for diagnostic imaging. Chemical conjugation modifies the protein's properties and generates a heterogeneous mixture of products. Chelator attachment is typically carried out by converting the amino group on lysines to an amide, which can impact the stability and solubility of the targeting protein and these properties vary among the set of individual conjugate species. Site-specific attachment is sought to reduce complexity and control stability. Here, the metal abstraction peptide technology was applied to create the claMP Tag, an inline platform for generating site-specific conjugates involving transition metals. The claMP Tag was genetically encoded into epidermal growth factor (EGF) and loaded with nickel(II) as a model system to demonstrate that the tag within the homogeneous inline conjugate presents sufficient solution stability to enable biotechnology applications. The structure and disulfide network of the protein and chemical stability of the claMP Tag and EGF components were characterized.
Collapse
Affiliation(s)
- Brittney J Mills
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, 66045
| | | |
Collapse
|
34
|
Lindert S, Maslennikov I, Chiu EJC, Pierce LC, McCammon JA, Choe S. Drug screening strategy for human membrane proteins: from NMR protein backbone structure to in silica- and NMR-screened hits. Biochem Biophys Res Commun 2014; 445:724-33. [PMID: 24525125 DOI: 10.1016/j.bbrc.2014.01.179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 01/29/2014] [Indexed: 11/25/2022]
Abstract
About 8000 genes encode membrane proteins in the human genome. The information about their druggability will be very useful to facilitate drug discovery and development. The main problem, however, consists of limited structural and functional information about these proteins because they are difficult to produce biochemically and to study. In this paper we describe the strategy that combines Cell-free protein expression, NMR spectroscopy, and molecular DYnamics simulation (CNDY) techniques. Results of a pilot CNDY experiment provide us with a guiding light towards expedited identification of the hit compounds against a new uncharacterized membrane protein as a potentially druggable target. These hits can then be further characterized and optimized to develop the initial lead compound quicker. We illustrate such "omics" approach for drug discovery with the CNDY strategy applied to two example proteins: hypoxia-induced genes HIGD1A and HIGD1B.
Collapse
Affiliation(s)
- Steffen Lindert
- Department of Chemistry and Biochemistry, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Innokentiy Maslennikov
- Structural Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA; Joint Center for Biosciences, 301-B, Songdo Smart Valley 214, Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Ellis J C Chiu
- Structural Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Levi C Pierce
- Department of Chemistry and Biochemistry, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; NSF Center for Theoretical Biological Physics, National Biomedical Computation Resource, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Senyon Choe
- Structural Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd., La Jolla, CA 92037, USA; Joint Center for Biosciences, 301-B, Songdo Smart Valley 214, Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea; Drug Discovery Collaboratory, Carlsbad, CA 92008, USA.
| |
Collapse
|
35
|
Lechtenberg BC, Freund SMV, Huntington JA. GpIbα interacts exclusively with exosite II of thrombin. J Mol Biol 2013; 426:881-93. [PMID: 24316004 PMCID: PMC3919161 DOI: 10.1016/j.jmb.2013.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/21/2013] [Accepted: 11/23/2013] [Indexed: 11/09/2022]
Abstract
Activation of platelets by the serine protease thrombin is a critical event in haemostasis. This process involves the binding of thrombin to glycoprotein Ibα (GpIbα) and cleavage of protease-activated receptors (PARs). The N-terminal extracellular domain of GpIbα contains an acidic peptide stretch that has been identified as the main thrombin binding site, and both anion binding exosites of thrombin have been implicated in GpIbα binding, but it remains unclear how they are involved. This issue is of critical importance for the mechanism of platelet activation by thrombin. If both exosites bind to GpIbα, thrombin could potentially act as a platelet adhesion molecule or receptor dimerisation trigger. Alternatively, if only a single site is involved, GpIbα may serve as a cofactor for PAR-1 activation by thrombin. To determine the involvement of thrombin's two exosites in GpIbα binding, we employed the complementary methods of mutational analysis, binding studies, X-ray crystallography and NMR spectroscopy. Our results indicate that the peptide corresponding to the C-terminal portion of GpIbα and the entire extracellular domain bind exclusively to thrombin's exosite II. The interaction of thrombin with GpIbα thus serves to recruit thrombin activity to the platelet surface while leaving exosite I free for PAR-1 recognition. We analysed interactions of the platelet receptor GpIbα with thrombin using three complementary methods. GpIbα exclusively binds to exosite II of thrombin. Exosite I remains available for binding to other ligands. GpIbα recruits thrombin to the platelet membrane as a cofactor for PAR-1 cleavage.
Collapse
Affiliation(s)
- Bernhard C Lechtenberg
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Stefan M V Freund
- MRC Laboratory for Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - James A Huntington
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, United Kingdom.
| |
Collapse
|
36
|
Johnson EF, Connick JP, Reed JR, Backes WL, Desai MC, Xu L, Estrada DF, Laurence JS, Scott EE. Correlating structure and function of drug-metabolizing enzymes: progress and ongoing challenges. Drug Metab Dispos 2013; 42:9-22. [PMID: 24130370 DOI: 10.1124/dmd.113.054627] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
This report summarizes a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics at Experimental Biology held April 20-24 in Boston, MA. Presentations discussed the status of cytochrome P450 (P450) knowledge, emphasizing advances and challenges in relating structure with function and in applying this information to drug design. First, at least one structure of most major human drug-metabolizing P450 enzymes is known. However, the flexibility of these active sites can limit the predictive value of one structure for other ligands. A second limitation is our coarse-grain understanding of P450 interactions with membranes, other P450 enzymes, NADPH-cytochrome P450 reductase, and cytochrome b5. Recent work has examined differential P450 interactions with reductase in mixed P450 systems and P450:P450 complexes in reconstituted systems and cells, suggesting another level of functional control. In addition, protein nuclear magnetic resonance is a new approach to probe these protein/protein interactions, identifying interacting b5 and P450 surfaces, showing that b5 and reductase binding are mutually exclusive, and demonstrating ligand modulation of CYP17A1/b5 interactions. One desired outcome is the application of such information to control drug metabolism and/or design selective P450 inhibitors. A final presentation highlighted development of a CYP3A4 inhibitor that slows clearance of human immunodeficiency virus drugs otherwise rapidly metabolized by CYP3A4. Although understanding P450 structure/function relationships is an ongoing challenge, translational advances will benefit from continued integration of existing and new biophysical approaches.
Collapse
Affiliation(s)
- Eric F Johnson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California (E.F.J.); Department of Pharmacology and Experimental Therapeutics and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana (J.P.C., J.R.R., W.L.B.); Department of Medicinal Chemistry, Gilead Sciences, Inc., Foster City, California (M.C.D., L.X.); Department of Pharmaceutical Chemistry (J.S.L.) and Department of Medicinal Chemistry (D.F.E., E.E.S.), University of Kansas, Lawrence, Kansas
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Honarparvar B, Govender T, Maguire GEM, Soliman MES, Kruger HG. Integrated Approach to Structure-Based Enzymatic Drug Design: Molecular Modeling, Spectroscopy, and Experimental Bioactivity. Chem Rev 2013; 114:493-537. [DOI: 10.1021/cr300314q] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bahareh Honarparvar
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Thavendran Govender
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Glenn E. M. Maguire
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Mahmoud E. S. Soliman
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Hendrik G. Kruger
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| |
Collapse
|
38
|
Loranger MW, Forget SM, McCormick NE, Syvitski RT, Jakeman DL. Synthesis and evaluation of l-rhamnose 1C-phosphonates as nucleotidylyltransferase inhibitors. J Org Chem 2013; 78:9822-33. [PMID: 24020932 DOI: 10.1021/jo401542s] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We report the synthesis of a series of phosphonates and ketosephosphonates possessing an L-rhamnose scaffold with varying degrees of fluorination. These compounds were evaluated as potential inhibitors of α-D-glucose 1-phosphate thymidylyltransferase (Cps2L), the first enzyme in Streptococcus pneumoniae L-rhamnose biosynthesis, and a novel antibiotic target. Enzyme-substrate and enzyme-inhibitor binding experiments were performed using water-ligand observed binding via gradient spectroscopy (WaterLOGSY) NMR for known sugar nucleotide substrates and selected phosphonate analogues. IC50 values were measured and Ki values were calculated for inhibitors. New insights were gained into the binding promiscuity of enzymes within the prokaryotic L-rhamnose biosynthetic pathway (Cps2L, RmlB-D) and into the mechanism of inhibition for the most potent inhibitor in the series, L-rhamnose 1C-phosphonate.
Collapse
Affiliation(s)
- Matthew W Loranger
- Department of Chemistry, Dalhousie University , 6274 Coberg Road, P.O. Box 15,000, Halifax, Nova Scotia B3H 4R2, Canada
| | | | | | | | | |
Collapse
|
39
|
da Cunha Xavier Soares SF, Vieira AA, Delfino RT, Figueroa-Villar JD. NMR determination of Electrophorus electricus acetylcholinesterase inhibition and reactivation by neutral oximes. Bioorg Med Chem 2013; 21:5923-30. [DOI: 10.1016/j.bmc.2013.05.063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/21/2013] [Accepted: 05/29/2013] [Indexed: 12/20/2022]
|
40
|
Barrett PJ, Chen J, Cho MK, Kim JH, Lu Z, Mathew S, Peng D, Song Y, Van Horn WD, Zhuang T, Sönnichsen FD, Sanders CR. The quiet renaissance of protein nuclear magnetic resonance. Biochemistry 2013; 52:1303-20. [PMID: 23368985 DOI: 10.1021/bi4000436] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
From roughly 1985 through the start of the new millennium, the cutting edge of solution protein nuclear magnetic resonance (NMR) spectroscopy was to a significant extent driven by the aspiration to determine structures. Here we survey recent advances in protein NMR that herald a renaissance in which a number of its most important applications reflect the broad problem-solving capability displayed by this method during its classical era during the 1970s and early 1980s.
Collapse
Affiliation(s)
- Paul J Barrett
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232-8725, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Krause ME, Martin TT, Laurence JS. Mapping site-specific changes that affect stability of the N-terminal domain of calmodulin. Mol Pharm 2012; 9:734-43. [PMID: 22309490 DOI: 10.1021/mp2004109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biophysical tools have been invaluable in formulating therapeutic proteins. These tools characterize protein stability rapidly in a variety of solution conditions, but in general, the techniques lack the ability to discern site-specific information to probe how solution environment acts to stabilize or destabilize the protein. NMR spectroscopy can provide site-specific information about subtle structural changes of a protein under different conditions, enabling one to assess the mechanism of protein stabilization. In this study, NMR was employed to detect structural perturbations at individual residues as a result of altering pH and ionic strength. The N-terminal domain of calmodulin (N-CaM) was used as a model system, and the ¹H-¹⁵N heteronuclear single quantum coherence (HSQC) experiment was used to investigate effects of pH and ionic strength on individual residues. NMR analysis revealed that different solution conditions affect individual residues differently, even when the amino acid sequence and structure are highly similar. This study shows that addition of NMR to the formulation toolbox has the ability to extend understanding of the relationship between site-specific changes and overall protein stability.
Collapse
Affiliation(s)
- Mary E Krause
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, USA
| | | | | |
Collapse
|
42
|
Binding of diuretic antihypertensive bendroflumethiazide to human serum albumin studied by 19F nuclear magnetic resonance method. Eur J Pharm Sci 2012; 45:195-200. [DOI: 10.1016/j.ejps.2011.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 09/18/2011] [Accepted: 11/09/2011] [Indexed: 11/20/2022]
|
43
|
Spencer P, Jonggu Park QY, Misra A, Bohaty BS, Singh V, Parthasarathy R, Sene F, de Paiva Gonçalves SE, Laurence J. Durable bonds at the adhesive/dentin interface: an impossible mission or simply a moving target? BRAZILIAN DENTAL SCIENCE 2012; 15:4-18. [PMID: 24855586 PMCID: PMC4028112 DOI: 10.14295/bds.2012.v15i1.790] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023] Open
Abstract
Composite restorations have higher failure rates, more recurrent caries and increased frequency of replacement as compared to dental amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and failure. The gingival margin of composite restora tions is particularly vulnerable to decay and at this margin, the adhesive and its seal to dentin provides the primary barrier between the prepared tooth and the environment. The intent of this article is to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface.
Collapse
Affiliation(s)
- Paulette Spencer
- Department of Mechanical Engineering - Bioengineering Research Center - University of Kansas - Lawrence - KS
| | | | - Anil Misra
- Bioengineering Research Center - Department of Civil Engineering - University of Kansas - Lawrence - KS
| | - Brenda S Bohaty
- Department of Pediatric Dentistry - University of Missouri - Kansas City - School of Dentistry - Kansas City - MO
| | - Viraj Singh
- Department of Mechanical Engineering - Bioengineering Research Center - University of Kansas - Lawrence - KS
| | | | - Fábio Sene
- Department of Restorative Dentistry - State University of Londrina - School of Dentistry - Londrina - Brazil
| | - Sérgio Eduardo de Paiva Gonçalves
- Department of Restorative Dentistry - School of Dentistry of São José dos Campos - UNESP - Univ Estadual Paulista - São José dos Campos - SP - Brazil
| | - Jennifer Laurence
- Department of Pharmaceutical Chemistry - University of Kansas - Lawrence - KS
| |
Collapse
|
44
|
Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev 2011; 63:1118-59. [PMID: 21855584 DOI: 10.1016/j.addr.2011.07.006] [Citation(s) in RCA: 350] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/19/2011] [Accepted: 07/26/2011] [Indexed: 12/18/2022]
Abstract
The purpose of this review is to demonstrate the critical importance of understanding protein-excipient interactions as a key step in the rational design of formulations to stabilize and deliver protein-based therapeutic drugs and vaccines. Biophysical methods used to examine various molecular interactions between solutes and protein molecules are discussed with an emphasis on applications to pharmaceutical excipients in terms of their effects on protein stability. Key mechanisms of protein-excipient interactions such as electrostatic and cation-pi interactions, preferential hydration, dispersive forces, and hydrogen bonding are presented in the context of different physical states of the formulation such as frozen liquids, solutions, gels, freeze-dried solids and interfacial phenomenon. An overview of the different classes of pharmaceutical excipients used to formulate and stabilize protein therapeutic drugs is also presented along with the rationale for use in different dosage forms including practical pharmaceutical considerations. The utility of high throughput analytical methodologies to examine protein-excipient interactions is presented in terms of expanding formulation design space and accelerating experimental timelines.
Collapse
Affiliation(s)
- Tim J Kamerzell
- Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
45
|
Jankowska-Anyszka M, Piecyk K, Šamonina-Kosicka J. Synthesis of a new class of ribose functionalized dinucleotide cap analogues for biophysical studies on interaction of cap-binding proteins with the 5' end of mRNA. Org Biomol Chem 2011; 9:5564-72. [PMID: 21701749 DOI: 10.1039/c1ob05425b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
mRNAs of primitive eukaryotes such as Caenorhabditis elegans and Ascaris summ possess two different caps at their 5' terminus. They have either a typical cap which consists of 7-methylguanosine linked via a 5',5'-triphosphate bridge to the first transcribed nucleotide (MMG cap) or an atypical hypermethylated form with two additional methyl groups at the N2 position (TMG cap). Studies on interaction between the 5' end of mRNA and proteins that specifically recognize its structure have been carried out for several years and they often require chemically modified cap analogues. Here, we present the synthesis of five novel dinucleotide MMG and TMG cap analogues designed for binding studies using biophysical methods such as electron spin resonance (ESR) and surface plasmon resonance (SPR). New analogues were prepared by derivatization of the 2',3'-cis diol of the second nucleotide in the cap structure with levulinic acid, and coupling of the obtained acetal through its carboxylic group with 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino TEMPO), ethylenediamine (EDA) or (+)-biotinyl-3,6,9-trioxaundecanediamine (amine-PEO(3)-biotin).
Collapse
|
46
|
Jang R, Gao X, Li M. Towards fully automated structure-based NMR resonance assignment of ¹⁵N-labeled proteins from automatically picked peaks. J Comput Biol 2011; 18:347-63. [PMID: 21385039 DOI: 10.1089/cmb.2010.0251] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In NMR resonance assignment, an indispensable step in NMR protein studies, manually processed peaks from both N-labeled and C-labeled spectra are typically used as inputs. However, the use of homologous structures can allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data. We propose a novel integer programming framework for structure-based backbone resonance assignment using N-labeled data. The core consists of a pair of integer programming models: one for spin system forming and amino acid typing, and the other for backbone resonance assignment. The goal is to perform the assignment directly from spectra without any manual intervention via automatically picked peaks, which are much noisier than manually picked peaks, so methods must be error-tolerant. In the case of semi-automated/manually processed peak data, we compare our system with the Xiong-Pandurangan-Bailey-Kellogg's contact replacement (CR) method, which is the most error-tolerant method for structure-based resonance assignment. Our system, on average, reduces the error rate of the CR method by five folds on their data set. In addition, by using an iterative algorithm, our system has the added capability of using the NOESY data to correct assignment errors due to errors in predicting the amino acid and secondary structure type of each spin system. On a publicly available data set for human ubiquitin, where the typing accuracy is 83%, we achieve 91% accuracy, compared to the 59% accuracy obtained without correcting for such errors. In the case of automatically picked peaks, using assignment information from yeast ubiquitin, we achieve a fully automatic assignment with 97% accuracy. To our knowledge, this is the first system that can achieve fully automatic structure-based assignment directly from spectra. This has implications in NMR protein mutant studies, where the assignment step is repeated for each mutant.
Collapse
Affiliation(s)
- Richard Jang
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
47
|
Combining biophysical screening and X-ray crystallography for fragment-based drug discovery. Top Curr Chem (Cham) 2011; 317:115-43. [PMID: 21837555 DOI: 10.1007/128_2011_225] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the past decade, fragment-based drug discovery (FBDD) has gained importance for the generation of novel ideas to inspire synthetic chemistry. In order to identify small molecules that bind to a target protein, multiple approaches have been utilized by various groups in the pharmaceutical industry and by academic groups. The combination of fragment screening by biophysical methods and in particular with surface plasmon resonance technologies (SPR) together with the visualization of the binding properties by X-ray crystallography offers a number of benefits. Screening by SPR identifies ligands for a target protein as well as provides an assessment of the binding properties with respect to affinity, stoichiometry, and specificity of the interaction. Despite the huge technology advances of the past years, X-ray crystallography is still a resource-intensive technology, and SPR binding data provides excellent measures to prioritize X-ray experiments and consequently enable a better success rate in obtaining structural information. Information on the chemical structures of fragments binding to a protein can be used to perform similarity searches in compound libraries in order to establish structure-activity relationships as well as to explore particular scaffolds. At Roche we have applied this workflow for a number of targets and the experiences will be outlined in this review.
Collapse
|
48
|
Vedadi M, Arrowsmith CH, Allali-Hassani A, Senisterra G, Wasney GA. Biophysical characterization of recombinant proteins: a key to higher structural genomics success. J Struct Biol 2010; 172:107-19. [PMID: 20466062 PMCID: PMC2954336 DOI: 10.1016/j.jsb.2010.05.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/26/2010] [Accepted: 05/06/2010] [Indexed: 01/12/2023]
Abstract
Hundreds of genomes have been successfully sequenced to date, and the data are publicly available. At the same time, the advances in large-scale expression and purification of recombinant proteins have paved the way for structural genomics efforts. Frequently, however, little is known about newly expressed proteins calling for large-scale protein characterization to better understand their biochemical roles and to enable structure-function relationship studies. In the Structural Genomics Consortium (SGC), we have established a platform to characterize large numbers of purified proteins. This includes screening for ligands, enzyme assays, peptide arrays and peptide displacement in a 384-well format. In this review, we describe this platform in more detail and report on how our approach significantly increases the success rate for structure determination. Coupled with high-resolution X-ray crystallography and structure-guided methods, this platform can also be used toward the development of chemical probes through screening families of proteins against a variety of chemical series and focused chemical libraries.
Collapse
Affiliation(s)
- Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Room 839, MaRS Center, South Tower, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
49
|
La Clair JJ. Natural product mode of action (MOA) studies: a link between natural and synthetic worlds. Nat Prod Rep 2010; 27:969-95. [DOI: 10.1039/b909989c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Bartusik D, Tomanek B, Blicharska B, Fallone G. Magnetic resonance assays of haloperidol in human serum albumin. Med Chem Res 2009. [DOI: 10.1007/s00044-009-9287-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|