1
|
Davodabadi F, Mirinejad S, Malik S, Dhasmana A, Ulucan-Karnak F, Sargazi S, Sargazi S, Fathi-Karkan S, Rahdar A. Nanotherapeutic approaches for delivery of long non-coding RNAs: an updated review with emphasis on cancer. NANOSCALE 2024; 16:3881-3914. [PMID: 38353296 DOI: 10.1039/d3nr05656b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The long noncoding RNAs (lncRNAs) comprise a wide range of RNA species whose length exceeds 200 nucleotides, which regulate the expression of genes and cellular functions in a wide range of organisms. Several diseases, including malignancy, have been associated with lncRNA dysregulation. Due to their functions in cancer development and progression, lncRNAs have emerged as promising biomarkers and therapeutic targets in cancer diagnosis and treatment. Several studies have investigated the anti-cancer properties of lncRNAs; however, only a few lncRNAs have been found to exhibit tumor suppressor properties. Furthermore, their length and poor stability make them difficult to synthesize. Thus, to overcome the instability of lncRNAs, poor specificity, and their off-target effects, researchers have constructed nanocarriers that encapsulate lncRNAs. Recently, translational medicine research has focused on delivering lncRNAs into tumor cells, including cancer cells, through nano-drug delivery systems in vivo. The developed nanocarriers can protect, target, and release lncRNAs under controlled conditions without appreciable adverse effects. To deliver lncRNAs to cancer cells, various nanocarriers, such as exosomes, microbubbles, polymer nanoparticles, 1,2-dioleyl-3-trimethylammoniumpropane chloride nanocarriers, and virus-like particles, have been successfully developed. Despite this, every nanocarrier has its own advantages and disadvantages when it comes to delivering nucleic acids effectively and safely. This article examines the current status of nanocarriers for lncRNA delivery in cancer therapy, focusing on their potential to enhance cancer treatment.
Collapse
Affiliation(s)
- Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi-834002, India.
| | - Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun, Uttarakhand, 248140, India.
| | - Fulden Ulucan-Karnak
- Department of Medical Biochemistry, Institute of Health Sciences, Ege University, İzmir 35100, Turkey.
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| |
Collapse
|
2
|
Kaykanat SI, Uguz AK. The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery. BIOMICROFLUIDICS 2023; 17:021502. [PMID: 37153864 PMCID: PMC10162024 DOI: 10.1063/5.0130769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/18/2023] [Indexed: 05/10/2023]
Abstract
Targeted drug delivery is proposed to reduce the toxic effects of conventional therapeutic methods. For that purpose, nanoparticles are loaded with drugs called nanocarriers and directed toward a specific site. However, biological barriers challenge the nanocarriers to convey the drug to the target site effectively. Different targeting strategies and nanoparticle designs are used to overcome these barriers. Ultrasound is a new, safe, and non-invasive drug targeting method, especially when combined with microbubbles. Microbubbles oscillate under the effect of the ultrasound, which increases the permeability of endothelium, hence, the drug uptake to the target site. Consequently, this new technique reduces the dose of the drug and avoids its side effects. This review aims to describe the biological barriers and the targeting types with the critical features of acoustically driven microbubbles focusing on biomedical applications. The theoretical part covers the historical developments in microbubble models for different conditions: microbubbles in an incompressible and compressible medium and bubbles encapsulated by a shell. The current state and the possible future directions are discussed.
Collapse
Affiliation(s)
- S. I. Kaykanat
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Türkiye
| | | |
Collapse
|
3
|
Kim K, Lee J, Park MH. Microbubble Delivery Platform for Ultrasound-Mediated Therapy in Brain Cancers. Pharmaceutics 2023; 15:pharmaceutics15020698. [PMID: 36840020 PMCID: PMC9959315 DOI: 10.3390/pharmaceutics15020698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The blood-brain barrier (BBB) is one of the most selective endothelial barriers that protect the brain and maintains homeostasis in neural microenvironments. This barrier restricts the passage of molecules into the brain, except for gaseous or extremely small hydrophobic molecules. Thus, the BBB hinders the delivery of drugs with large molecular weights for the treatment of brain cancers. Various methods have been used to deliver drugs to the brain by circumventing the BBB; however, they have limitations such as drug diversity and low delivery efficiency. To overcome this challenge, microbubbles (MBs)-based drug delivery systems have garnered a lot of interest in recent years. MBs are widely used as contrast agents and are recently being researched as a vehicle for delivering drugs, proteins, and gene complexes. The MBs are 1-10 μm in size and consist of a gas core and an organic shell, which cause physical changes, such as bubble expansion, contraction, vibration, and collapse, in response to ultrasound. The physical changes in the MBs and the resulting energy lead to biological changes in the BBB and cause the drug to penetrate it, thus enhancing the therapeutic effect. Particularly, this review describes a state-of-the-art strategy for fabricating MB-based delivery platforms and their use with ultrasound in brain cancer therapy.
Collapse
Affiliation(s)
- Kibeom Kim
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jungmin Lee
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea
| | - Myoung-Hwan Park
- Department of Chemistry and Life Science, Sahmyook University, Seoul 01795, Republic of Korea
- Convergence Research Center, Nanobiomaterials Institute, Sahmyook University, Seoul 01795, Republic of Korea
- Department of Convergence Science, Sahmyook University, Seoul 01795, Republic of Korea
- N to B Co., Ltd., Seoul 01795, Republic of Korea
- Correspondence:
| |
Collapse
|
4
|
The Role of Molecular Imaging in Personalized Medicine. J Pers Med 2023; 13:jpm13020369. [PMID: 36836603 PMCID: PMC9959741 DOI: 10.3390/jpm13020369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of personalized medicine refers to the tailoring of medical treatment to each patient's unique characteristics. Scientific advancements have led to a better understanding of how a person's unique molecular and genetic profile makes them susceptible to certain diseases. It provides individualized medical treatments that will be safe and effective for each patient. Molecular imaging modalities play an essential role in this aspect. They are used widely in screening, detection and diagnosis, treatment, assessing disease heterogeneity and progression planning, molecular characteristics, and long-term follow-up. In contrast to conventional imaging approaches, molecular imaging techniques approach images as the knowledge that can be processed, allowing for the collection of relevant knowledge in addition to the evaluation of enormous patient groups. This review presents the fundamental role of molecular imaging modalities in personalized medicine.
Collapse
|
5
|
Barzegar-Fallah A, Gandhi K, Rizwan SB, Slatter TL, Reynolds JNJ. Harnessing Ultrasound for Targeting Drug Delivery to the Brain and Breaching the Blood–Brain Tumour Barrier. Pharmaceutics 2022; 14:pharmaceutics14102231. [PMID: 36297666 PMCID: PMC9607160 DOI: 10.3390/pharmaceutics14102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Despite significant advances in developing drugs to treat brain tumours, achieving therapeutic concentrations of the drug at the tumour site remains a major challenge due to the presence of the blood–brain barrier (BBB). Several strategies have evolved to enhance brain delivery of chemotherapeutic agents to treat tumours; however, most approaches have several limitations which hinder their clinical utility. Promising studies indicate that ultrasound can penetrate the skull to target specific brain regions and transiently open the BBB, safely and reversibly, with a high degree of spatial and temporal specificity. In this review, we initially describe the basics of therapeutic ultrasound, then detail ultrasound-based drug delivery strategies to the brain and the mechanisms by which ultrasound can improve brain tumour therapy. We review pre-clinical and clinical findings from ultrasound-mediated BBB opening and drug delivery studies and outline current therapeutic ultrasound devices and technologies designed for this purpose.
Collapse
Affiliation(s)
- Anita Barzegar-Fallah
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Kushan Gandhi
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| | - Shakila B. Rizwan
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
| | - Tania L. Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - John N. J. Reynolds
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
- Correspondence: ; Tel.: +64-3-479-5781; Fax: +64-3-479-7254
| |
Collapse
|
6
|
Kotopoulis S, Lam C, Haugse R, Snipstad S, Murvold E, Jouleh T, Berg S, Hansen R, Popa M, Mc Cormack E, Gilja OH, Poortinga A. Formulation and characterisation of drug-loaded antibubbles for image-guided and ultrasound-triggered drug delivery. ULTRASONICS SONOCHEMISTRY 2022; 85:105986. [PMID: 35358937 PMCID: PMC8967728 DOI: 10.1016/j.ultsonch.2022.105986] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 06/13/2023]
Abstract
The aim of this study was to develop high load-capacity antibubbles that can be visualized using diagnostic ultrasound and the encapsulated drug can be released and delivered using clinically translatable ultrasound. The antibubbles were developed by optimising a silica nanoparticle stabilised double emulsion template. We produced an emulsion with a mean size diameter of 4.23 ± 1.63 µm where 38.9 ± 3.1% of the droplets contained a one or more cores. Following conversion to antibubbles, the mean size decreased to 2.96 ± 1.94 µm where 99% of antibubbles were <10 µm. The antibubbles had a peak attenuation of 4.8 dB/cm at 3.0 MHz at a concentration of 200 × 103 particles/mL and showed distinct attenuation spikes at frequencies between 5.5 and 13.5 MHz. No increase in subharmonic response was observed for the antibubbles in contrast to SonoVue®. High-speed imaging revealed that antibubbles can release their cores at MIs of 0.6. In vivo imaging indicated that the antibubbles have a long half-life of 68.49 s vs. 40.02 s for SonoVue®. The antibubbles could be visualised using diagnostic ultrasound and could be disrupted at MIs of ≥0.6. The in vitro drug delivery results showed that antibubbles can significantly improve drug delivery (p < 0.0001) and deliver the drug within the antibubbles. In conclusion antibubbles are a viable concept for ultrasound guided drug delivery.
Collapse
Affiliation(s)
- Spiros Kotopoulis
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway; Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Neoety AS, Kløfta, Norway.
| | - Christina Lam
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ragnhild Haugse
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Quality and Development, Hospital Pharmacies Enterprise in Western Norway, Bergen, Norway
| | - Sofie Snipstad
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway; Cancer Clinic, St. Olav's Hospital, Trondheim, Norway
| | - Elisa Murvold
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway; KinN Therapeutics, Bergen, Norway
| | - Tæraneh Jouleh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | - Sigrid Berg
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Rune Hansen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Health Research, SINTEF Digital, Trondheim, Norway
| | - Mihaela Popa
- Department of Clinical Science, University of Bergen, Bergen, Norway; CCBIO, Department of Clinical Science, University of Bergen, Norway
| | - Emmet Mc Cormack
- Department of Clinical Science, University of Bergen, Bergen, Norway; KinN Therapeutics, Bergen, Norway
| | - Odd Helge Gilja
- Department of Clinical Medicine, University of Bergen, Bergen, Norway; National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | - Albert Poortinga
- Polymer Technology, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
7
|
Schulte MF, Izak-Nau E, Braun S, Pich A, Richtering W, Göstl R. Microgels react to force: mechanical properties, syntheses, and force-activated functions. Chem Soc Rev 2022; 51:2939-2956. [PMID: 35319064 DOI: 10.1039/d2cs00011c] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microgels are colloidal polymer networks with high molar mass and properties between rigid particles, flexible macromolecules, and micellar aggregates. Their unique stimuli-responsiveness in conjunction with their colloidal phase behavior render them useful for many applications ranging from engineering to biomedicine. In many scenarios either the microgel's mechanical properties or its interactions with mechanical force play an important role. Here, we firstly explain microgel mechanical properties and how these are measured by atomic force microscopy (AFM), then we equip the reader with the synthetic background to understand how specific architectures and chemical functionalities enable these mechanical properties, and eventually we elucidate how the interaction of force with microgels can lead to the activation of latent functionality. Since the interaction of microgels with force is a multiscale and multidisciplinary subject, we introduce and interconnect the different research areas that contribute to the understanding of this emerging field in this Tutorial Review.
Collapse
Affiliation(s)
- M Friederike Schulte
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Emilia Izak-Nau
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany.
| | - Susanne Braun
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany. .,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Andrij Pich
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany. .,Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.,Maastricht University, Aachen Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, 6167 RD Geleen, The Netherlands
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.
| | - Robert Göstl
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany.
| |
Collapse
|
8
|
Tang X, Hao N, Zhou Y, Liu Y. Ultrasound targeted microbubble destruction-mediated SOCS3 attenuates biological characteristics and epithelial-mesenchymal transition (EMT) of breast cancer stem cells. Bioengineered 2022; 13:3896-3910. [PMID: 35109743 PMCID: PMC8973955 DOI: 10.1080/21655979.2022.2031384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SOCS3 is low-expressed in breast cancer and may be a potential target. Ultrasound targeted microbubble destruction (UTMD) improved the efficiency of gene transfection. We explored the effects of UTMD-mediated transfection of SOCS3 on the biological characteristics and epithelial-mesenchymal transition (EMT) of breast cancer stem cells (BCSCs). The expression of SOCS3 in breast cancer (BC) and its association with prognosis were evaluated by GEPIA and The Cancer Genome Atlas (TCGA) websites. BCSCs were sorted by flow cytometry and immunomagnetic bead method, followed by sphere formation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and xenograft assays to test their effects in vitro and in vivo. The levels of SOCS3, EMT- and STAT3 pathway-related genes were determined by RT-qPCR and Western blot, respectively. The effects of liposome and UTMD on BCSCs and mice were compared by the gain-of-function experiments. Low expression of SOCS3 was associated with poor prognosis of BC patients, and found in BC and BCSCs. BCSCs were successfully sorted, with high viability and tumorigenicity. UTMD increased the transfection rate of SOCS3. Moreover, UTMD- and liposome-mediated SOCS3 reduced cell viability, proliferation, migration and invasion, blocked cell cycle, inhibited sphere formation in BCSCs, and retarded tumor growth in mice. Mechanistically, overexpressed SOCS3 inhibited the expressions of EMT-related genes and the activation of STAT3 pathway in BCSCs and mice. The regulatory effects of UTMD-mediated SOCS3 on the above-mentioned biological characteristics were better than liposome-mediated SOCS3. UTMD-mediated SOCS3 has a better therapeutic effect in BC, providing new experimental evidence for the treatment of BC.
Collapse
Affiliation(s)
- Xiaojiang Tang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Na Hao
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuhui Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
van der Kooij RS, Steendam R, Frijlink HW, Hinrichs WLJ. An overview of the production methods for core-shell microspheres for parenteral controlled drug delivery. Eur J Pharm Biopharm 2021; 170:24-42. [PMID: 34861359 DOI: 10.1016/j.ejpb.2021.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/19/2021] [Accepted: 11/26/2021] [Indexed: 01/25/2023]
Abstract
Core-shell microspheres hold great promise as a drug delivery system because they offer several benefits over monolithic microspheres in terms of release kinetics, for instance a reduced initial burst release, the possibility of delayed (pulsatile) release, and the possibility of dual-drug release. Also, the encapsulation efficiency can significantly be improved. Various methods have proven to be successful in producing these core-shell microspheres, both the conventional bulk emulsion solvent evaporation method and methods in which the microspheres are produced drop by drop. The latter have become increasingly popular because they provide improved control over the particle characteristics. This review assesses various production methods for core-shell microspheres and summarizes the characteristics of formulations prepared by the different methods, with a focus on their release kinetics.
Collapse
Affiliation(s)
- Renée S van der Kooij
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rob Steendam
- InnoCore Pharmaceuticals, L.J. Zielstraweg 1, 9713 GX Groningen, The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
10
|
Wang Y, Cong H, Wang S, Yu B, Shen Y. Development and application of ultrasound contrast agents in biomedicine. J Mater Chem B 2021; 9:7633-7661. [PMID: 34586124 DOI: 10.1039/d1tb00850a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the rapid development of molecular imaging, ultrasound (US) medicine has evolved from traditional imaging diagnosis to integrated diagnosis and treatment at the molecular level. Ultrasound contrast agents (UCAs) play a crucial role in the integration of US diagnosis and treatment. As the micro-bubbles (MBs) in UCAs can enhance the cavitation effect and promote the biological effect of US, UCAs have also been studied in the fields of US thrombolysis, mediated gene transfer, drug delivery, and high intensity focused US. The application range of UCAs is expanding, and the value of their applications is improving. This paper reviews the development and application of UCAs in biomedicine in recent years, and the existing problems and prospects are pointed out.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China.
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Building D, Science Park, Qingdao 266071, China. .,Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Ailuno G, Zuccari G, Baldassari S, Lai F, Caviglioli G. Anti-Vascular Cell Adhesion Molecule-1 Nanosystems: A Promising Strategy Against Inflammatory Based Diseases. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2793-2807. [PMID: 33653444 DOI: 10.1166/jnn.2021.19065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inflammation underlays the onset and supports the development of several worldwide diffused pathologies, therefore in the last decades inflammatory markers have attracted a great deal of interest as diagnostic and therapeutic targets. Adhesion molecules are membrane proteins expressed by endotheliocytes and leukocytes, acting as mediators in the process of tethering, rolling, firm adhesion and diapedesis that leads the immune cells to reach an inflamed tissue. Among them, the adhesion molecule VCAM-1 has been investigated as a potential target because of its low constitutive expression and easy accessibility on the endothelium. Moreover, VCAM-1 is involved in the early stages of development of several pathologies like, among others, atherosclerosis, cancer, Alzheimer's and Parkinson's diseases, so a diagnostic or therapeutic tool directed to this protein would allow specific detection and efficacious intervention. The availability of monoclonal antibodies against VCAM-1 has recently fostered the development of various targeting technologies potentially suitable for imaging and drug delivery in VCAM-1 overexpressing pathologies. In this review we initially focus on the structure and functions of VCAM-1, giving also a brief overview of antibodies origin, structure and function; then, we summarize some of the VCAM-1 targeting nanosystems based on antibodies, gathered according to the carrier used, for diagnosis or therapeutic treatment of different inflammatory based pathologies.
Collapse
Affiliation(s)
- Giorgia Ailuno
- Department of Pharmacy, Università di Genova, 16147 Genova, Italy
| | | | - Sara Baldassari
- Department of Pharmacy, Università di Genova, 16147 Genova, Italy
| | - Francesco Lai
- Department of Life and Environmental Sciences (DiSVA), Università di Cagliari, 09124 Cagliari, Italy
| | | |
Collapse
|
12
|
Tian P, Wang Y, Du W. Ultrasound-targeted microbubble destruction enhances the anti-tumor action of miR-4284 inhibitor in non-small cell lung cancer cells. Exp Ther Med 2021; 21:551. [PMID: 33850523 PMCID: PMC8027739 DOI: 10.3892/etm.2021.9983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are known to be involved in various human cancer types. Ultrasound-targeted microbubble destruction (UTMD) may improve the transfection efficiency of exogenous genes into target tissues and organs, thereby improving cancer treatment. In the present study, the role of miR-4284 in non-small cell lung cancer (NSCLC) was investigated and the effect of UTMD-mediated inhibition of miR-4284 on tumor progression was further analyzed. The expression of miR-4284 in NSCLC cells and tissues was detected by reverse transcription-quantitative PCR. UTMD-mediated inhibition of miR-4284 was achieved by co-transfection of microvesicles and miR-4284 inhibitors into NSCLC cells. A Cell Counting Kit-8 assay was used to determine NSCLC cell proliferation, and the migration and invasion of NSCLC cells were examined by Transwell assays. Compared with that in the control group, the expression of miR-4284 was increased in NSCLC tissues and cells. Knockdown of miR-4284 in NSCLC cells inhibited cell proliferation, migration and invasion. UTMD improved the transfection efficiency of miR-4284 inhibitors in NSCLC cells, resulting in more significant inhibition of tumor cell proliferation, migration and invasion. In conclusion, the results indicated that the expression of miR-4284 was increased in clinical samples and cell lines of NSCLC and that knockdown of miR-4284 inhibited the proliferation, migration and invasion of tumor cells. UTMD-mediated miR-4284 inhibition further promoted this effect, indicating that this technique may represent a novel strategy for the treatment of NSCLC.
Collapse
Affiliation(s)
- Peng Tian
- Department of Ultrasonics, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Yanzhen Wang
- Department of Ultrasonics, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Wenyan Du
- Department of Science and Education, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| |
Collapse
|
13
|
Yang L, Chen L, Fang Y, Ma S. Downregulation of GSK-3β Expression via Ultrasound-Targeted Microbubble Destruction Enhances Atherosclerotic Plaque Stability in New Zealand Rabbits. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:710-722. [PMID: 33261913 DOI: 10.1016/j.ultrasmedbio.2020.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/14/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Accumulating evidence suggests that atherosclerosis (AS) is the underlying cause of vascular diseases, including heart disease and stroke. Ultrasound-targeted microbubble destruction (UTMD) technology provides a tolerable, efficient and effective system for drug delivery and gene transfection, which has broad application prospects in the treatment of AS. In addition, glycogen synthase kinase (GSK)-3β has been implicated as a potentially valuable therapeutic agent for AS treatment; however, the specific molecular mechanisms remain unknown. Therefore, this study was conducted to explore the effect of downregulation of GSK-3β expression via UTMD on atherosclerotic plaque stability. We established a THP-1 macrophage-derived foam cell model in vitro and an atherosclerotic plaque model in the right common carotid artery of New Zealand rabbits. We determined levels of the relevant vulnerable plaque stability elements. The results indicate that GSK-3β was upregulated in the foam cells and in atherosclerotic rabbits. Downregulation of GSK-3β expression by UTMD suppressed vulnerable plaque factors and inflammation in vitro and in vivo, changed the cytoskeleton of the foam cells in vitro, increased Young's modulus and decreased the peak intensity of atherosclerotic plaque in vivo. Moreover, GSK-3β inhibition by UTMD did not influence the viability of the foam cells. Collectively, our results indicate that GSK-3β could be a potential target for anti-atherogenic interventions and, in particular, can improve the stability of AS plaques in combination with UTMD.
Collapse
Affiliation(s)
- Lifei Yang
- Department of Ultrasound, Ningbo Urology and Nephrology Hospital, Ningbo, China
| | - Lingzi Chen
- Ningbo University School of Medicine, Ningbo, China
| | - Ye Fang
- Department of Ultrasound, Ningbo Urology and Nephrology Hospital, Ningbo, China
| | - Suya Ma
- Department of Ultrasound, Ningbo Urology and Nephrology Hospital, Ningbo, China.
| |
Collapse
|
14
|
Zhang Z, Chen Z, Fan L, Landry T, Brown J, Yu Z, Yin S, Wang J. Ultrasound-microbubble cavitation facilitates adeno-associated virus mediated cochlear gene transfection across the round-window membrane. Bioeng Transl Med 2021; 6:e10189. [PMID: 33532589 PMCID: PMC7823126 DOI: 10.1002/btm2.10189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 11/09/2022] Open
Abstract
The round window of the cochlea provides an ideal route for delivering medicines and gene therapy reagents that can cross the round window membrane (RWM) into the inner ear. Recombinant adeno-associated viruses (rAAVs) have several advantages and are recommended as viral vectors for gene transfection. However, rAAVs cannot cross an intact RWM. Consequently, ultrasound-mediated microbubble (USMB) cavitation is potentially useful, because it can sonoporate the cell membranes, and increase their permeability to large molecules. The use of USMB cavitation for drug delivery across the RWM has been tested in a few animal studies but has not been used in the context of AAV-mediated gene transfection. The currently available large size of the ultrasound probe appears to be a limiting factor in the application of this method to the RWM. In this study, we used home-made ultrasound probe with a decreased diameter to 1.5 mm, which enabled the easy positioning of the probe close to the RWM. In guinea pigs, we used this probe to determine that (1) USMB cavitation caused limited damage to the outer surface layer or the RWM, (2) an eGFP-gene carrying rAAV could effectively pass the USMB-treated RWM and reliably transfect cochlear cells, and (3) the hearing function of the cochlea remained unchanged. Our results suggest that USMB cavitation of the RWM is a good method for rAAV-mediated cochlear gene transfection with clear potential for clinical translation. We additionally discuss several advantages of the small probe size.
Collapse
Affiliation(s)
- Zhen Zhang
- Otolaryngology Research Institute, 6th Affiliated HospitalJiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Sleep Disordered Breathing, 6th Affiliated Hospital, Jiao Tong UniversityShanghaiChina
| | - Zhengnong Chen
- Otolaryngology Research Institute, 6th Affiliated HospitalJiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Sleep Disordered Breathing, 6th Affiliated Hospital, Jiao Tong UniversityShanghaiChina
| | - Liqiang Fan
- Otolaryngology Research Institute, 6th Affiliated HospitalJiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Sleep Disordered Breathing, 6th Affiliated Hospital, Jiao Tong UniversityShanghaiChina
| | - Thomas Landry
- School of Biomedical EngineeringDalhousie UniversityHalifaxCanada
| | - Jeremy Brown
- School of Biomedical EngineeringDalhousie UniversityHalifaxCanada
| | - Zhiping Yu
- School of Communication Science and DisordersDalhousie UniversityHalifaxCanada
| | - Shankai Yin
- Otolaryngology Research Institute, 6th Affiliated HospitalJiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Sleep Disordered Breathing, 6th Affiliated Hospital, Jiao Tong UniversityShanghaiChina
| | - Jian Wang
- School of Communication Science and DisordersDalhousie UniversityHalifaxCanada
| |
Collapse
|
15
|
Wu H, Xie D, Yang Y, Yang Q, Shi X, Yang R. Ultrasound-Targeted Microbubble Destruction-Mediated miR-206 Overexpression Promotes Apoptosis and Inhibits Metastasis of Hepatocellular Carcinoma Cells Via Targeting PPIB. Technol Cancer Res Treat 2020; 19:1533033820959355. [PMID: 33111654 PMCID: PMC7607806 DOI: 10.1177/1533033820959355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Ultrasound-targeted microbubble destruction (UTMD) has been found to be an effective method for delivering microRNAs (miRNAs, miRs). The current study is aimed at discovering the potential anti-cancer effects of UTMD-mediated miR-206 on HCC. Methods: In our study, the expressions of miR-206 and peptidyl-prolyl cis-trans isomerase B (PPIB) in HCC tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). PPIB expressions in HCC and adjacent normal tissues were analyzed by gene expression profiling interactive analysis (GEPIA). MiR-206 mimic and mimic control were transfected into HCC cells using UTMD. Potential binding sites between miR-206 and PPIB were predicted and confirmed by TargetScan and dual-luciferase reporter assay, respectively. Cell migration, invasion, and apoptosis were detected by wound healing assay, Transwell, and flow cytometry, respectively. The expressions of apoptosis-related proteins (Bax, Bcl-2), Epithelial-to-mesenchymal (EMT) markers (E-cadherin, N-cadherin and Snail) and PPIB were measured by Western blot. Results: MiR-206 expression was downregulated while PPIB expression was upregulated in HCC, and PPIB was recognized as a target gene of miR-206 in HCC tissues. UTMD-mediated miR-206 inhibited HCC cell migration and invasion while promoting apoptosis via regulating the expressions of proteins related to apoptosis, migration, and invasion by targeting PPIB. Conclusion: Our results suggested that the delivery of UTMD-mediated miR-206 could be a potential therapeutic method for HCC treatment, given its effects on inhibiting cell migration and invasion and promoting cell apoptosis.
Collapse
Affiliation(s)
- Huating Wu
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Dawei Xie
- Department of General Surgery, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Yingxia Yang
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Qing Yang
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Xiajun Shi
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| | - Rong Yang
- Department of Ultrasound, Dingxi People's Hospital, Dingxi, Gansu Province, China
| |
Collapse
|
16
|
Liao AH, Lin WT, Chen HK, Shih CP, Wang CH, Chu YH. Synergistic effects of combined treatment with ultrasound-mediated cisplatin-loaded microbubbles and atorvastatin on head and neck cancer. Head Neck 2020; 43:15-26. [PMID: 32954561 DOI: 10.1002/hed.26445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/19/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Previously, we used ultrasound (US)-mediated cisplatin (CDDP)-loaded microbubbles (CDDP-MBs) to increase intratumoral CDDP level while decreasing systemic cytotoxicity. Statins have shown antitumorigenic properties. Our study investigated the effects of atorvastatin with CDDP-MBs and US on head neck cancer. METHODS Cell viability analysis with CDDP-MBs and atorvastatin combined with US in FaDu cell line were tested. Cell proliferation and glutathione level were also evaluated. RESULTS Both CDDP and atorvastatin reduced cell's viability. Coadministration of CDDP and atorvastatin resulted in synergistic inhibitory effect. After US sonication, cell viability with atorvastatin and CDDP was significantly reduced for CDDP combined with MBs (65.98% to 49.13%) and for CDDP-MBs (86.17% to 50.15%). CDDP-MBs combined with atorvastatin and US inhibited the proliferation of cells: 19.61% for CDDP-MBs + atorvastatin + US, 36.28% for CDDP + atorvastatin, and 71.73% for atorvastatin alone. Also, CDDP-MBs + atorvastatin + US induced apoptosis by decreasing cellular level of glutathione. CONCLUSIONS Atorvastatin combined with MB-conjugated CDDP exerts synergistic inhibitory effect on head neck cancer.
Collapse
Affiliation(s)
- Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.,Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Wan-Ting Lin
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Hang-Kang Chen
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Hung Wang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Taichung Armed Forces General Hospital, Taichung, Taiwan
| | - Yueng-Hsiang Chu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
17
|
Al-Jawadi S, Thakur SS. Ultrasound-responsive lipid microbubbles for drug delivery: A review of preparation techniques to optimise formulation size, stability and drug loading. Int J Pharm 2020; 585:119559. [PMID: 32574685 DOI: 10.1016/j.ijpharm.2020.119559] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 02/08/2023]
Abstract
Lipid-shelled microbubbles have received extensive interest to enhance ultrasound-responsive drug delivery outcomes due to their high biocompatibility. While therapeutic effectiveness of microbubbles is well established, there remain limitations in sample homogeneity, stability profile and drug loading properties which restrict these formulations from seeing widespread use in the clinical setting. In this review, we evaluate and discuss the most encouraging leads in lipid microbubble design and optimisation. We examine current applications in drug delivery for the systems and subsequently detail shell compositions and preparation strategies that improve monodispersity while retaining ultrasound responsiveness. We review how excipients and storage techniques help maximise stability and introduce different characterisation and drug loading techniques and evaluate their impact on formulation performance. The review concludes with current quality control measures in place to ensure lipid microbubbles can be reproducibly used in drug delivery.
Collapse
Affiliation(s)
- Sana Al-Jawadi
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Sachin S Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
18
|
LuTheryn G, Glynne-Jones P, Webb JS, Carugo D. Ultrasound-mediated therapies for the treatment of biofilms in chronic wounds: a review of present knowledge. Microb Biotechnol 2020; 13:613-628. [PMID: 32237219 PMCID: PMC7111087 DOI: 10.1111/1751-7915.13471] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 07/21/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial biofilms are an ever-growing concern for public health, featuring both inherited genetic resistance and a conferred innate tolerance to traditional antibiotic therapies. Consequently, there is a growing interest in novel methods of drug delivery, in order to increase the efficacy of antimicrobial agents. One such method is the use of acoustically activated microbubbles, which undergo volumetric oscillations and collapse upon exposure to an ultrasound field. This facilitates physical perturbation of the biofilm and provides the means to control drug delivery both temporally and spatially. In line with current literature in this area, this review offers a rounded argument for why ultrasound-responsive agents could be an integral part of advancing wound care. To achieve this, we will outline the development and clinical significance of biofilms in the context of chronic infections. We will then discuss current practices used in combating biofilms in chronic wounds and then critically evaluate the use of acoustically activated gas microbubbles as an emerging treatment modality. Moreover, we will introduce the novel concept of microbubbles carrying biologically active gases that may facilitate biofilm dispersal.
Collapse
Affiliation(s)
- Gareth LuTheryn
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- National Biofilms Innovation Centre, University of Southampton, Southampton, UK
| | - Peter Glynne-Jones
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jeremy S Webb
- National Biofilms Innovation Centre, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Dario Carugo
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, UK
- National Biofilms Innovation Centre, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
19
|
Li X, Xu M, Lv W, Yang X. Ultrasound-targeted microbubble destruction-mediated miR-767 inhibition suppresses tumor progression of non-small cell lung cancer. Exp Ther Med 2020; 19:3391-3397. [PMID: 32266038 DOI: 10.3892/etm.2020.8602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) have important roles in tumor progression in various human cancers. Ultrasound-targeted microbubble destruction (UTMD)-mediated gene transfection has been considered a useful tool for improving cancer treatment. The present study aimed to investigate the role of miR-767 in non-small cell lung cancer (NSCLC) and further analyze the effects of UTMD-mediated miR-767 inhibition on tumor progression. The expression of miR-767 was measured by reverse transcription-quantitative PCR. UTMD-mediated miR-767 inhibition was achieved by the co-transfection of microbubbles and miR-767 inhibitor in NSCLC cells. Cell proliferation was assessed by a CCK-8 assay and cell migration and invasion were examined by a Transwell assay. The expression of miR-767 was increased in NSCLC serum, tissues and cells compared with controls. The reduction of miR-767 in NSCLC cells led to the inhibition of cell proliferation, migration and invasion. UTMD increased the transfection efficiency of the miR-767 inhibitor in NSCLC cells, and UTMD-mediated miR-767 inhibition resulted in a more significant suppressive effect on tumor cell proliferation, migration and invasion. Taken together, the results indicated that miR-767 expression is upregulated in both NSCLC clinical samples and cells. The downregulation of miR-767 can inhibit tumor cell proliferation, migration and invasion, and these effects are further promoted by UTMD-mediated miR-767 inhibition, which indicated the potential of a UTMD-mediated miR-767 inhibition as a novel therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Ultrasonography, Zibo City Linzi District People's Hospital, Zibo, Shandong 255400, P.R. China
| | - Min Xu
- Department of Pediatric Surgery, Burns and Plastic Surgery, and Hemorrhoids Fistula Surgery, Yidu Central Hospital of Weifang, Shandong 262500, P.R. China
| | - Wenyu Lv
- Department of Oncology, Boxing People's Hospital, Binzhou, Shandong 256500, P.R. China
| | - Xingwang Yang
- Department of General Surgery, Zibo City Linzi District People's Hospital, Zibo, Shandong 255400, P.R. China
| |
Collapse
|
20
|
Wijaya A, Maruf A, Wu W, Wang G. Recent advances in micro- and nano-bubbles for atherosclerosis applications. Biomater Sci 2020; 8:4920-4939. [DOI: 10.1039/d0bm00762e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Micro- and nano-bubbles have been developed as powerful multimodal theranostic agents for atherosclerosis treatment.
Collapse
Affiliation(s)
- Andy Wijaya
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| | - Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education
- State and Local Joint Engineering Laboratory for Vascular Implants
- Bioengineering College
- Faculty of Medicine
- Chongqing University
| |
Collapse
|
21
|
Khan MS, Hwang J, Lee K, Choi Y, Seo Y, Jeon H, Hong JW, Choi J. Anti-Tumor Drug-Loaded Oxygen Nanobubbles for the Degradation of HIF-1α and the Upregulation of Reactive Oxygen Species in Tumor Cells. Cancers (Basel) 2019; 11:cancers11101464. [PMID: 31569523 PMCID: PMC6826834 DOI: 10.3390/cancers11101464] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022] Open
Abstract
Hypoxia is a key concern during the treatment of tumors, and hypoxia-inducible factor 1 alpha (HIF-1α) has been associated with increased tumor resistance to therapeutic modalities. In this study, doxorubicin-loaded oxygen nanobubbles (Dox/ONBs) were synthesized, and the effectiveness of drug delivery to MDA-MB-231 breast cancer and HeLa cells was evaluated. Dox/ONBs were characterized using optical and fluorescence microscopy, and size measurements were performed through nanoparticle tracking analysis (NTA). The working mechanism of Dox was evaluated using reactive oxygen species (ROS) assays, and cellular penetration was assessed with confocal microscopy. Hypoxic conditions were established to assess the effect of Dox/ONBs under hypoxic conditions compared with normoxic conditions. Our results indicate that Dox/ONBs are effective for drug delivery, enhancing oxygen levels, and ROS generation in tumor-derived cell lines.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Jangsun Hwang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Kyungwoo Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Youngmin Seo
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Hojeong Jeon
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Jong Wook Hong
- Department of Bionano Technology, Hanyang University, Seoul 426-791, Korea.
- Department of Bionano Engineering, Hanyang University, Ansan 426-791, Korea.
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
22
|
Gong Y, Li S, Zeng W, Yu J, Chen Y, Yu B. Controlled in vivo Bone Formation and Vascularization Using Ultrasound-Triggered Release of Recombinant Vascular Endothelial Growth Factor From Poly(D,L-lactic-co-glycolicacid) Microbubbles. Front Pharmacol 2019; 10:413. [PMID: 31068814 PMCID: PMC6491501 DOI: 10.3389/fphar.2019.00413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Bone defects are challenging to treat in musculoskeletal system due to the lack of vascularization. Biomaterials with internal vascularization ability and osteoinduction bioactivity are promising strategies for orthopedic applications. Vascular endothelial growth factor (VEGF) has been widely used for angiogenesis and osteogenesis. Here, we developed VEGF-loaded PLGA microbubbles (MBs) for improvement of angiogenesis and osteogenesis in bone defect repair in combination with ultrasound-targeted microbubble destruction (UTMD). Release profile showed UTMD promoted the burst release of VEGF from PLGA MBs. We subsequently investigated the combination of ultrasound application with VEGF MBs for in vitro osteogenesis. The results demonstrated that the expression of osteogenesis-related genes and calcium deposits were increased by VEGF MBs in combination of UTMD. Micro-computed tomography (micro-CT) and histological analysis were conducted 4 and 8 weeks post-surgery. In vivo results show that VEGF MBs in combination of UTMD could significantly enhance new bone formation and vascular ingrowth at the defect site in a rat calvarial defect model. In summary, VEGF MBs in combination of UTMD could augment bone regeneration and vascularization at calvarial bone defects and hold huge potential for clinical translation.
Collapse
Affiliation(s)
- Yong Gong
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjian Li
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Zeng
- Ultrasound Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jianing Yu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yan Chen
- Ultrasound Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Wang Y, Bi K, Shu J, Liu X, Xu J, Deng G. Ultrasound-controlled DOX-SiO 2 nanocomposites enhance the antitumour efficacy and attenuate the toxicity of doxorubicin. NANOSCALE 2019; 11:4210-4218. [PMID: 30806406 DOI: 10.1039/c8nr08497a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The toxicity of doxorubicin (DOX), especially in terms of cardiotoxicity, has been a common problem in its clinical use. In our studies, we synthesized and characterized DOX-SiO2 nanocomposites. In the in vitro experiments, DOX-SiO2 nanocomposites could more effectively induce apoptosis, inhibit colony formation, and inhibit the proliferation of the cancer cell line HeLa compared with free DOX. Furthermore, ultrasound could dramatically enhance these abilities of DOX-SiO2 nanocomposites. The in vivo studies showed that DOX-SiO2 nanocomposites increased the concentration of DOX in the tumour region and decreased the concentration of DOX in normal tissues. Additionally, DOX-SiO2 nanocomposites under ultrasound could inhibit growth and increase the apoptosis of xenograft tumour cells more effectively than DOX-SiO2 nanocomposites alone. Meanwhile, the cardiotoxicity of DOX was significantly reduced by DOX-SiO2 nanocomposites. The difference was more obvious in DOX-SiO2 nanocomposites under ultrasound. Moreover, prolonging the ultrasound time augments the antitumour efficacy and attenuates the toxicity of DOX-SiO2 nanocomposites. In summary, we concluded that DOX-SiO2 nanocomposites under ultrasound decrease DOX-induced toxicity in normal tissues and increase the antitumour effect of DOX by targeted delivery and controllable release, which shows the great potential of DOX-SiO2 nanocomposites for the delivery of DOX in the clinic.
Collapse
Affiliation(s)
- Yin Wang
- Department of Ultrasound, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, P.R. China
| | | | | | | | | | | |
Collapse
|
24
|
Brzeziński M, Socka M, Kost B. Microfluidics for producing polylactide nanoparticles and microparticles and their drug delivery application. POLYM INT 2019. [DOI: 10.1002/pi.5753] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marek Brzeziński
- Polymer Department, Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences Łódź Poland
| | - Marta Socka
- Polymer Department, Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences Łódź Poland
| | - Bartłomiej Kost
- Polymer Department, Centre of Molecular and Macromolecular StudiesPolish Academy of Sciences Łódź Poland
| |
Collapse
|
25
|
Abstract
For gene therapy to work in vivo, nucleic acids need to reach the target cells without causing major side effects to the patient. In many cases the gene only has to reach a subset of cells in the body. Therefore, targeted delivery of genes to the desired tissue is a major issue in gene delivery. Many different possibilities of targeted gene delivery have been studied. A physical approach to target nucleic acids and other drugs to specific regions in the body is the use of ultrasound and microbubbles. Microbubbles are gas filled spheres with a stabilizing lipid, protein, or polymer shell. When these microbubbles enter an ultrasonic field, they start to oscillate. The bubbles' expansion and compression are inversely related to the pressure phases in the ultrasonic field. When microbubbles are exposed to high-intensity ultrasound the microbubbles will eventually implode and fragment. This generates shockwaves and microjets which can temporarily permeate cell membranes and blood vessels. Nucleic acids or (non)viral vectors can as a result gain direct access to either the cytoplasm of neighboring cells, or extravasate to the surrounding tissue. The nucleic acids can either be mixed with the microbubbles or loaded on the microbubbles. Nucleic acid loaded microbubbles can be obtained by coupling nucleic acid-containing particles (i.e., lipoplexes) to the microbubbles. Upon ultrasound-mediated implosion of the microbubbles, the nucleic acid-containing particles will be released and will deliver their nucleic acids in the ultrasound-targeted region.
Collapse
|
26
|
Melich R, Valour JP, Urbaniak S, Padilla F, Charcosset C. Preparation and characterization of perfluorocarbon microbubbles using Shirasu Porous Glass (SPG) membranes. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.09.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Kilic S, Bolukcu ES. Phase behavior of DSPC/PEG40St mixtures at higher emulsifier contents. Colloids Surf B Biointerfaces 2018; 171:368-376. [DOI: 10.1016/j.colsurfb.2018.07.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/23/2018] [Accepted: 07/23/2018] [Indexed: 12/23/2022]
|
28
|
Insonation of Systemically Delivered Cisplatin-Loaded Microbubbles Significantly Attenuates Nephrotoxicity of Chemotherapy in Experimental Models of Head and Neck Cancer. Cancers (Basel) 2018; 10:cancers10090311. [PMID: 30189620 PMCID: PMC6162676 DOI: 10.3390/cancers10090311] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/30/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
The use of cisplatin (CDDP), the most common chemotherapy drug for head and neck cancer, is limited by its undesirable side effects, especially nephrotoxicity. We investigated ultrasound microbubbles (USMB) as a tool to increase the local intra-tumoral CDDP level while decreasing systemic CDDP cytotoxicity. We allowed CDDP to interact with human serum albumin and then sonicated the resulting CDDP‒albumin complex to generate CDDP-loaded MBs (CDDP-MBs). We then established a head-and-neck tumor-bearing mouse model by implanting FaDu-fLuc/GFP cells into severe combined immunodeficiency mice and used IVIS® bioluminescence imaging to determine the tumor xenograft formation and size. Twice weekly (until Day 33), we administered CDDP only, CDDP + MBs + US, CDDP-MBs, or CDDP-MBs + US intravenously by tail-vein injection. The US treatment was administered at the tumor site immediately after injection. The in vivo systemic distribution of CDDP indicated that the kidney was the most vulnerable organ, followed by the liver, and then the inner ear. However, CDDP uptake into the kidney and liver was significantly decreased in both the CDDP-MBs and CDDP-MBs + US groups, suggesting that MB binding significantly reduced the systemic toxicity of CDDP. The CDDP-MBs + US treatment reduced the tumor size as effectively as conventional CDDP-only chemotherapy. Therefore, the combination of CDDP-MBs with ultrasound is effective and significantly attenuates CDDP-associated nephrotoxicity, indicating a promising clinical potential for this approach.
Collapse
|
29
|
Khan MS, Hwang J, Lee K, Choi Y, Kim K, Koo HJ, Hong JW, Choi J. Oxygen-Carrying Micro/Nanobubbles: Composition, Synthesis Techniques and Potential Prospects in Photo-Triggered Theranostics. Molecules 2018; 23:E2210. [PMID: 30200336 PMCID: PMC6225314 DOI: 10.3390/molecules23092210] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
Microbubbles and nanobubbles (MNBs) can be prepared using various shells, such as phospholipids, polymers, proteins, and surfactants. MNBs contain gas cores due to which they are echogenic and can be used as contrast agents for ultrasonic and photoacoustic imaging. These bubbles can be engineered in various sizes as vehicles for gas and drug delivery applications with novel properties and flexible structures. Hypoxic areas in tumors develop owing to an imbalance of oxygen supply and demand. In tumors, hypoxic regions have shown more resistance to chemotherapy, radiotherapy, and photodynamic therapies. The efficacy of photodynamic therapy depends on the effective accumulation of photosensitizer drug in tumors and the availability of oxygen in the tumor to generate reactive oxygen species. MNBs have been shown to reverse hypoxic conditions, degradation of hypoxia inducible factor 1α protein, and increase tissue oxygen levels. This review summarizes the synthesis methods and shell compositions of micro/nanobubbles and methods deployed for oxygen delivery. Methods of functionalization of MNBs, their ability to deliver oxygen and drugs, incorporation of photosensitizers and potential application of photo-triggered theranostics, have also been discussed.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Jangsun Hwang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Kyungwoo Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Yonghyun Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| | - Kyobum Kim
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea.
| | - Hyung-Jun Koo
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea.
| | - Jong Wook Hong
- Department of Bionano Technology, Hanyang University, Seoul 04763, Korea.
- Department of Bionano Engingeering, Hanyang University, Ansan 15588, Korea.
| | - Jonghoon Choi
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea.
| |
Collapse
|
30
|
Qin D, Li H, Xie H. Ultrasound‑targeted microbubble destruction‑mediated miR‑205 enhances cisplatin cytotoxicity in prostate cancer cells. Mol Med Rep 2018; 18:3242-3250. [PMID: 30066866 PMCID: PMC6102709 DOI: 10.3892/mmr.2018.9316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/18/2017] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding ~20 nucleotides long sequences that function in the initiation and development of a number of cancers. Ultrasound-targeted microbubble destruction (UTMD) is an effective method for microRNA delivery. The aim of the present study was to investigate the potential roles of UTMD-mediated miRNA (miR)-205 delivery in the development of prostate cancer (PCa). In the present study, miR-205 expression was examined by reverse transcription-quantitative polymerase chain reaction assay. miR-205 mimics were transfected into PC-3 cells using the UTMD method, and the PC-3 cells were also treated with cisplatin. Cell proliferation, apoptosis, migration and invasion abilities were detected using Cell Counting kit-8, flow cytometry, wound healing and Transwell assays, respectively. In addition, the protein expression levels of caspase-9, cleaved-caspase 9, cytochrome c (cytoc), epithelial (E)-cadherin, matrix metalloproteinase-9 (MMP-9), phosphorylated (p)-extracellular signal-regulated kinase (ERK) and ERK were measured by western blot analysis. The results of the present study demonstrated that miR-205 expression was low in human PCa cell lines compared with healthy cells and that UTMD-mediated miR-205 delivery inhibited PCa cell proliferation, migration and invasion, and promoted apoptosis modulated by cisplatin compared with UTMD-mediated miR-negative control group and miR-205-treated group. Furthermore, it was demonstrated that UTMD-mediated miR-205 transfection increased the expression of caspase-9, cleaved-caspase 9, cytochrome c and E-cadherin, and decreased the expression of MMP-9 and p-ERK. Therefore, UTMD-mediated miR-205 delivery may be a promising method for the treatment of PCa.
Collapse
Affiliation(s)
- Dingwen Qin
- Department of Imaging, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Haige Li
- Department of Imaging, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Honglin Xie
- Department of Urology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
31
|
Zenevicz MCP, Jacques A, Silva MJA, Furigo A, Oliveira V, de Oliveira D. Study of a reactor model for enzymatic reactions in continuous mode coupled to an ultrasound bath for esters production. Bioprocess Biosyst Eng 2018; 41:1589-1597. [DOI: 10.1007/s00449-018-1985-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/10/2018] [Indexed: 11/25/2022]
|
32
|
Cao Y, Chen Y, Yu T, Guo Y, Liu F, Yao Y, Li P, Wang D, Wang Z, Chen Y, Ran H. Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound. Am J Cancer Res 2018; 8:1327-1339. [PMID: 29507623 PMCID: PMC5835939 DOI: 10.7150/thno.21492] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background: As one of the most effective triggers with high tissue-penetrating capability and non-invasive feature, ultrasound shows great potential for controlling the drug release and enhancing the chemotherapeutic efficacy. In this study, we report, for the first time, construction of a phase-changeable drug-delivery nanosystem with programmable low-intensity focused ultrasound (LIFU) that could trigger drug-release and significantly enhance anticancer drug delivery. Methods: Liquid-gas phase-changeable perfluorocarbon (perfluoropentane) and an anticancer drug (doxorubicin) were simultaneously encapsulated in two kinds of nanodroplets. By triggering LIFU, the nanodroplets could be converted into microbubbles locally in tumor tissues for acoustic imaging and the loaded anticancer drug (doxorubicin) was released after the microbubble collapse. Based on the acoustic property of shell materials, such as shell stiffness, two types of nanodroplets (lipid-based nanodroplets and PLGA-based nanodroplets) were activated by different acoustic pressure levels. Ultrasound irradiation duration and power of LIFU were tested and selected to monitor and control the drug release from nanodroplets. Various ultrasound energies were introduced to induce the phase transition and microbubble collapse of nanodroplets in vitro (3 W/3 min for lipid nanodroplets; 8 W/3 min for PLGA nanodroplets). Results: We detected three steps in the drug-releasing profiles exhibiting the programmable patterns. Importantly, the intratumoral accumulation and distribution of the drug with LIFU exposure were significantly enhanced, and tumor proliferation was substantially inhibited. Co-delivery of two drug-loaded nanodroplets could overcome the physical barriers of tumor tissues during chemotherapy. Conclusion: Our study provides a new strategy for the efficient ultrasound-triggered chemotherapy by nanocarriers with programmable LIFU capable of achieving the on-demand drug release.
Collapse
|
33
|
Mooney SJ, Nobrega JN, Levitt AJ, Hynynen K. Antidepressant effects of focused ultrasound induced blood-brain-barrier opening. Behav Brain Res 2018; 342:57-61. [PMID: 29326057 DOI: 10.1016/j.bbr.2018.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 01/18/2023]
Abstract
In many cases, hippocampal neurogenesis appears to be a hallmark of antidepressant treatments. One novel technique for inducing this type of neurogenesis is using focused ultrasound waves, in conjunction with circulating microbubbles, to open the blood-brain-barrier. The present experiment aimed to test whether this technique has antidepressant effects in a rodent model. Rats were subjected to 1, 2 or 3 weekly treatments of magnetic resonance-guided focused ultrasound in order to open the blood-brain-barrier in the hippocampal region. Before and after treatments, animals went through modified forced swim tests. 1 week after the final treatment, animals that received 2 weekly treatments showed antidepressant-like effects on behavioural measures in comparison to untreated controls. This was not the case for animals that received 1 or 3 weekly treatments. Effects had disappeared by 5 weeks following the first ultrasound treatment. These results suggest that focused ultrasound may be used for inducing short-term antidepressant effects.
Collapse
Affiliation(s)
- Skyler J Mooney
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.
| | - José N Nobrega
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Behavioural Neurobiology Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Anthony J Levitt
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Liu D, Zhang Z, Qin Z, Xing J, Liu Y, Jin J, Yang F, Gu N. Sinapultide-loaded lipid microbubbles and the stabilization effect of sinapultide on the shells of lipid microbubbles. J Mater Chem B 2018; 6:1335-1341. [DOI: 10.1039/c7tb02799k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sinapultide-loaded lipid microbubbles were fabricated for ultrasound imaging, and the stabilization mechanism was investigated by molecular dynamics simulation.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Zuoheng Zhang
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Zhiguo Qin
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Jing Xing
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Yang Liu
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Juan Jin
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Fang Yang
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| | - Ning Gu
- State Key Laboratory of Bioelectronics and Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing
- P. R. China
| |
Collapse
|
35
|
Helfield BL, Chen X, Qin B, Watkins SC, Villanueva FS. Mechanistic Insight into Sonoporation with Ultrasound-Stimulated Polymer Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:2678-2689. [PMID: 28847500 PMCID: PMC5644032 DOI: 10.1016/j.ultrasmedbio.2017.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/19/2017] [Accepted: 07/22/2017] [Indexed: 05/06/2023]
Abstract
Sonoporation is emerging as a feasible, non-viral gene delivery platform for the treatment of cardiovascular disease and cancer. Despite promising results, this approach remains less efficient than viral methods. The objective of this work is to help substantiate the merit of polymeric microbubble sonoporation as a non-viral, localized cell permeation and payload delivery strategy by taking a ground-up approach to elucidating the fundamental mechanisms at play. In this study, we apply simultaneous microscopy of polymeric microbubble sonoporation over its intrinsic biophysical timescales-with sub-microsecond resolution to examine microbubble cavitation and millisecond resolution over several minutes to examine local macromolecule uptake through enhanced endothelial cell membrane permeability-bridging over six orders of magnitude in time. We quantified microbubble behavior and resulting sonoporation thresholds at transmit frequencies of 0.5, 1 and 2 MHz, and determined that sonic cracking is a necessary but insufficient condition to induce sonoporation. Further, sonoporation propensity increases with the extent of sonic cracking, namely, from partial to complete gas escape from the polymeric encapsulation. For the subset that exhibited complete gas escape from sonic cracking, a proportional relationship between the maximum projected gas area and resulting macromolecule uptake was observed. These results have revealed one aspect of polymeric bubble activity on the microsecond time scale that is associated with eliciting sonoporation in adjacent endothelial cells, and contributes toward an understanding of the physical rationale for sonoporation with polymer-encapsulated microbubble contrast agents.
Collapse
Affiliation(s)
- Brandon L Helfield
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bin Qin
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
36
|
Microbubble-based enhancement of radiation effect: Role of cell membrane ceramide metabolism. PLoS One 2017; 12:e0181951. [PMID: 28746357 PMCID: PMC5528834 DOI: 10.1371/journal.pone.0181951] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 07/10/2017] [Indexed: 01/20/2023] Open
Abstract
Ultrasound (US) stimulated microbubbles (MB) is a new treatment approach that sensitizes cancer cells to radiation (XRT). The molecular pathways in this response remain unelucidated, however, previous data has supported a role for cell membrane-metabolism related pathways including an up regulation of UDP glycosyltransferase 8 (UGT8), which catalyzes the transfer of galactose to ceramide, a lipid that is associated with the induction of apoptotic signalling. In this study, the role of UGT8 in responses of prostate tumours to ultrasound-stimulated microbubble radiation enhancement therapy is investigated. Experiments were carried out with cells in vitro and tumours in vivo in which UGT8 levels had been up regulated or down regulated. Genetically modified PC3 cells were treated with XRT, US+MB, or a combination of XRT+US+MB. An increase in the immunolabelling of ceramide was observed in cells where UGT8 was down-regulated as opposed to cells where UGT8 was either not regulated or was up-regulated. Clonogenic assays have revealed a decreased level of cellular survival with the down-regulation of UGT8. Xenograft tumours generated from stably transfected PC3 cells were also treated with US+MB, XRT or US+MB+XRT. Histology demonstrated more cellular damage in tumours with down-regulated UGT8 in comparison with control tumours. In contrast, tumours with up-regulated UGT8 had less damage than control tumours. Power Doppler imaging indicated a reduction in the vascular index with UGT8 down-regulation and photoacoustic imaging revealed a reduction in oxygen saturation. This was contrary to when UGT8 was up regulated. The down regulation of UGT8 led to the accumulation of ceramide resulting in more cell death signalling and therefore, a greater enhancement of radiation effect when vascular disruption takes place through the use of ultrasound-stimulated microbubbles.
Collapse
|
37
|
Feng G, Hao L, Xu C, Ran H, Zheng Y, Li P, Cao Y, Wang Q, Xia J, Wang Z. High-intensity focused ultrasound-triggered nanoscale bubble-generating liposomes for efficient and safe tumor ablation under photoacoustic imaging monitoring. Int J Nanomedicine 2017; 12:4647-4659. [PMID: 28721041 PMCID: PMC5500488 DOI: 10.2147/ijn.s135391] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
High-intensity focused ultrasound (HIFU) is widely applied to tumors in clinical practice due to its minimally invasive approach. However, several issues lower therapeutic efficiency in some cases. Many synergists such as microbubbles and perfluorocarbon nanoparticles have recently been used to improve HIFU treatment efficiency, but none were determined to be effective and safe in vivo. In this study, nanoscale bubble-generating liposomes (liposomes containing ammonium bicarbonate [Lip-ABC]) were prepared by film hydration followed by sequential extrusion. Their stable nanoscale particle diameter was confirmed, and their bubble-generating capacity after HIFU triggering was demonstrated with ultrasound imaging. Lip-ABC had good stability in vivo and accumulated in the tumor interstitial space based on the enhanced permeability and retention effect evaluated by photoacoustic imaging. When used to synergize HIFU ablation to bovine liver in vitro and implanted breast tumors of BALB/c nude mice, Lip-ABC outperformed the control. Importantly, all mice survived HIFU treatment, suggesting that Lip-ABC is a safe HIFU synergist.
Collapse
Affiliation(s)
- Gang Feng
- Department of Ultrasound, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Lan Hao
- Department of Ultrasound, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Chunyan Xu
- Department of Ultrasound, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Haitao Ran
- Department of Ultrasound, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Yuanyi Zheng
- Department of Ultrasound, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Pan Li
- Department of Ultrasound, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Yang Cao
- Department of Ultrasound, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Qi Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, Chongqing, People's Republic of China
| | - Jizhu Xia
- Department of Ultrasound, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging
| | - Zhigang Wang
- Department of Ultrasound, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ultrasound Molecular Imaging
| |
Collapse
|
38
|
Li S, Xie X, Yang X, Liu L, Tang X. [Research of enhanced green fluorescent protein gene transfer with ultrasound-mediated microbubble destruction in bone defects]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:437-442. [PMID: 29798609 PMCID: PMC8498166 DOI: 10.7507/1002-1892.201611059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/23/2017] [Indexed: 02/05/2023]
Abstract
Objective To investigate the effect of ultrasonic irradiation time on enhanced green fluorescent protein (EGFP) gene transfection efficiency and local tissue in bone defects using ultrasound-mediated microbubble destruction. Methods Thirty 3-month-old New Zealand rabbits (2.5-3.0 kg in weight) were randomly divided into 5 groups ( n=6) and bone defect models were made on the right ulna. At 10 days after modeling, suspension of microbubbles and EGFP plasmids were locally injected (0.3 mL/kg) and then ultrasound was performed on defect at a frequency of 1 MHz, a intensity of 0.5 W/cm 2, and a duty ratio of 20% for 1, 2, 3, 4, and 5 minutes respectively (in 1, 2, 3, 4, and 5 minutes groups respectively). The survival condition was observed. Rabbits were sacrificed for gross observation at 7 days after transfer. The gene expression was observed by fluorescence staining. HE staining and transmission electron microscopy were used to observe the local tissue damage. Results The animals all survived. New soft tissue formed in bone defects area at 1 week after transfer, the surrounding muscle tissue was partly filled in it. Green fluorescence expression was observed in all rabbits. The expression was the strongest in 2 minutes group, and was the weakest in 1 minute group. The absorbance ( A) value showed significant differences when compared 1 minute and 2 minutes groups with other groups ( P<0.05), but no significant difference was found between 3, 4, and 5 minutes groups ( P>0.05). Tissue damage was observed in all groups and it was aggravated with the increase of irradiation time. Conclusion EGFP transfection efficiency in bone defect by ultrasound-mediated microbubble destruction is related to irradiation time. EGFP gene can be efficiently transfected without obvious toxicity at 1 MHz, 0.5W/cm 2, and duty ratio of 20% for 2 minutes in bone defects of rabbits.
Collapse
Affiliation(s)
- Shiwei Li
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xiaoli Xie
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Guangdong, 510623, P.R.China
| | - Xiaodong Yang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Lijun Liu
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xueyang Tang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
39
|
Xue Y, Yang G, Wang C, Li X, Du G. Effects of shRNA-Mediated SOX9 Inhibition on Cell Proliferation and Apoptosis in Human HCC Cell Line Hep3B Mediated by Ultrasound-Targeted Microbubble Destruction (UTMD). Cell Biochem Biophys 2017; 73:553-558. [PMID: 27352352 DOI: 10.1007/s12013-015-0685-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive tumors in humans. The survival rate of patients is still very poor as current therapies offer limited treatment efficacy. Therefore, it is necessary to explore novel and more effective strategies to treat HCC. Recently, Ultrasound-targeted microbubble destruction (UTMD) has been shown to be a better alternative to viral vectors in delivering plasmid DNA into cells. In this study, we thus first determined the effect of combining UTMD with effectene on the transfection efficiency in human Hep3B cells. Transfection rate of the [effectene + shRNA-SOX9 + UTMD] group was the highest among the five groups, and were significantly higher than that of the [effectene + shRNA-SOX9] or [shRNA-SOX9 + UTMD] groups, while there was no significant difference between [shRNA-SOX9 alone] and [shRNA-SOX9 + UTMD] groups. Expression of SOX9 mRNA and protein was the lowest in effectene + shRNA-SOX9 + UTMD group. Moreover, transfection of shRNA-SOX9 with UTMD and effectene in combination could markedly inhibit the proliferation and induced cell apoptosis of Hep3B cells. These results suggest that the efficiency of gene delivery is remarkably increased when UTMD is combined with other transfection strategies, such as effectene. In conclusion, our research demonstrates that combining conventional transfection methods with UTMD achieves better transfection efficiency and that this can provide an improved gene delivery system for gene therapy.
Collapse
Affiliation(s)
- Yan Xue
- Department of Ultrasound, Linyi People's Hospital Affiliated to Shandong University, Linyi, 276003, People's Republic of China
| | - Guilun Yang
- Department of Medical Imaging, Linyi People's Hospital Affiliated to Shandong University, Linyi, 276003, People's Republic of China.
| | - Changmei Wang
- Department of Healthcare, Shandong University Affiliated Jinan Central Hospital, Jinan, 250013, People's Republic of China
| | - Xiaodong Li
- Department of Medical Imaging, Linyi People's Hospital Affiliated to Shandong University, Linyi, 276003, People's Republic of China
| | - Guijin Du
- Department of Medical Imaging, Linyi People's Hospital Affiliated to Shandong University, Linyi, 276003, People's Republic of China
| |
Collapse
|
40
|
Sonoporation with Acoustic Cluster Therapy (ACT®) induces transient tumour volume reduction in a subcutaneous xenograft model of pancreatic ductal adenocarcinoma. J Control Release 2016; 245:70-80. [PMID: 27871988 DOI: 10.1016/j.jconrel.2016.11.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/08/2016] [Accepted: 11/17/2016] [Indexed: 12/31/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers with survival averaging only 3months if untreated following diagnosis. A major limitation in effectively treating PDAC using conventional and targeted chemotherapeutic agents, is inadequate drug delivery to the target location, predominantly due to a poorly vascularised, desmoplastic tumour microenvironment. Ultrasound in combination with ultrasound contrast agents, i.e., microbubbles, that flow through the vasculature and capillaries can be used to disrupt such mechanical barriers, potentially allowing for a greater therapeutic efficacy. This phenomenon is commonly referred to as sonoporation. In an attempt to improve the efficacy of sonoporation, novel microbubble formulations are being developed to address the limitation of commercially produced clinical diagnostic ultrasound contrast agents. In our work here we evaluate the ability of a novel formulation; namely Acoustic Cluster Therapy (ACT®) to improve the therapeutic efficacy of the chemotherapeutic agent paclitaxel, longitudinally in a xenograft model of PDAC. Results indicated that ACT® bubbles alone demonstrated no observable toxic effects, whilst ACT® in combination with paclitaxel can transiently reduce tumour volumes significantly, three days posttreatment (p=0.0347-0.0458). Quantitative 3D ultrasound validated the calliper measurements. Power Doppler ultrasound imaging indicated that ACT® in combination with paclitaxel was able to transiently sustain peak vasculature percentages as observed in the initial stages of tumour development. Nevertheless, there was no significant difference in tumour vasculature percentage at the end of treatment. The high vascular percentage correlated to the transient decrease and overall inhibition of the tumour volumes. In conclusion, ACT® improves the therapeutic efficacy of paclitaxel in a PDAC xenograft model allowing for transient tumour volume reduction and sustained tumour vasculature percentage.
Collapse
|
41
|
Filis K, Toufektzian L, Galyfos G, Sigala F, Kourkoveli P, Georgopoulos S, Vavuranakis M, Vrachatis D, Zografos G. Assessment of the vulnerable carotid atherosclerotic plaque using contrast-enhanced ultrasonography. Vascular 2016; 25:316-325. [PMID: 27580821 DOI: 10.1177/1708538116665734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carotid atherosclerosis represents a primary cause for cerebrovascular ischemic events and its contemporary management includes surgical revascularization for moderate to severe symptomatic stenoses. However, the role of invasive therapy seems to be questioned lately for asymptomatic cases. Numerous reports have suggested that the presence of neovessels within the atherosclerotic plaque remains a significant vulnerability factor and over the last decade imaging modalities have been used to identify intraplaque neovascularization in an attempt to risk-stratify patients and offer management guidance. Contrast-enhanced ultrasonography of the carotid artery is a relatively novel diagnostic tool that exploits resonated ultrasound waves from circulating microbubbles. This property permits vascular visualization by producing superior angiography-like images, and allows the identification of vasa vasorum and intraplaque microvessels. Moreover, plaque neovascularization has been associated with plaque vulnerability and ischemic symptoms lately as well. At the same time, attempts have been made to quantify contrast-enhanced ultrasonography signal using sophisticated software packages and algorithms, and to correlate it with intraplaque microvascular density. The aim of this review was to collect all recent data on the characteristics, performance, and prognostic role of contrast-enhanced ultrasonography regarding carotid stenosis management, and to produce useful conclusions for clinical practice.
Collapse
Affiliation(s)
- Konstantinos Filis
- First Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - Levon Toufektzian
- First Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - George Galyfos
- First Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - Fragiska Sigala
- First Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - Panagiota Kourkoveli
- First Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - Sotirios Georgopoulos
- First Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - Manolis Vavuranakis
- First Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - Dimitrios Vrachatis
- First Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| | - George Zografos
- First Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, Greece
| |
Collapse
|
42
|
Li H, Wang P, Wang X, Yin T, Zhou G, Shuai X, Zheng R. Perfluorooctyl bromide traces self-assembled with polymeric nanovesicles for blood pool ultrasound imaging. Biomater Sci 2016; 4:979-88. [PMID: 27121357 DOI: 10.1039/c6bm00080k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel perfluorooctyl bromide (PFOB)-loaded nanovesicle with a size of about 500 nm was prepared by self-assembly of an amphiphilic block copolymer, poly(ethylene oxide)-b-poly(d,l-lactic acid) (PEG-PDLLA), for blood pool ultrasound imaging. The excellent compatibility of PFOB with the hydrophobic PDLLA block makes PFOB uniformly distribute and integrate well within the nanovesicle shell. In theory, both the compressibility and shell density of the nanovesicle as ultrasound scatterers are enhanced, resulting in much higher echo intensity compared to the other PFOB nanoparticles. In vitro and in vivo imaging results illustrate that these polymeric nanovesicles with extremely low content of PFOB show quite a good contrast-enhancing effect even if highly diluted in blood. Therefore this PFOB-loaded polymeric nanovesicle is anticipated to be applicable as an ultrasound contrast agent for normal angiography and specific imaging of capillary-abundant organs or tissues (e.g. tumors).
Collapse
Affiliation(s)
- Hao Li
- Institute of Electronic Paper Display, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Nanodroplet-Vaporization-Assisted Sonoporation for Highly Effective Delivery of Photothermal Treatment. Sci Rep 2016; 6:24753. [PMID: 27094209 PMCID: PMC4837361 DOI: 10.1038/srep24753] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/05/2016] [Indexed: 12/19/2022] Open
Abstract
Sonoporation refers to the use of ultrasound and acoustic cavitation to temporarily enhance the permeability of cellular membranes so as to enhance the delivery efficiency of therapeutic agents into cells. Microbubble-based ultrasound contrast agents are often used to facilitate these cavitation effects. This study used nanodroplets to significantly enhance the effectiveness of sonoporation relative to using conventional microbubbles. Significant enhancements were demonstrated both in vitro and in vivo by using gold nanorods encapsulated in nanodroplets for implementing plasmonic photothermal therapy. Combined excitation by ultrasound and laser radiation is used to trigger the gold nanodroplets to induce a liquid-to-gas phase change, which induces cavitation effects that are three-to-fivefold stronger than when using conventional microbubbles. Enhanced cavitation also leads to significant enhancement of the sonoporation effects. Our in vivo results show that nanodroplet-vaporization-assisted sonoporation can increase the treatment temperature by more than 10 °C above that achieved by microbubble-based sonoporation.
Collapse
|
44
|
Arpicco S, Battaglia L, Brusa P, Cavalli R, Chirio D, Dosio F, Gallarate M, Milla P, Peira E, Rocco F, Sapino S, Stella B, Ugazio E, Ceruti M. Recent studies on the delivery of hydrophilic drugs in nanoparticulate systems. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Santiesteban DY, Kubelick K, Dhada KS, Dumani D, Suggs L, Emelianov S. Monitoring/Imaging and Regenerative Agents for Enhancing Tissue Engineering Characterization and Therapies. Ann Biomed Eng 2016; 44:750-72. [PMID: 26692081 PMCID: PMC4956083 DOI: 10.1007/s10439-015-1509-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/11/2015] [Indexed: 01/07/2023]
Abstract
The past three decades have seen numerous advances in tissue engineering and regenerative medicine (TERM) therapies. However, despite the successes there is still much to be done before TERM therapies become commonplace in clinic. One of the main obstacles is the lack of knowledge regarding complex tissue engineering processes. Imaging strategies, in conjunction with exogenous contrast agents, can aid in this endeavor by assessing in vivo therapeutic progress. The ability to uncover real-time treatment progress will help shed light on the complex tissue engineering processes and lead to development of improved, adaptive treatments. More importantly, the utilized exogenous contrast agents can double as therapeutic agents. Proper use of these Monitoring/Imaging and Regenerative Agents (MIRAs) can help increase TERM therapy successes and allow for clinical translation. While other fields have exploited similar particles for combining diagnostics and therapy, MIRA research is still in its beginning stages with much of the current research being focused on imaging or therapeutic applications, separately. Advancing MIRA research will have numerous impacts on achieving clinical translations of TERM therapies. Therefore, it is our goal to highlight current MIRA progress and suggest future research that can lead to effective TERM treatments.
Collapse
Affiliation(s)
- Daniela Y Santiesteban
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, 1 University Station, C0800, Austin, TX, 78712, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Kelsey Kubelick
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Kabir S Dhada
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, 1 University Station, C0800, Austin, TX, 78712, USA
| | - Diego Dumani
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Laura Suggs
- Department of Biomedical Engineering, University of Texas at Austin, 107 W. Dean Keeton, BME Building, 1 University Station, C0800, Austin, TX, 78712, USA.
| | - Stanislav Emelianov
- School of Electrical and Computer Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University School of Medicine, 313 Ferst Dr NW, Atlanta, GA, 30332, USA.
| |
Collapse
|
46
|
Abstract
In recent decades ultrasound-guided delivery of drugs loaded on nanocarriers has been the focus of increasing attention to improve therapeutic treatments. Ultrasound has often been used in combination with microbubbles, micron-sized spherical gas-filled structures stabilized by a shell, to amplify the biophysical effects of the ultrasonic field. Nanometer size bubbles are defined nanobubbles. They were designed to obtain more efficient drug delivery systems. Indeed, their small sizes allow extravasation from blood vessels into surrounding tissues and ultrasound-targeted site-specific release with minimal invasiveness. Additionally, nanobubbles might be endowed with improved stability and longer residence time in systemic circulation. This review will describe the physico-chemical properties of nanobubbles, the formulation parameters and the drug loading approaches, besides potential applications as a therapeutic tool.
Collapse
|
47
|
Hua X, Ding J, Li R, Zhang Y, Huang Z, Guo Y, Chen Q. Anti-tumor effect of ultrasound-induced Nordy-loaded microbubbles destruction. J Drug Target 2016; 24:703-8. [PMID: 26811100 DOI: 10.3109/1061186x.2016.1144058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Synthesized dl-Nordihydroguaiaretic acid (dl-NGDA or "Nordy") can inhibit the growth of malignant human tumors, especially the tumor angiogenesis. However, its liposoluble nature limits its in vivo efficacy in the hydrosoluble circulation of human. PURPOSE We tried to use the ultrasonic microbubble as the carrier and the ultrasound-induced destruction for the targeted release of Nordy and evaluate its in vitro and in vivo anti-tumor effect. METHODS Nordy-loaded lipid microbubbles were prepared by mechanical vibration. Effects of ultrasound-induced Nordy-loaded microbubbles destruction on proliferation of human umbilical vein endothelial cells (HUVECs), tumor derived endothelial cells (Td-ECs), and rabbit transplanted VX2 tumor models were evaluated. RESULTS The ultrasound-induced Nordy-loaded microbubbles destruction inhibited the proliferations of HUVECs and Td-ECs in vitro, and inhibited the tumor growth and the microvasculature in vivo. Its efficacy was higher than those of Nordy used only and Nordy with ultrasound exposure. CONCLUSION Ultrasonic microbubbles can be used as the carrier of Nordy and achieve its targeted release with improved anti-tumor efficacy in the condition of ultrasound-induced microbubbles destruction.
Collapse
Affiliation(s)
- Xing Hua
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Jun Ding
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Rui Li
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Ying Zhang
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Zejun Huang
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Yanli Guo
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| | - Qinghai Chen
- a Third Military Medical University, Southwest Hospital , Chongqing , China
| |
Collapse
|
48
|
Nande R, Howard CM, Claudio PP. Ultrasound-mediated oncolytic virus delivery and uptake for increased therapeutic efficacy: state of art. Oncolytic Virother 2015; 4:193-205. [PMID: 27512682 PMCID: PMC4918399 DOI: 10.2147/ov.s66097] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The field of ultrasound (US) has changed significantly from medical imaging and diagnosis to treatment strategies. US contrast agents or microbubbles (MB) are currently being used as potential carriers for chemodrugs, small molecules, nucleic acids, small interfering ribonucleic acid, proteins, adenoviruses, and oncolytic viruses. Oncolytic viruses can selectively replicate within and destroy a cancer cell, thus making them a powerful therapeutic in treating late-stage or metastatic cancer. These viruses have been shown to have robust activity in clinical trials when injected directly into tumor nodules. However limitations in oncolytic virus’ effectiveness and its delivery approach have warranted exploration of ultrasound-mediated delivery. Gene therapy bearing adenoviruses or oncolytic viruses can be coupled with MBs and injected intravenously. Following application of US energy to the target region, the MBs cavitate, and the resulting shock wave enhances drug, gene, or adenovirus uptake. Though the underlying mechanism is yet to be fully understood, there is evidence to suggest that mechanical pore formation of cellular membranes allows for the temporary uptake of drugs. This delivery method circumvents the limitations due to stimulation of the immune system that prevented intravenous administration of viruses. This review provides insight into this intriguing new frontier on the delivery of oncolytic viruses to tumor sites.
Collapse
Affiliation(s)
- Rounak Nande
- Department of Biochemistry and Microbiology, Marshall University School of Medicine, Huntington, WV, USA
| | - Candace M Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pier Paolo Claudio
- Department of BioMolecular Sciences and National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS, USA; Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
49
|
Krafft MP. Fluorine in medical microbubbles – Methodologies implemented for engineering and investigating fluorocarbon-based microbubbles. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2015.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Duan L, Yang F, Song L, Fang K, Tian J, Liang Y, Li M, Xu N, Chen Z, Zhang Y, Gu N. Controlled assembly of magnetic nanoparticles on microbubbles for multimodal imaging. SOFT MATTER 2015; 11:5492-5500. [PMID: 26061750 DOI: 10.1039/c5sm00864f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnetic microbubbles (MMBs) consisting of microbubbles (MBs) and magnetic nanoparticles (MNPs) were synthesized for use as novel markers for improving multifunctional biomedical imaging. The MMBs were fabricated by assembling MNPs in different concentrations on the surfaces of MBs. The relationships between the structure, magnetic properties, stability of the MMBs, and their use in magnetic resonance/ultrasound (MR/US) dual imaging applications were determined. The MNPs used were NPs of 3-aminopropyltriethoxysilane (APTS)-functionalized superparamagnetic iron oxide γ-Fe2O3 (SPIO). SPIO was assembled on the surfaces of polymer MBs using a "surface-coating" approach. An analysis of the underlying mechanism showed that the synergistic effects of covalent coupling, electrostatic adsorption, and aggregation of the MNPs allowed them to be unevenly assembled in large amounts on the surfaces of the MBs. With an increase in the MNP loading amount, the magnetic properties of the MMBs improved significantly; in this way, the shell structure and mechanical properties of the MMBs could be modified. For surface densities ranging from 2.45 × 10(-7) μg per MMB to 8.45 × 10(-7) μg per MMB, in vitro MR/US imaging experiments showed that, with an increase in the number of MNPs on the surfaces of the MBs, the MMBs exhibited better T2 MR imaging contrast, as well as an increase in the US contrast for longer durations. In vivo experiments also showed that, by optimizing the structure of the MMBs, enhanced MR/US dual-modality image signals could be obtained for mouse tumors. Therefore, by adjusting the shell composition of MBs through the assembly of MNPs in different concentrations, MMBs with good magnetic and acoustic properties for MR/US dual-modality imaging contrast agents could be obtained.
Collapse
Affiliation(s)
- Lei Duan
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|