1
|
Zhao K, Guo T, Wang C, Zhou Y, Xiong T, Wu L, Li X, Mittal P, Shi S, Gref R, Zhang J. Glycoside scutellarin enhanced CD-MOF anchoring for laryngeal delivery. Acta Pharm Sin B 2020; 10:1709-1718. [PMID: 33088690 PMCID: PMC7564328 DOI: 10.1016/j.apsb.2020.04.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
It is essential to develop new carriers for laryngeal drug delivery in light of the lack of therapy in laryngeal related diseases. When the inhalable micron-sized crystals of γ-cyclodextrin metal-organic framework (CD-MOF) was utilized as dry powder inhalers (DPIs) carrier with high fine particle fraction (FPF), it was found in this research that the encapsulation of a glycoside compound, namely, scutellarin (SCU) in CD-MOF could significantly enhance its laryngeal deposition. Firstly, SCU loading into CD-MOF was optimized by incubation. Then, a series of characterizations were carried out to elucidate the mechanisms of drug loading. Finally, the laryngeal deposition rate of CD-MOF was 57.72 ± 2.19% improved by SCU, about two times higher than that of CD-MOF, when it was determined by Next Generation Impactor (NGI) at 65 L/min. As a proof of concept, pharyngolaryngitis therapeutic agent dexamethasone (DEX) had improved laryngeal deposition after being co-encapsulated with SCU in CD-MOF. The molecular simulation demonstrated the configuration of SCU in CD-MOF and its contribution to the free energy of the SCU@CD-MOF, which defined the enhanced laryngeal anchoring. In conclusion, the glycosides-like SCU could effectively enhance the anchoring of CD-MOF particles to the larynx to facilitate the treatment of laryngeal diseases.
Collapse
Affiliation(s)
- Kena Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tao Guo
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
| | - Caifen Wang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yong Zhou
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ting Xiong
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Li Wu
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue Li
- Université Paris-Saclay, CNRS 8214, Institut des Sciences Moléculaires d'Orsay, Orsay 91405, France
| | - Priyanka Mittal
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Senlin Shi
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 311402, China
- Corresponding authors. Tel./fax: +86 571 86613524 (Senlin Shi); +86 21 50805901 (Jiwen Zhang).
| | - Ruxandra Gref
- Université Paris-Saclay, CNRS 8214, Institut des Sciences Moléculaires d'Orsay, Orsay 91405, France
- Corresponding authors. Tel./fax: +86 571 86613524 (Senlin Shi); +86 21 50805901 (Jiwen Zhang).
| | - Jiwen Zhang
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, State Key Laboratory of Drug Research, Chinese Academy of Sciences, Shanghai 201203, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding authors. Tel./fax: +86 571 86613524 (Senlin Shi); +86 21 50805901 (Jiwen Zhang).
| |
Collapse
|
2
|
Braun DE, Griesser UJ. Stoichiometric and Non-Stoichiometric Hydrates of Brucine. CRYSTAL GROWTH & DESIGN 2016; 16:6111-6121. [PMID: 28670204 PMCID: PMC5486439 DOI: 10.1021/acs.cgd.6b01231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The complex interplay of temperature and water activity (aw) / relative humidity (RH) on the solid form stability and transformation pathways of three hydrates (HyA, HyB and HyC), an isostructural dehydrate (HyAdehy ), an anhydrate (AH) and amorphous brucine has been elucidated and the transformation enthalpies quantified. The dihydrate (HyA) shows a non-stoichimetric (de)hydration behavior at RH < 40% at 25 °C and the removal of the water molecules results in an isomorphic dehydrate structure. The metastable dehydration product converts to AH upon storage at driest conditions or to HyA if exposed to moisture. HyB is a stoichiometric tetrahydrate. The loss of the water molecules causes HyB to collapse to an amorphous phase. Amorphous brucine transforms to AH at RH < 40% RH and a mixture of hydrated phases at higher RH values. The third hyrdate (HyC) is only stable at RH ≥ 55% at 25 °C and contains 3.65 to 3.85 mole equivalent of water. Dehydration of HyC occurs in one step at RH < 55% at 25 °C or upon heating and AH is obtained. The AH is the thermodynamically most stable phase of brucine at RH < 40% at 25 °C. Depending on the conditions, temperature and aw, each of the three hydrates becomes the thermodynamically most stable form. This study demonstrates the importance of applying complimentary analytical techniques and appropriate approaches for understanding the stability ranges and transition behavior between the solid forms of compounds with multiple hydrates.
Collapse
|
3
|
Yang P, Lin C, Zhuang W, Wen Q, Zou F, Zhou J, Wu J, Ying H. Insight into a direct solid–solid transformation: a potential approach for the removal of residual solvents. CrystEngComm 2016. [DOI: 10.1039/c6ce00034g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A simple humidity process allows a direct solid–solid transformation from the solvate (methanol trihydrate of cAMPNa) to its hydrate form (pentahydrate).
Collapse
Affiliation(s)
- Pengpeng Yang
- National Engineering Technique Research Center for Biotechnology
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816, PR China
| | - Chenguang Lin
- National Engineering Technique Research Center for Biotechnology
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816, PR China
| | - Wei Zhuang
- National Engineering Technique Research Center for Biotechnology
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816, PR China
| | - Qingshi Wen
- National Engineering Technique Research Center for Biotechnology
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816, PR China
| | - Fengxia Zou
- National Engineering Technique Research Center for Biotechnology
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816, PR China
| | - Jingwei Zhou
- National Engineering Technique Research Center for Biotechnology
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816, PR China
| | - Jinglan Wu
- National Engineering Technique Research Center for Biotechnology
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816, PR China
| | - Hanjie Ying
- National Engineering Technique Research Center for Biotechnology
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816, PR China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
6
|
Affiliation(s)
| | - Deniz Erdemir
- Bristol-Myers Squibb, New Brunswick, New Jersey 08903;
| | - Allan S. Myerson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02130;
| |
Collapse
|