1
|
Lv JY, Ingle RG, Wu H, Liu C, Fang WJ. Histidine as a versatile excipient in the protein-based biopharmaceutical formulations. Int J Pharm 2024; 662:124472. [PMID: 39013532 DOI: 10.1016/j.ijpharm.2024.124472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Adequate stabilization is essential for marketed protein-based biopharmaceutical formulations to withstand the various stresses that can be exerted during the pre- and post-manufacturing processes. Therefore, a suitable choice of excipient is a significant step in the manufacturing of such delicate products. Histidine, an essential amino acid, has been extensively used in protein-based biopharmaceutical formulations. The physicochemical properties of histidine are unique among amino acids and could afford multifaceted benefits to protein-based biopharmaceutical formulations. With a pKa of approximately 6.0 at the side chain, histidine has been primarily used as a buffering agent, especially for pH 5.5-6.5. Additionally, histidine exhibited several affirmative properties similar to those of carbohydrates (e.g., sucrose and trehalose) and could therefore be considered to be an alternative approach to established protein-based formulation strategies. The current review describes the general physicochemical properties of histidine, lists all commercial histidine-containing protein-based biopharmaceutical products, and discusses a brief outline of the existing research focused on the versatile applications of histidine, which can act as a buffering agent, stabilizer, cryo-/lyo-protectant, antioxidant, viscosity reducer, and solubilizing agent. The interaction between histidine and proteins in protein-based biopharmaceutical formulations, such as the Donnan effect during diafiltration of monoclonal antibody solutions and the degradation of polysorbates in histidine buffer, has also been discussed. As the first review of histidine in protein biopharmaceuticals, it helps to deepen our understanding of the opportunities and challenges associated with histidine as an excipient for protein-based biopharmaceutical formulations.
Collapse
Affiliation(s)
- Jia-Yi Lv
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taizhou Institute of Zhejiang University, Taizhou, Zhejiang 317000, China; School of Pharmaceutical Sciences, Xiamen University, 4221 Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Rahul G Ingle
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education & Research (Deemed to University), Sawangi, Wardha, India
| | - Hao Wu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Cuihua Liu
- Bio-Thera Solutions, Ltd, Guangzhou, Guangdong 510530, China
| | - Wei-Jie Fang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Taizhou Institute of Zhejiang University, Taizhou, Zhejiang 317000, China; Innovation Center of Translational Pharmacy, Jinhua Institute of Zhejiang University, Jinhua, 321000, China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
2
|
Wu Y, Gardner R, Schöneich C. Near UV and Visible Light-Induced Degradation of Bovine Serum Albumin and a Monoclonal Antibody Mediated by Citrate Buffer and Fe(III): Reduction vs Oxidation Pathways. Mol Pharm 2024; 21:4060-4073. [PMID: 39013609 DOI: 10.1021/acs.molpharmaceut.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Light exposure during manufacturing, storage, and administration can lead to the photodegradation of therapeutic proteins. This photodegradation can be promoted by pharmaceutical buffers or impurities. Our laboratory has previously demonstrated that citrate-Fe(III) complexes generate the •CO2- radical anion when photoirradiated under near UV (λ = 320-400 nm) and visible light (λ = 400-800 nm) [Subelzu, N.; Schöneich, C. Mol. Pharmaceutics 2020, 17 (11), 4163-4179; Zhang, Y. Mol. Pharmaceutics 2022, 19 (11), 4026-4042]. Here, we evaluated the impact of citrate-Fe(III) on the photostability and degradation mechanisms of disulfide-containing proteins (bovine serum albumin (BSA) and NISTmAb) under pharmaceutically relevant conditions. We monitored and localized competitive disulfide reduction and protein oxidation by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis depending on the reaction conditions. These competitive pathways were affected by multiple factors, including light dose, Fe(III) concentration, protein concentration, the presence of oxygen, and light intensity.
Collapse
Affiliation(s)
- Yaqi Wu
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Reece Gardner
- Summer Undergraduate Research Program, Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, The University of Kansas, 2093 Constant Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
3
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
4
|
Singh AK, Lewis CD, Boas CAWV, Diebolder P, Jethva PN, Rhee A, Song JH, Goo YA, Li S, Nickels ML, Liu Y, Rogers BE, Kapoor V, Hallahan DE. Development of a [89Zr]Zr-labeled Human Antibody using a Novel Phage-displayed Human scFv Library. Clin Cancer Res 2024; 30:1293-1306. [PMID: 38277241 PMCID: PMC10984770 DOI: 10.1158/1078-0432.ccr-23-3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/28/2024]
Abstract
PURPOSE Tax-interacting protein 1 (TIP1) is a cancer-specific radiation-inducible cell surface antigen that plays a role in cancer progression and resistance to therapy. This study aimed to develop a novel anti-TIP1 human antibody for noninvasive PET imaging in patients with cancer. EXPERIMENTAL DESIGN A phage-displayed single-chain variable fragment (scFv) library was created from healthy donors' blood. High-affinity anti-TIP1 scFvs were selected from the library and engineered to human IgG1. Purified Abs were characterized by size exclusion chromatography high-performance liquid chromatography (SEC-HPLC), native mass spectrometry (native MS), ELISA, BIAcore, and flow cytometry. The labeling of positron emitter [89Zr]Zr to the lead Ab, L111, was optimized using deferoxamine (DFO) chelator. The stability of [89Zr]Zr-DFO-L111 was assessed in human serum. Small animal PET studies were performed in lung cancer tumor models (A549 and H460). RESULTS We obtained 95% pure L111 by SEC-HPLC. Native MS confirmed the intact mass and glycosylation pattern of L111. Conjugation of three molar equivalents of DFO led to the optimal DFO-to-L111 ratio of 1.05. Radiochemical purity of 99.9% and specific activity of 0.37 MBq/μg was obtained for [89Zr]Zr-DFO-L111. [89Zr]Zr-DFO-L111 was stable in human serum over 7 days. The immunoreactive fraction in cell surface binding studies was 96%. In PET, preinjection with 4 mg/kg cold L111 before [89Zr]Zr-DFO-L111 (7.4 MBq; 20 μg) significantly (P < 0.01) enhanced the tumor-to-muscle standard uptake values (SUVmax) ratios on day 5 compared with day 2 postinjection. CONCLUSIONS L111 Ab targets lung cancer cells in vitro and in vivo. [89Zr]Zr-DFO-L111 is a human antibody that will be evaluated in the first in-human study of safety and PET imaging.
Collapse
Affiliation(s)
- Abhay K. Singh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Calvin D. Lewis
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cristian AWV Boas
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp Diebolder
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, Saint Louis, MO, USA
| | - Aaron Rhee
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jong Hee Song
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute (MTAC@MGI), Washington University in St. Louis, Saint Louis, MO, USA
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute (MTAC@MGI), Washington University in St. Louis, Saint Louis, MO, USA
| | - Shunqian Li
- Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA
| | - Michael L. Nickels
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, MO, USA
- Cyclotron Facility, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, MO, USA
| | - Buck E. Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, St. Louis, MO, USA
| | - Vaishali Kapoor
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, St. Louis, MO, USA
| | - Dennis E. Hallahan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, St. Louis, MO, USA
| |
Collapse
|
5
|
Lou H, Zhang Y, Kuczera K, Hageman MJ, Schöneich C. Molecular Dynamics Simulation of an Iron(III) Binding Site on the Fc Domain of IgG1 Relevant for Visible Light-Induced Protein Fragmentation. Mol Pharm 2024; 21:501-512. [PMID: 38128475 DOI: 10.1021/acs.molpharmaceut.3c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Molecular dynamics simulations were employed to investigate the interaction between Fe(III) and an iron-binding site composed of THR259, ASP252, and GLU261 on the Fc domain of an IgG1. The goal was to provide microscopic mechanistic information for the photochemical, iron-dependent site-specific oxidative fragmentation of IgG1 at THR259 reported in our previous paper. The distance between Fe(III) and residues of interest as well as the binding pocket size was examined for both protonated and deprotonated THR259. The Fe(III) binding free energy (ΔG) was estimated by using an umbrella sampling approach. The pKa shift of the THR259 hydroxyl group caused by the presence of nearby Fe(III) was estimated based on a thermodynamic cycle. The simulation results show that Fe(III) resides inside the proposed binding pocket and profoundly changes the pocket configuration. The ΔG values indicate that the pocket possesses a strong binding affinity for Fe(III). Furthermore, Fe(III) profoundly lowers the pKa value of the THR259 hydroxyl group by 5.4 pKa units.
Collapse
Affiliation(s)
- Hao Lou
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Krzysztof Kuczera
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, United States
| | - Michael J Hageman
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
- Biopharmaceutical Innovation and Optimization Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
6
|
Zhang Y, Schöneich C. Visible Light Induces Site-Specific Oxidative Heavy Chain Fragmentation of a Monoclonal Antibody (IgG1) Mediated by an Iron(III)-Containing Histidine Buffer. Mol Pharm 2023; 20:650-662. [PMID: 36538763 DOI: 10.1021/acs.molpharmaceut.2c00840] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fragmentation of therapeutic monoclonal antibodies represents a critical quality attribute. Here, we report a novel visible light-induced heavy chain fragmentation of IgG1 mediated by an Fe(III)-containing histidine (His) buffer. Based on non-reducing sodium dodecylsulfate-polyacrylamide gel electrophoresis and mass spectrometry analysis, IgG1 fragments with apparent molecular weights of ∼130, ∼110, and ∼22 kDa were detected in photo-irradiated samples and were mechanistically rationalized with an oxidative cleavage at Thr259. Specifically, the reactions are proposed to involve the generation of an intermediary alkoxyl radical, which undergoes β-cleavage to yield a glycyl radical. The latter either converts into Gly or adds oxygen and follows a peroxyl radical chemistry. The cleavage process requires the presence of His, while only negligible yields of cleavage products are formed when His is replaced by acetate, succinate, or phosphate buffer. Importantly, the fragmentation can be prevented by ethylenediaminetetraacetic acid (EDTA) only when the EDTA concentrations are in significant excess over the concentrations of Fe(III) and proteins, suggesting a strong binding between Fe(III) and IgG1.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas66047, United States
| | - Christian Schöneich
- Department of Pharmaceutical Chemistry, University of Kansas, 2093 Constant Avenue, Lawrence, Kansas66047, United States
| |
Collapse
|
7
|
Jaklin M, Hritz J, Hribar-Lee B. A new fibrillization mechanism of β-lactoglobulin in glycine solutions. Int J Biol Macromol 2022; 216:414-425. [PMID: 35803407 PMCID: PMC10039397 DOI: 10.1016/j.ijbiomac.2022.06.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/15/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
Even though amyloid aggregates were discovered many years ago the mechanism of their formation is still a mystery. Because of their connection to many of untreatable neurodegenerative diseases the motivation for finding a common aggregation path is high. We report a new high heat induced fibrillization path of a model protein β-lactoglobulin (BLG) when incubated in glycine instead of water at pH 2. By combining atomic force microscopy (AFM), transmission emission microscopy (TEM), dynamic light scattering (DLS) and circular dichroism (CD) we predict that the basic building blocks of fibrils made in glycine are not peptides, but rather spheroid oligomers of different height that form by stacking of ring-like structures. Spheroid oligomers linearly align to form fibrils by opening up and combining. We suspect that glycine acts as an hydrolysation inhibitor which consequently promotes a different fibrillization path. By combining the known data on fibrillization in water with our experimental conclusions we come up with a new fibrillization scheme for BLG. We show that by changing the fibrillization conditions just by small changes in buffer composition can dramatically change the aggregation pathway and the effect of buffer shouldn't be neglected. Fibrils seen in our study are also gaining more and more attention because of their pore-like structure and a possible cytotoxic mechanism by forming pernicious ion-channels. By preparing them in a simple model system as BLG we opened a new way to study their formation.
Collapse
Affiliation(s)
- Matej Jaklin
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Jozef Hritz
- CEITEC Masaryk University Kamenice 5, Brno 625 00, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University Kamenice 5, Brno 625 00, Czech Republic
| | - Barbara Hribar-Lee
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
8
|
Saurabh S, Kalonia C, Li Z, Hollowell P, Waigh T, Li P, Webster J, Seddon JM, Lu JR, Bresme F. Understanding the Stabilizing Effect of Histidine on mAb Aggregation: A Molecular Dynamics Study. Mol Pharm 2022; 19:3288-3303. [PMID: 35946408 PMCID: PMC9449975 DOI: 10.1021/acs.molpharmaceut.2c00453] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Histidine, a widely used buffer in monoclonal antibody
(mAb) formulations,
is known to reduce antibody aggregation. While experimental studies
suggest a nonelectrostatic, nonstructural (relating to secondary structure
preservation) origin of the phenomenon, the underlying microscopic
mechanism behind the histidine action is still unknown. Understanding
this mechanism will help evaluate and predict the stabilizing effect
of this buffer under different experimental conditions and for different
mAbs. We have used all-atom molecular dynamics simulations and contact-based
free energy calculations to investigate molecular-level interactions
between the histidine buffer and mAbs, which lead to the observed
stability of therapeutic formulations in the presence of histidine.
We reformulate the Spatial Aggregation Propensity index by including
the buffer–protein interactions. The buffer adsorption on the
protein surface leads to lower exposure of the hydrophobic regions
to water. Our analysis indicates that the mechanism behind the stabilizing
action of histidine is connected to the shielding of the solvent-exposed
hydrophobic regions on the protein surface by the buffer molecules.
Collapse
Affiliation(s)
- Suman Saurabh
- Department of Chemistry, Molecular Sciences Research Hub Imperial College, London W12 0BZ, United Kingdom
| | - Cavan Kalonia
- Dosage Form Design and Development, BioPharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg 20878, Maryland, United States
| | - Zongyi Li
- Biological Physics Group, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, U.K
| | - Peter Hollowell
- Biological Physics Group, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, U.K
| | - Thomas Waigh
- Biological Physics Group, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, U.K.,Photon Science Institute, The University of Manchester, Manchester M13 9PL, U.K
| | - Peixun Li
- STFC ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - John Webster
- STFC ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - John M Seddon
- Department of Chemistry, Molecular Sciences Research Hub Imperial College, London W12 0BZ, United Kingdom
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, Faculty of Science and Engineering, Oxford Road, The University of Manchester, Manchester M13 9PL, U.K
| | - Fernando Bresme
- Department of Chemistry, Molecular Sciences Research Hub Imperial College, London W12 0BZ, United Kingdom
| |
Collapse
|
9
|
Impact of various factors on the kinetics of non-enzymatic fragmentation of a monoclonal antibody. Eur J Pharm Biopharm 2022; 178:131-139. [PMID: 35961566 DOI: 10.1016/j.ejpb.2022.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 11/22/2022]
Abstract
Non-enzymatic hinge fragmentation of monoclonal antibodies (mAb) is considered a critical quality attribute since it changes the primary sequence of the proteins, thereby leading to structural changes which can affect stability, function, and efficacy. While peptide bonds are exceptionally stable under physiological conditions, reactive side chains of a few residues, the flexibility of the backbone, and physicochemical parameters such as pH, temperature, and the reaction of radicals and metal ions can promote the cleavage of peptide bonds. In this study, the relative extent and rate of fragmentation are compared with respect to the presence of several different factors (including hydrogen peroxide, metal ion, and temperature) as measured by size exclusion chromatography. A kinetic model of monomer degradation as a function of time (mAb only) is created. In the presence of either H2O2 or Cu2+, or both, the reaction kinetics follow different orders depending on the reaction conditions. The half-life for peptide bond cleavage of the mAb hinge region was 385 days at 40 °C and decreases to 250, 48, and 45 days in the presence of H2O2, Cu2+, and a combination of H2O2 and Cu2+, respectively. A temperature dependence of peptide bond cleavage at 35 °C, 40 °C, 45 °C, and 50 °C showed Arrhenius behavior with an apparent activation energy of 76.9±16.4 kJ/mol. The reaction rates obtained from the Arrhenius equation were then extrapolated to predict fragmentation rates under real storage conditions (e.g., at 2-8 °C). We demonstrate that trace levels of impurities including peroxide left after surface sterilization or degradation of non-ionic surfactants or metal ions from the buffer components can significantly affect the stability of a mAb.
Collapse
|
10
|
Process- and Product-Related Foulants in Virus Filtration. Bioengineering (Basel) 2022; 9:bioengineering9040155. [PMID: 35447715 PMCID: PMC9030149 DOI: 10.3390/bioengineering9040155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Regulatory authorities place stringent guidelines on the removal of contaminants during the manufacture of biopharmaceutical products. Monoclonal antibodies, Fc-fusion proteins, and other mammalian cell-derived biotherapeutics are heterogeneous molecules that are validated based on the production process and not on molecular homogeneity. Validation of clearance of potential contamination by viruses is a major challenge during the downstream purification of these therapeutics. Virus filtration is a single-use, size-based separation process in which the contaminating virus particles are retained while the therapeutic molecules pass through the membrane pores. Virus filtration is routinely used as part of the overall virus clearance strategy. Compromised performance of virus filters due to membrane fouling, low throughput and reduced viral clearance, is of considerable industrial significance and is frequently a major challenge. This review shows how components generated during cell culture, contaminants, and product variants can affect virus filtration of mammalian cell-derived biologics. Cell culture-derived foulants include host cell proteins, proteases, and endotoxins. We also provide mitigation measures for each potential foulant.
Collapse
|
11
|
Bansal R, Jha SK, Jha NK. Size-based Degradation of Therapeutic Proteins - Mechanisms, Modelling and Control. Biomol Concepts 2021; 12:68-84. [PMID: 34146465 DOI: 10.1515/bmc-2021-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 02/02/2023] Open
Abstract
Protein therapeutics are in great demand due to their effectiveness towards hard-to-treat diseases. Despite their high demand, these bio-therapeutics are very susceptible to degradation via aggregation, fragmentation, oxidation, and reduction, all of which are very likely to affect the quality and efficacy of the product. Mechanisms and modelling of these degradation (aggregation and fragmentation) pathways is critical for gaining a deeper understanding of stability of these products. This review aims to provide a summary of major developments that have occurred towards unravelling the mechanisms of size-based protein degradation (particularly aggregation and fragmentation), modelling of these size-based degradation pathways, and their control. Major caveats that remain in our understanding and control of size-based protein degradation have also been presented and discussed.
Collapse
Affiliation(s)
- Rohit Bansal
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Li D, Cui Z, Li G, Zhang L, Zhang Y, Zhao H, Zhang S, Guo Y, Zhao Y, Men F, Zhao S, Shao J, Du D, Huang H, Wang K, Hu G, Li T, Zhao Y. Antiviral effect of copper chloride on feline calicivirus and synergy with ribavirin in vitro. BMC Vet Res 2020; 16:231. [PMID: 32631322 PMCID: PMC7336648 DOI: 10.1186/s12917-020-02441-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Background Feline calicivirus (FCV) is a common and highly prevalent pathogen causing upper respiratory diseases in kittens and felines in recent years. Due to the substantial genetic variability of the viral genes, existing vaccines cannot provide complete protection. Therefore, research on FCV antiviral drugs has received much attention. Results In this study, we found that copper chloride had dose-dependent antiviral effects on FCV in F81 cells. We also found that the combination of copper chloride and ribavirin had a synergistic protective effect against FCV in F81 cells. In contrast, the combination of copper chloride and horse anti-FCV immunoglobulin F (ab’)2 showed an antagonistic effect, likely because copper chloride has an effect on F (ab’)2 immunoglobulin; however, further research is needed to clarify this supposition. Conclusions In summary, we found that copper chloride had low cytotoxicity and significant antiviral effects on FCV in F81 cells, providing a new drug candidate for the prevention and treatment of FCV infection.
Collapse
Affiliation(s)
- Dengliang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Zhanding Cui
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guohua Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, 666 Liuying West Road, Changchun, 130122, China.,College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China
| | - Liangting Zhang
- College of Continuing Education, Hebei Agricultural University, Baoding, 071001, China
| | - Ying Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, 666 Liuying West Road, Changchun, 130122, China.,College of Wildlife and Protected Area Northeast Forestry University, Harbin, 150040, China
| | - Han Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Shuang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yanbing Guo
- Animal Husbandry and Veterinary Science Research Institute of Jilin Province, Changchun, 130062, China
| | - Yanli Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Fanxing Men
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Shihui Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jiang Shao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Dongju Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hailong Huang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Kai Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guixue Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
| | - Tiansong Li
- College of Science, Beihua University, Jilin, 132013, China.
| | - Yongkun Zhao
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, 666 Liuying West Road, Changchun, 130122, China.
| |
Collapse
|
13
|
Kinetics and Characterization of Non-enzymatic Fragmentation of Monoclonal Antibody Therapeutics. Pharm Res 2018; 35:142. [PMID: 29761239 DOI: 10.1007/s11095-018-2415-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/22/2018] [Indexed: 01/17/2023]
Abstract
PURPOSE To understand non-enzymatic hydrolytic fragmentation of a monoclonal antibody therapeutic under temperature stressed conditions and investigating possible mechanism for the same. METHODS The mAb therapeutic was incubated at 50°C in phosphate buffer at pH 6.5 and fragmentation was monitored at different ionic strengths under stressed conditions. The incubated mAb was sampled at regular time intervals by analytical Size Exclusion Chromatography (SEC). RESULTS It was observed that 57% of the mAb product fragmented over 4 days into two fragment species - Fc-Fab and Fab with molecular weights of 97 KDa and 47 KDa, respectively, as measured by mass spectrometry (MS) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The fragmentation rate was slow initially and then accelerated with time. No change in % aggregate level was observed in this duration, implying that degradation was primarily via fragmentation at high temperature. Kinetics of hydrolytic fragmentation was hypothesized and SEC data was fitted to estimate the kinetic rate constants. While degradation of the monomer into fragment species was non-Arrhenius with a negative activation energy, further degradation of Fab-Fc fragments into Fab or Fc fragments followed Arrhenius Law with an activation energy of 2.1 and 15.38 kcal/mol, respectively. CONCLUSION High temperature (50°C) causes mAb to cleave at the hinge region to form Fab-Fc and Fab/Fc, as confirmed by dynamic light scattering, SDS-PAGE, SEC, and MS. A kinetic model for hydrolytic fragmentation has been proposed. The results are expected to assist end users in formulation development as well as in monitoring stability of biotherapeutic products.
Collapse
|
14
|
Manning MC, Liu J, Li T, Holcomb RE. Rational Design of Liquid Formulations of Proteins. THERAPEUTIC PROTEINS AND PEPTIDES 2018; 112:1-59. [DOI: 10.1016/bs.apcsb.2018.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Dada OO, Rao R, Jones N, Jaya N, Salas-Solano O. Comparison of SEC and CE-SDS methods for monitoring hinge fragmentation in IgG1 monoclonal antibodies. J Pharm Biomed Anal 2017; 145:91-97. [DOI: 10.1016/j.jpba.2017.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022]
|
16
|
Kubota K, Kobayashi N, Yabuta M, Ohara M, Naito T, Kubo T, Otsuka K. Identification and characterization of a thermally cleaved fragment of monoclonal antibody-A detected by sodium dodecyl sulfate-capillary gel electrophoresis. J Pharm Biomed Anal 2017; 140:98-104. [DOI: 10.1016/j.jpba.2017.03.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/15/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
17
|
Identification and characterization of monoclonal antibody fragments cleaved at the complementarity determining region using orthogonal analytical methods. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1048:121-129. [DOI: 10.1016/j.jchromb.2017.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/14/2017] [Accepted: 02/18/2017] [Indexed: 11/20/2022]
|
18
|
Huang Y, Yu J, Lanzi A, Yao X, Andrews CD, Tsai L, Gajjar MR, Sun M, Seaman MS, Padte NN, Ho DD. Engineered Bispecific Antibodies with Exquisite HIV-1-Neutralizing Activity. Cell 2017; 165:1621-1631. [PMID: 27315479 DOI: 10.1016/j.cell.2016.05.024] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/22/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022]
Abstract
While the search for an efficacious HIV-1 vaccine remains elusive, emergence of a new generation of virus-neutralizing monoclonal antibodies (mAbs) has re-ignited the field of passive immunization for HIV-1 prevention. However, the plasticity of HIV-1 demands additional improvements to these mAbs to better ensure their clinical utility. Here, we report engineered bispecific antibodies that are the most potent and broad HIV-neutralizing antibodies to date. One bispecific antibody, 10E8V2.0/iMab, neutralized 118 HIV-1 pseudotyped viruses tested with a mean 50% inhibitory concentration (IC50) of 0.002 μg/mL. 10E8V2.0/iMab also potently neutralized 99% of viruses in a second panel of 200 HIV-1 isolates belonging to clade C, the dominant subtype accounting for ∼50% of new infections worldwide. Importantly, 10E8V2.0/iMab reduced virus load substantially in HIV-1-infected humanized mice and also provided complete protection when administered prior to virus challenge. These bispecific antibodies hold promise as novel prophylactic and/or therapeutic agents in the fight against HIV-1.
Collapse
Affiliation(s)
- Yaoxing Huang
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Anastasia Lanzi
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Xin Yao
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Chasity D Andrews
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Lily Tsai
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Mili R Gajjar
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Ming Sun
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - Michael S Seaman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Neal N Padte
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
19
|
Zheng S, Qiu D, Adams M, Li J, Mantri RV, Gandhi R. Investigating the Degradation Behaviors of a Therapeutic Monoclonal Antibody Associated with pH and Buffer Species. AAPS PharmSciTech 2017; 18:42-48. [PMID: 26340951 DOI: 10.1208/s12249-015-0403-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/21/2015] [Indexed: 12/15/2022] Open
Abstract
This study aimed in understanding the degradation behaviors of an IgG 1 subtype therapeutic monoclonal antibody A (mAb-A) associated with pH and buffer species. The information obtained in this study can augment conventional, stability-based screening paradigms by providing the direction necessary for efficient experimental design. Differential scanning calorimetry (DSC) was used for studying conformational stability. Dynamic light scattering (DLS) was utilized to generate B 22*, a modified second virial coefficient for the character of protein-protein interaction. Size-exclusion chromatography (SEC) and hydrophobic interaction chromatography (HIC) were employed to separate degradation products. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used for determining the molecular size and liquid chromatography mass spectrometry (LC-MS) were used for identifying the sequence of the separated fragments. The results showed that both pH and buffer species played the roles in controlling the degradation behaviors of mAb-A, but the pH was more significant. In particular, pH 4.5 induced additional thermal transition peaks occurring at a low temperature compared with pH 6.5. A continual temperature-stress study illustrated that the additional thermal transition peaks related to the least stable structure and a greater fragmentation. Although mAb-A showed the comparable conformational structures and an identical amount of aggregates at time zero between the different types of buffer species at pH 6.5, the aggregation formation rate showed a buffer species-dependent discrepancy over a temperature-stress period. It was found that the levels of aggregations associated with the magnitudes of protein-protein interaction forces.
Collapse
|
20
|
Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, Evans GJ, Matsuura JE, Henry CS, Manning MC. Role of Buffers in Protein Formulations. J Pharm Sci 2016; 106:713-733. [PMID: 27894967 DOI: 10.1016/j.xphs.2016.11.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/25/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022]
Abstract
Buffers comprise an integral component of protein formulations. Not only do they function to regulate shifts in pH, they also can stabilize proteins by a variety of mechanisms. The ability of buffers to stabilize therapeutic proteins whether in liquid formulations, frozen solutions, or the solid state is highlighted in this review. Addition of buffers can result in increased conformational stability of proteins, whether by ligand binding or by an excluded solute mechanism. In addition, they can alter the colloidal stability of proteins and modulate interfacial damage. Buffers can also lead to destabilization of proteins, and the stability of buffers themselves is presented. Furthermore, the potential safety and toxicity issues of buffers are discussed, with a special emphasis on the influence of buffers on the perceived pain upon injection. Finally, the interaction of buffers with other excipients is examined.
Collapse
Affiliation(s)
| | - Ryan E Holcomb
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Derrick S Katayama
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Brian M Murphy
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Robert W Payne
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Mark Cornell Manning
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523.
| |
Collapse
|
21
|
Abstract
Fragmentation in the hinge region of an IgG1 monoclonal antibody (mAb) can affect product stability, potentially causing changes in potency and efficacy. Metals ions, such as Cu(2+), can bind to the mAb and undergo hydrolysis or oxidation, which can lead to cleavage of the molecule. To better understand the mechanism of Cu(2+)-mediated mAb fragmentation, hinge region cleavage products and their rates of formation were studied as a function of pH with and without Cu(2+). More detailed analysis of the chemical changes was investigated using model linear and cyclic peptides (with the sequence of SCDKTHTC) derived from the upper hinge region of the mAb. Cu(2+) mediated fragmentation was determined to be predominantly via a hydrolytic pathway in solution. The sites and products of hydrolytic cleavage are pH and strain dependent. In more acidic environments, rates of Cu(2+) induced hinge fragmentation are significantly slower than at higher pH. Although the degradation reaction rates between the linear and cyclic peptides are not significantly different, the products of degradation vary. mAb fragmentation can be reduced by modifying His, which is a potential metal binding site and a known ligand in other metalloproteins. These results suggest that a charge may contribute to stabilization of a specific molecular structure involved in hydrolysis, leading to the possible formation of a copper binding pocket that causes increased susceptibility of the hinge region to degradation.
Collapse
Affiliation(s)
- Zephania Kwong Glover
- a Late Stage Pharmaceutical Development; Genentech, Inc. ; South San Francisco , CA USA
| | | | | | | | | |
Collapse
|
22
|
Chakroun N, Hilton D, Ahmad SS, Platt GW, Dalby PA. Mapping the Aggregation Kinetics of a Therapeutic Antibody Fragment. Mol Pharm 2016; 13:307-19. [PMID: 26692229 DOI: 10.1021/acs.molpharmaceut.5b00387] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The analytical characterization of biopharmaceuticals is a fundamental step in the early stages of development and prediction of their behavior in bioprocesses. Protein aggregation in particular is a common issue as it affects all stages of product development. In the present work, we investigate the stability and the aggregation kinetics of A33Fab, a therapeutically relevant humanized antibody fragment at a wide range of pH, ionic strength, and temperature. We show that the propensity of A33Fab to aggregate under thermally accelerated conditions is pH and ionic-strength dependent with a stronger destabilizing effect of ionic strength at low pH. In the absence of added salts, A33Fab molecules appear to be protected from aggregation due to electrostatic colloidal repulsion at low pH. Analysis by transmission electron microscopy identified significantly different aggregate species formed at low and high pH. The correlations between apparent midpoints of thermal transitions (Tm,app values), or unfolded mole fractions, and aggregation rates are reported here to be significant only at the elevated incubation temperature of 65 °C, where aggregation from the unfolded state predominates. At all other conditions, particularly at 4-45 °C, aggregation of A33 Fab was predominantly from a native-like state, and the kinetics obeyed Arrhenius behavior. Despite this, the rank order of aggregation rates observed at 45 °C, 23 and 4 °C still did not correlate well to each other, indicating that forced degradation at elevated temperatures was not a good screen for predicting behavior at low temperature.
Collapse
Affiliation(s)
- Nesrine Chakroun
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K.,Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K
| | - David Hilton
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K.,Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K
| | - Shahina S Ahmad
- Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K
| | - Geoffrey W Platt
- Unchained Laboratories, Unit 706, Avenue E West, Thorp Arch Estate, Wetherby LS23 7EG, U.K
| | - Paul A Dalby
- EPSRC Centre for Innovative Manufacturing in Emergent Macromolecular Therapies, Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K.,Department of Biochemical Engineering, University College London , London WC1H 0AH, U.K
| |
Collapse
|
23
|
Raut AS, Kalonia DS. Liquid–Liquid Phase Separation in a Dual Variable Domain Immunoglobulin Protein Solution: Effect of Formulation Factors and Protein–Protein Interactions. Mol Pharm 2015; 12:3261-71. [DOI: 10.1021/acs.molpharmaceut.5b00256] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ashlesha S. Raut
- Department of Pharmaceutical
Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Devendra S. Kalonia
- Department of Pharmaceutical
Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
24
|
Remmele RL, Bee JS, Phillips JJ, Mo WD, Higazi DR, Zhang J, Lindo V, Kippen AD. Characterization of Monoclonal Antibody Aggregates and Emerging Technologies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1202.ch005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Richard L. Remmele
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jared S. Bee
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jonathan J. Phillips
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Wenjun David Mo
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Daniel R. Higazi
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Jifeng Zhang
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Vivian Lindo
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| | - Alistair D. Kippen
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune One MedImmune Way, Gaithersburg, Maryland 20878, United States
- Analytical Biotechnology, Biopharmaceutical Development, MedImmune Granta Park, Cambridge CB21 6GH, United Kingdom
| |
Collapse
|
25
|
Michels DA, Ip AY, Dillon TM, Brorson K, Lute S, Chavez B, Prentice KM, Brady LJ, Miller KJ. Separation Methods and Orthogonal Techniques. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- David A. Michels
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Anna Y. Ip
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Thomas M. Dillon
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Kurt Brorson
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Scott Lute
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Brittany Chavez
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Ken M. Prentice
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Lowell J. Brady
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| | - Karen J. Miller
- Department of Protein Analytical Chemistry, Genentech, South San Francisco, California 94080, United States
- Department of Process and Product Development, Amgen Inc., Thousand Oaks, California 91361, United States
- Division of Monoclonal Antibodies, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20903, United States
- Department of Process and Product Development, Amgen Inc., Seattle, Washington 98119, United States
- Global Analytical Sciences, Amgen Inc., Thousand Oaks, California 91320, United States
| |
Collapse
|
26
|
Tian X, Langkilde AE, Thorolfsson M, Rasmussen HB, Vestergaard B. Small-angle x-ray scattering screening complements conventional biophysical analysis: comparative structural and biophysical analysis of monoclonal antibodies IgG1, IgG2, and IgG4. J Pharm Sci 2014; 103:1701-10. [PMID: 24700358 PMCID: PMC4298811 DOI: 10.1002/jps.23964] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/25/2014] [Accepted: 03/13/2014] [Indexed: 12/21/2022]
Abstract
A crucial step in the development of therapeutic monoclonal antibodies is the selection of robust pharmaceutical candidates and screening of efficacious protein formulations to increase the resistance toward physicochemical degradation and aggregation during processing and storage. Here, we introduce small-angle X-ray scattering (SAXS) to characterize antibody solution behavior, which strongly complements conventional biophysical analysis. First, we apply a variety of conventional biophysical techniques for the evaluation of structural, conformational, and colloidal stability and report a systematic comparison between designed humanized IgG1, IgG2, and IgG4 with identical variable regions. Then, the high information content of SAXS data enables sensitive detection of structural differences between three IgG subclasses at neutral pH and rapid formation of dimers of IgG2 and IgG4 at low pH. We reveal subclass-specific variation in intermolecular repulsion already at low and medium protein concentrations, which explains the observed improved stability of IgG1 with respect to aggregation. We show how excipients dramatically influence such repulsive effects, hence demonstrating the potential application of extensive SAXS screening in antibody selection, eventual engineering, and formulation development.
Collapse
Affiliation(s)
- Xinsheng Tian
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
27
|
Neergaard MS, Nielsen AD, Parshad H, Van De Weert M. Stability of monoclonal antibodies at high-concentration: head-to-head comparison of the IgG1 and IgG4 subclass. J Pharm Sci 2013; 103:115-27. [PMID: 24282022 DOI: 10.1002/jps.23788] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/07/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022]
Abstract
Few studies have so far directly compared the impact of antibody subclass on protein stability. This case study investigates two mAbs (one IgG1 and one IgG4 ) with identical variable region. Investigations of mAbs that recognize similar epitopes are necessary to identify possible differences between the IgG subclasses. Both physical and chemical stability were evaluated by applying a range of methods to measure formation of protein aggregates [size-exclusion chromatography (SEC)-HPLC and UV340 nm], structural integrity (circular dichroism and FTIR), thermodynamic stability (differential scanning calorimetry), colloidal interactions (dynamic light scattering), and fragmentation and deamidation (SEC-HPLC and capillary isoelectric focusing). The impact of pH (4-9) and ionic strength (10 and 150 mM) was investigated using highly-concentrated (150 mg/mL) mAb formulations. Lower conformational stability was identified for the IgG4 resulting in increased levels of soluble aggregates. The IgG1 was chemically less stable as compared with the IgG4 , presumably because of the higher flexibility in the IgG1 hinge region. The thermodynamic stability of individual mAb domains was also addressed in detail. The stability of our mAb molecules is clearly affected by the IgG framework, and this study suggests that subclass switching may alter aggregation propensity and aggregation pathway and thus potentially improve the overall formulation stability while retaining antigen specificity.
Collapse
Affiliation(s)
- Martin S Neergaard
- Section for Biologics, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
28
|
Iwura T, Fukuda J, Yamazaki K, Kanamaru S, Arisaka F. Intermolecular interactions and conformation of antibody dimers present in IgG1 biopharmaceuticals. J Biochem 2013; 155:63-71. [PMID: 24155259 DOI: 10.1093/jb/mvt095] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intermolecular interactions and conformation in dimer species of Palivizumab, a monoclonal antibody (IgG1), were investigated to elucidate the physical and chemical properties of the dimerized antibody. Palivizumab solution contains ∼1% dimer and 99% monomer. The dimer species was isolated by size-exclusion chromatography and analysed by a number of methods including analytical ultracentrifugation-sedimantetion velocity (AUC-SV). AUC-SV in the presence of sodium dodecyl sulphate indicated that approximately half of the dimer fraction was non-covalently associated, whereas the other half was dimerized by covalent bond. Disulphide bond and dityrosine formation were likely to be involved in the covalent dimerization. Limited proteolysis of the isolated dimer by Lys-C and mass spectrometry for the resultant products indicated that the dimer species were formed by Fab-Fc or Fab-Fab interactions, whereas Fc-Fc interactions were not found. It is thus likely that the dimerization occurs mainly via the Fab region. With regard to the conformation of the dimer species, the secondary and tertiary structures were shown to be almost identical to those of the monomer. Furthermore, the thermal stability turned out also to be very similar between the dimer and monomer.
Collapse
Affiliation(s)
- Takafumi Iwura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 B-9 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501; and Bio Process Research and Development Laboratories, Production Division, Kyowa Hakko Kirin Co., Ltd.; 100-1 Hagiwara-machi, Takasaki, Gunma 370-0013, Japan
| | | | | | | | | |
Collapse
|
29
|
Stackhouse N, Miller AK, Gadgil HS. A High‐Throughput UPLC Method for the Characterization of Chemical Modifications in Monoclonal Antibody Molecules. J Pharm Sci 2011; 100:5115-25. [DOI: 10.1002/jps.22710] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/29/2011] [Accepted: 06/30/2011] [Indexed: 12/31/2022]
|
30
|
Bee JS, Randolph TW, Carpenter JF, Bishop SM, Dimitrova MN. Effects of Surfaces and Leachables on the Stability of Biopharmaceuticals. J Pharm Sci 2011; 100:4158-70. [DOI: 10.1002/jps.22597] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 01/11/2011] [Accepted: 04/12/2011] [Indexed: 12/11/2022]
|
31
|
Gao SX, Zhang Y, Stansberry-Perkins K, Buko A, Bai S, Nguyen V, Brader ML. Fragmentation of a highly purified monoclonal antibody attributed to residual CHO cell protease activity. Biotechnol Bioeng 2010; 108:977-82. [DOI: 10.1002/bit.22982] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/18/2010] [Indexed: 12/28/2022]
|