1
|
Awoyemi AA, Borchers C, Liu L, Chen Y, Rapp CM, Brewer CA, Elased R, Travers JB. Acute ethanol exposure stimulates microvesicle particle generation in keratinocytes. Toxicol Lett 2022; 355:100-105. [PMID: 34801640 PMCID: PMC8702459 DOI: 10.1016/j.toxlet.2021.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Ethanol has been demonstrated to exert profound effects upon cells and tissues via multiple mechanisms. One recently appreciated means by which cells can communicate with other cells is via the production and release of extracellular vesicles. Though smaller exosomes have been demonstrated to be released in response to ethanol exposure, the ability of ethanol to modulate the generation and release of larger microvesicle particles (MVP) is lesser studied. The present studies examined the ability of exogenous ethanol to generate MVP with a focus on skin cells. Acute ethanol exposure resulted in augmented MVP release in keratinocytes and in the skin and blood of mice. Unlike other stimuli such as ultraviolet B radiation or thermal burn injury, ethanol-mediated MVP release was independent of the Platelet-activating Factor receptor (PAFR). However, ethanol pretreatment was found to augment thermal burn injury-induced MVP in a PAFR-dependent manner. These studies provide a novel mechanism for ethanol-mediated effects, that could be relevant in the significant toxicity associated with thermal burn injury in the setting of alcohol intoxication.
Collapse
Affiliation(s)
- Azeezat A. Awoyemi
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Christina Borchers
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Langni Liu
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Yanfang Chen
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Christine M. Rapp
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Chad A. Brewer
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Ramzi Elased
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435
| | - Jeffrey B. Travers
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435,Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH 45435,The Dayton V.A. Medical Center, Dayton, OH 45428.,Corresponding author: Jeffrey B. Travers, M.D., Ph.D., Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, 3640 Col Glenn Hwy, Dayton, OH 46435,
| |
Collapse
|
2
|
Truse R, Nolten I, Schulz J, Herminghaus A, Holtmanns T, Gördes L, Raupach A, Bauer I, Picker O, Vollmer C. Topical Melatonin Improves Gastric Microcirculatory Oxygenation During Hemorrhagic Shock in Dogs but Does Not Alter Barrier Integrity of Caco-2 Monolayers. Front Med (Lausanne) 2020; 7:510. [PMID: 32984383 PMCID: PMC7484810 DOI: 10.3389/fmed.2020.00510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Systemic administration of melatonin exerts tissue protective effects in the context of hemorrhagic shock. Intravenous application of melatonin prior to hemorrhage improves gastric microcirculatory perfusion and maintains intestinal barrier function in dogs. The aim of the present study was to analyze the effects of a topical mucosal melatonin application on gastric microcirculation during hemorrhagic shock in vivo and on mucosal barrier function in vitro. In a randomized cross-over study, six anesthetized female foxhounds received 3.3 mg melatonin or the vehicle as a bolus to the gastric and oral mucosa during physiological and hemorrhagic (-20% blood volume) conditions. Microcirculation was analyzed with reflectance spectrometry and laser doppler flowmetry. Systemic hemodynamic variables were measured with transpulmonary thermodilution. For analysis of intestinal mucosal barrier function in vitro Caco-2 monolayers were used. The transepithelial electrical resistance (TEER) and the passage of Lucifer Yellow (LY) from the apical to the basolateral compartment of Transwell chambers were measured. Potential barrier protective effects of melatonin against oxidative stress were investigated in the presence of the oxidant H2O2. During physiologic conditions topical application of melatonin had no effect on gastric and oral microcirculation in vivo. During hemorrhagic shock, gastric microcirculatory oxygenation (μHbO2) was decreased from 81 ± 8% to 50 ± 15%. Topical treatment with melatonin led to a significant increase in μHbO2 to 60 ± 13%. Topical melatonin treatment had no effect on gastric microcirculatory perfusion, oral microcirculation or systemic hemodynamics. Incubation of H2O2 stressed Caco-2 monolayers with melatonin did neither influence transepithelial electrical resistance nor LY translocation. Topical treatment of the gastric mucosa with melatonin attenuates the shock induced decrease in microcirculatory oxygenation. As no effects on local microcirculatory and systemic perfusion were recorded, the improved μHbO2 is most likely caused by a modulation of local oxygen consumption. In vitro melatonin treatment did not improve intestinal barrier integrity in the context of oxidative stress. These results extend the current knowledge on melatonin's protective effects during hemorrhage in vivo. Topical application of melatonin exerts differential effects on local microcirculation compared to systemic pretreatment and might be suitable as an adjunct for resuscitation of hemorrhagic shock.
Collapse
Affiliation(s)
- Richard Truse
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Inga Nolten
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Jan Schulz
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Anna Herminghaus
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Tobias Holtmanns
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Lukas Gördes
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Annika Raupach
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Inge Bauer
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Olaf Picker
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Christian Vollmer
- Department of Anesthesiology, Düsseldorf University Hospital, Düsseldorf, Germany
| |
Collapse
|
3
|
Gori M, Altomare A, Cocca S, Solida E, Ribolsi M, Carotti S, Rainer A, Francesconi M, Morini S, Cicala M, Pier Luca Guarino M. Palmitic Acid Affects Intestinal Epithelial Barrier Integrity and Permeability In Vitro. Antioxidants (Basel) 2020; 9:antiox9050417. [PMID: 32414055 PMCID: PMC7278681 DOI: 10.3390/antiox9050417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/15/2022] Open
Abstract
Palmitic acid (PA), a long-chain saturated fatty acid, might activate innate immune cells. PA plays a role in chronic liver disease, diabetes and Crohn’s disease, all of which are associated with impaired intestinal permeability. We investigated the effect of PA, at physiological postprandial intestinal concentrations, on gut epithelium as compared to lipopolysaccharide (LPS) and ethanol, using an in vitro gut model, the human intestinal epithelial cell line Caco-2 grown on transwell inserts. Cytotoxicity and oxidative stress were evaluated; epithelial barrier integrity was investigated by measuring the paracellular flux of fluorescein, and through RT-qPCR and immunofluorescence of tight junction (TJ) and adherens junction (AJ) mRNAs and proteins, respectively. In PA-exposed Caco-2 monolayers, cytotoxicity and oxidative stress were not detected. A significant increase in fluorescein flux was observed in PA-treated monolayers, after 90 min and up to 360 min, whereas with LPS and ethanol, this was only observed at later time-points. Gene expression and immunofluorescence analysis showed TJ and AJ alterations only in PA-exposed monolayers. In conclusion, PA affected intestinal permeability without inducing cytotoxicity or oxidative stress. This effect seemed to be faster and stronger than those with LPS and ethanol. Thus, we hypothesized that PA, besides having an immunomodulatory effect, might play a role in inflammatory and functional intestinal disorders in which the intestinal permeability is altered.
Collapse
Affiliation(s)
- Manuele Gori
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
- Correspondence: ; Tel: +39-062-2541-9108
| | - Annamaria Altomare
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Silvia Cocca
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Eleonora Solida
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Mentore Ribolsi
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Simone Carotti
- Microscopic and Ultrastructural Anatomy Unit, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy; (S.C.); (M.F.); (S.M.)
| | - Alberto Rainer
- Tissue Engineering Laboratory, Department of Engineering, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Maria Francesconi
- Microscopic and Ultrastructural Anatomy Unit, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy; (S.C.); (M.F.); (S.M.)
| | - Sergio Morini
- Microscopic and Ultrastructural Anatomy Unit, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy; (S.C.); (M.F.); (S.M.)
| | - Michele Cicala
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| | - Michele Pier Luca Guarino
- Gastroenterology Unit, Departmental Faculty of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.A.); (S.C.); (E.S.); (M.R.); (M.C.); (M.P.L.G.)
| |
Collapse
|
4
|
Perduns R, Volk J, Plum M, Gutzki F, Kaever V, Geurtsen W. Effects of HEMA on Nrf2-related gene expression using a newly developed 3D co-culture model of the oral mucosa. Dent Mater 2019; 35:1214-1226. [PMID: 31146961 DOI: 10.1016/j.dental.2019.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE 2-Hydroxyethyl methacrylate (HEMA) is a component of many resin-modified materials and elutes from dental restorations into the oral cavity. Objective of our investigation was to determine the impact of HEMA on oral keratinocytes (OKF6/TERT2) and gingival fibroblasts (HGFs) in a newly established 3D co-culture model (3D-CCM) and to analyze the permeability of OKF6/TERT2 cells for HEMA. METHODS Well-characterized 3D-CCMs, consisting of confluent OKF6/TERT2 cells on cell culture inserts above HGF-containing collagen gels, were treated supra-epithelial with HEMA. Mass spectrometry was used to measure the supra- and sub-epithelial distribution of HEMA after 24 h. The impact of HEMA on nuclear factor erythroid 2-related factor 2 (Nrf2) target genes was measured by qRT-PCR and western blot analysis. RESULTS Mass spectrometry showed that HEMA was evenly distributed above and below the keratinocyte layer after 24 h. Analyzed target genes of Nrf2 were induced in both cell types on the mRNA-level but less pronounced in HGFs. On the protein-level, both cell types showed similar effects: At 5 mM HEMA, heme oxygenase-1 was induced 5.1-fold in OKF6/TERT2 cells and 4.1-fold in HGFs. NAD(P)H quinone dehydrogenase-1 was approximately induced 1.85-fold in both cell types. SIGNIFICANCE Our 3D-CCM is suitable to analyze the biocompatibility of dental materials due to an improved simulation of the oral mucosa compared to monolayer cultures. Our results indicate that HEMA is able to penetrate a dense layer of keratinocytes and to activate the cellular oxidative defense response. This may be due to the activation of the Nrf2-pathway in both cell types.
Collapse
Affiliation(s)
- Renke Perduns
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Joachim Volk
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Melanie Plum
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| | - Frank Gutzki
- Research Core Unit Metabolomics, Hannover Medical School, D-30625 Hannover, Germany.
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, D-30625 Hannover, Germany.
| | - Werner Geurtsen
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Hannover Medical School, D-30625 Hannover, Germany.
| |
Collapse
|
5
|
Al-Ali AAA, Steffansen B, Holm R, Nielsen CU. Nonionic surfactants increase digoxin absorption in Caco-2 and MDCKII MDR1 cells: Impact on P-glycoprotein inhibition, barrier function, and repeated cellular exposure. Int J Pharm 2018; 551:270-280. [DOI: 10.1016/j.ijpharm.2018.09.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022]
|
6
|
Tria SA, Jimison LH, Hama A, Bongo M, Owens RM. Validation of the organic electrochemical transistor for in vitro toxicology. Biochim Biophys Acta Gen Subj 2012; 1830:4381-90. [PMID: 23246813 DOI: 10.1016/j.bbagen.2012.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND The gastrointestinal epithelium provides a physical and biochemical barrier to the passage of ions and small molecules; however this barrier may be breached by pathogens and toxins. The effect of individual pathogens/toxins on the intestinal epithelium has been well characterized: they disrupt barrier tissue in a variety of ways, such as by targeting tight junction proteins, or other elements of the junctions between adjacent cells. A variety of methods have been used to characterize disruption in barrier tissue, such as immunofluorescence, permeability assays and electrical measurements of epithelia resistance, but these methods remain time consuming, costly and ill-suited to diagnostics or high throughput toxicology. METHODS The advent of organic electronics has created a unique opportunity to interface the worlds of electronics and biology, using devices such as the organic electrochemical transistor (OECT), whose low cost materials and potential for easy fabrication in high throughput formats represent a novel solution for assessing epithelial tissue integrity. RESULTS In this study, OECTs were integrated with gastro-intestinal cell monolayers to study the integrity of the gastrointestinal epithelium, providing a very sensitive way to detect minute changes in ion flow across the cell layer due to inherent amplification by the transistor. MAJOR CONCLUSIONS We validate the OECT against traditional methods by monitoring the effect of toxic compounds on epithelial tissue. We show a systematic characterization of this novel method, alongside existing methods used to assess barrier tissue function. GENERAL SIGNIFICANCE The toxic compounds induce a dramatic disruption of barrier tissue, and the OECT measures this disruption with increased temporal resolution and greater or equal sensitivity when compared with existing methods. This article is part of a Special Issue entitled Organic Bioelectronics - Novel Applications in Biomedicine.
Collapse
Affiliation(s)
- Scherrine A Tria
- Department of Bioelectronics, Ecole Nationale Superieure des Mines, CMP-EMSE, MOC, 880 Rue de Mimet, Gardanne 13541, France
| | | | | | | | | |
Collapse
|
7
|
Sun M, Fu H, Cheng H, Cao Q, Zhao Y, Mou X, Zhang X, Liu X, Ke Y. A dynamic real-time method for monitoring epithelial barrier function in vitro. Anal Biochem 2012; 425:96-103. [DOI: 10.1016/j.ab.2012.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/08/2012] [Accepted: 03/16/2012] [Indexed: 02/07/2023]
|
8
|
Yunus AW, Awad WA, Kröger S, Zentek J, Böhm J. Dose-dependent increase and decrease in active glucose uptake in jejunal epithelium of broilers after acute exposure to ethanol. Alcohol 2011; 45:411-4. [PMID: 20880658 DOI: 10.1016/j.alcohol.2010.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 07/26/2010] [Accepted: 08/07/2010] [Indexed: 10/19/2022]
Abstract
Little is known about the effects of ethanol on gastrointestinal tract of chicken. In this study, we investigated the effects of low levels of ethanol on electrophysiological variables of jejunal epithelium of commercial broilers. Jejunal tissues from 35- to 39-day-old broilers were exposed to either 0 or 0.1% ethanol in Ussing chambers, and electrophysiological variables were monitored for 40 min. After 40 and 60 min of incubation, glucose (20 mM) and carbamoylcholine (200 μM), respectively, were introduced into the chambers. The absolute and percent increase in short-circuit current (Isc) and potential difference (Vt) induced by glucose were increased significantly with 0.1% ethanol. There was no significant effect of 0.1% ethanol on carbamoylcholine-induced electrophysiological variables. To investigate if higher levels of ethanol have similar effects, we tested the effects of 0, 0.33, and 0.66% ethanol under similar experimental conditions until the glucose-addition step. Contrary to 0.1% ethanol, both the 0.33 and 0.66% ethanol levels significantly decreased the basal and glucose-induced Isc and Vt. Tissue conductivity remained unaffected in all cases. These results indicate that intestinal epithelia of chicken may be more sensitive to the effects of ethanol as compared with other species. This is the first report indicating dose-dependent increase and decrease in active glucose absorption in intestinal epithelia in the presence of ethanol.
Collapse
|
9
|
Natoli M, Felsani A, Ferruzza S, Sambuy Y, Canali R, Scarino ML. Mechanisms of defence from Fe(II) toxicity in human intestinal Caco-2 cells. Toxicol In Vitro 2009; 23:1510-5. [DOI: 10.1016/j.tiv.2009.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2008] [Revised: 06/05/2009] [Accepted: 06/15/2009] [Indexed: 01/26/2023]
|
10
|
Ueda K, Ueyama T, Oka M, Ito T, Tsuruo Y, Ichinose M. Polaprezinc (Zinc L-carnosine) is a potent inducer of anti-oxidative stress enzyme, heme oxygenase (HO)-1 - a new mechanism of gastric mucosal protection. J Pharmacol Sci 2009; 110:285-94. [PMID: 19542683 DOI: 10.1254/jphs.09056fp] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Heme oxygenase (HO)-1 is implicated in cytoprotection in various organs. We tested a possibility that polaprezinc (PZ), an anti-ulcer drug, could induce HO-1 in the gastric mucosa. Male 6-week-old Wistar rats were intragastrically administered PZ. Gastric expression of HO-1 was assessed by real time RT-PCR and western blotting, and localization of HO-1 was observed by in situ hybridization and immunohistochemistry. The levels of HO-1 mRNA were increased in a dose-dependent manner. The levels of HO-1 mRNA were increased 4-fold by PZ at the dose of 200 mg/kg at 3 h as compared with control levels. The levels of immunoreactive HO-1 were increased 3-fold at 6 h. Signals for HO-1 mRNA and immunoreactivity were detected strongly in the surface gastric mucosal cells and moderately in the gastric macrophages. Treatment with an HO-1 inhibitor, stannous mesoporphyrin (SnMP) significantly worsened the HCl-induced acute gastric mucosal lesions and increased the apoptosis of mucosal cells. Mucosal lesions were decreased by pretreatment with PZ, while they were increased by co-administration with SnMP. These data indicate for the first time that PZ is an effective inducer of HO-1 in the stomach. PZ-induced HO-1 functions as a part of the mucosal protective effects of PZ.
Collapse
Affiliation(s)
- Kazuki Ueda
- 2nd Department of Internal Medicine, Wakayama Medical University, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Alcohol abuse is a global problem due to the financial burden on society and the healthcare system. While the harmful health effects of chronic alcohol abuse are well established, more recent data suggest that acute alcohol consumption also affects human wellbeing. Thus, there is a need for research models in order to fully understand the effect of acute alcohol abuse on different body systems and organs. The present manuscript summarizes the interdisciplinary advantages and disadvantages of currently available human and non-human models of acute alcohol abuse, and identifies their suitability for biomedical research.
Collapse
|