1
|
Alwadei N, Rashid M, Chandrashekar DV, Rahighi S, Totonchy J, Sharma A, Mehvar R. Generation and Characterization of CYP2E1-Overexpressing HepG2 Cells to Study the Role of CYP2E1 in Hepatic Hypoxia-Reoxygenation Injury. Int J Mol Sci 2023; 24:ijms24098121. [PMID: 37175827 PMCID: PMC10179595 DOI: 10.3390/ijms24098121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The mechanisms of hepatic ischemia/reperfusion (I/R) injury, which occurs during liver transplantation or surgery, are poorly understood. The purpose of the current study was to generate and characterize a HepG2 cell line with a stable overexpression of CYP2E1 to investigate the role of the enzyme in hypoxia/reperfusion (H/R) injury in an ex vivo setting. GFP-tagged CYP2E1 and control clones were developed, and their gene expression and protein levels of GFP and CYP2E1 were determined using RT-PCR and ELISA/Western blot analysis, respectively. Additionally, the CYP2E1 catalytic activity was determined by UPLC-MS/MS analysis of 6-hydroxychlorzoxazone formed from the chlorzoxazone substrate. The CYP2E1 and control clones were subjected to hypoxia (10 h) and reoxygenation (0.5 h), and cell death and reactive oxygen species (ROS) generation were quantitated using LDH and flow cytometry, respectively. Compared with the control clone, the selected CYP2E1 clone showed a 720-fold increase in CYP2E1 expression and a prominent band in the western blot analysis, which was associated with a 150-fold increase in CYP2E1 catalytic activity. The CYP2E1 clone produced 2.3-fold more ROS and 1.9-fold more cell death in the H/R model. It is concluded that the constitutive CYP2E1 in the liver may play a detrimental role in hepatic I/R injury.
Collapse
Affiliation(s)
- Nouf Alwadei
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | - Mamunur Rashid
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | | | - Simin Rahighi
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | - Jennifer Totonchy
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | - Ajay Sharma
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | - Reza Mehvar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| |
Collapse
|
2
|
Almazroo OA, Shaik IH, Hughes CB, Humar A, Venkataramanan R. Treprostinil Supplementation Ameliorates Hepatic Ischemia Reperfusion Injury and Regulates Expression of Hepatic Drug Transporters: An Isolated Perfused Rat Liver (IPRL) Study. Pharm Res 2022; 39:2979-2990. [PMID: 36071353 PMCID: PMC9633539 DOI: 10.1007/s11095-022-03384-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/27/2022] [Indexed: 11/09/2022]
Abstract
Purpose IR injury is an unavoidable consequence in deceased donor liver transplantation. Cold preservation and warm reperfusion may change the expression and function of drug transporters in the liver due to vasoconstriction, infiltration of neutrophils and release of cytokines. We hypothesize that vasodilation, anti-platelet aggregation and proinflammatory downregulation activities of treprostinil will diminish the IR injury and its associated effects. Methods Livers obtained from male SD rats (n = 20) were divided into 1) Control, 2) IR, 3) Treprostinil-1 (preservation only), and 4) Treprostinil-2 (preservation and reperfusion) groups. Control livers were procured and immediately reperfused. Livers in the other groups underwent preservation for 24 h and were reperfused. All the livers were perfused using an Isolated Perfused Rat Liver (IPRL) system. Periodic perfusate, cumulative bile samples and liver tissue at the end of perfusion were collected. Liver injury markers, bile flow rates, m-RNA levels for uptake and efflux transporters (qRT-PCR) were measured. Results Cold preservation and warm reperfusion significantly increased the release of AST and ALT in untreated livers. Treprostinil supplementation substantially reduced liver injury. Bile flow rate was significantly improved in treprostinil-2 group. m-RNA levels of Slc10a1, Slc22a1, and Slc22a7 in liver were increased and m-RNA levels of Mdr1a were decreased by IR. Treprostinil treatment increased Abcb11 and Abcg2 m-RNA levels and maintained Slc22a1m-RNA similar to control livers. Conclusions Treprostinil treatment significantly reduced liver injury. IR injury changed expression of both uptake and efflux transporters in rat livers. Treprostinil significantly altered the IR injury mediated changes in m-RNA expression of transporters.
Collapse
Affiliation(s)
- Omar Abdulhameed Almazroo
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA, 15219, USA
| | - Imam H Shaik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA, 15219, USA
| | - Christopher B Hughes
- Thomas Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abhinav Humar
- Thomas Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, 3501 Terrace St, Pittsburgh, PA, 15219, USA. .,Thomas Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Tang P, Li S, Wang L, Yang H, Yan J, Li H. Inclusion complexes of chlorzoxazone with β- and hydroxypropyl-β-cyclodextrin: Characterization, dissolution, and cytotoxicity. Carbohydr Polym 2015; 131:297-305. [DOI: 10.1016/j.carbpol.2015.05.055] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/22/2015] [Accepted: 05/23/2015] [Indexed: 01/05/2023]
|
4
|
Tang P, Wang Q, Xu K, Wang L, Li S, Li H. Investigation the complex of 2,6-di-O-methyl-β-cyclodextrin and chlorzoxazone: preparation, characterization, dissolution, and cytotoxicity. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0556-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Shaik IH, Bastian JR, Zhao Y, Caritis SN, Venkataramanan R. Route of administration and formulation dependent pharmacokinetics of 17-hydroxyprogesterone caproate in rats. Xenobiotica 2015; 46:169-74. [PMID: 26153441 DOI: 10.3109/00498254.2015.1057547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Weekly intramuscular injections of (250 mg/week) of 17-hydroxyprogesterone caproate (17-OHPC) are the only treatment option for prevention of preterm birth in women with a prior history of preterm delivery. 2. The objective of the current study was to evaluate the use of an alternate formulation and the feasibility of an alternate route of administration of this agent. 17-OHPC was administered to adult female SD rats, as marketed oily formulation intramuscularly, or as a solution IV, IM, or PO. 3. Plasma concentrations of 17-OHPC were measured by LC-MS-MS and pharmacokinetic parameters were calculated by non-compartmental analysis, using WinNonLin (Certara, St. Louis, MO). 4. After IV or IM administration as a solution, the mean half-life of 17-OHPC was around 11 h. The bioavailability was nearly 100% after IM administration, but was very low (<3%) after PO administration of a solution dosage form. 5. Intramuscular injection of the oily formulation resulted in low levels of 17-OHPC that were sustained for a prolonged time period with a projected bioavailability close to 100%. 6. The pharmacokinetics of 17-OHPC is dependent on the formulation and the route of administration. 7. The low bioavailability after oral administration indicates that oral administration of 17-OHPC may not be feasible with simple formulations of this drug.
Collapse
Affiliation(s)
- Imam H Shaik
- a Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA , USA
| | - Jaime R Bastian
- a Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA , USA .,b Department of Obstetrics , Gynecology and Reproductive Sciences, School of Medicine, Magee-Women's Hospital , Pittsburgh , PA , USA
| | - Yang Zhao
- a Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA , USA
| | - Steve N Caritis
- b Department of Obstetrics , Gynecology and Reproductive Sciences, School of Medicine, Magee-Women's Hospital , Pittsburgh , PA , USA .,c Magee-Women's Research Institute , Pittsburgh , PA , USA , and
| | - Raman Venkataramanan
- a Department of Pharmaceutical Sciences , School of Pharmacy, University of Pittsburgh , Pittsburgh , PA , USA .,c Magee-Women's Research Institute , Pittsburgh , PA , USA , and.,d Department of Pathology , School of Medicine, University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
6
|
Miah MK, Shaik IH, Bickel U, Mehvar R. Effects of Pringle maneuver and partial hepatectomy on the pharmacokinetics and blood-brain barrier permeability of sodium fluorescein in rats. Brain Res 2015; 1618:249-60. [PMID: 26051428 DOI: 10.1016/j.brainres.2015.05.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 10/23/2022]
Abstract
Liver diseases are known to affect the function of remote organs. The aim of the present study was to investigate the effects of Pringle maneuver, which results in hepatic ischemia-reperfusion (IR) injury, and partial hepatectomy (Hx) on the pharmacokinetics and brain distribution of sodium fluorescein (FL), which is a widely used marker of blood-brain barrier (BBB) permeability. Rats were subjected to Pringle maneuver (total hepatic ischemia) for 20 min with (HxIR) or without (IR) 70% hepatectomy. Sham-operated animals underwent laparotomy only. After 15 min or 8h of reperfusion, a single 25-mg/kg dose of FL was injected intravenously and serial (0-30 min) blood and bile and terminal brain samples were collected. Total and free (ultrafiltration) plasma, total brain homogenate, and bile concentrations of FL and/or its glucuronidated metabolite (FL-Glu) were determined by HPLC. Both IR and HxIR caused significant reductions in the biliary excretions of FL and FL-Glu, resulting in significant increases in the plasma AUC of the marker. Additionally, the free fraction of FL in plasma was significantly increased by HxIR. Although the brain concentrations of FL were increased by almost twofold in both IR and HxIR animals, the brain concentrations corrected by the free FL AUC (and not the total AUC) were similar in both groups at either time points. It is concluded that Pringle maneuver and/or partial hepatectomy substantially alters the hepatobiliary disposition, plasma AUC, plasma free fraction, and brain accumulation of FL without altering the BBB permeability to the marker.
Collapse
Affiliation(s)
- Mohammad K Miah
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Imam H Shaik
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ulrich Bickel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Reza Mehvar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Center for Blood-Brain Barrier Research, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Department of Biomedical and Pharmaceutical Sciences, Chapman University, School of Pharmacy, Irvine, CA, USA.
| |
Collapse
|
7
|
Edpuganti V, Mehvar R. UHPLC–MS/MS analysis of arachidonic acid and 10 of its major cytochrome P450 metabolites as free acids in rat livers: Effects of hepatic ischemia. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964:153-63. [DOI: 10.1016/j.jchromb.2013.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/29/2013] [Accepted: 08/05/2013] [Indexed: 01/19/2023]
|
8
|
Effects of Hepatic Ischemia-Reperfusion Injury on the P-Glycoprotein Activity at the Liver Canalicular Membrane and Blood–Brain Barrier Determined by In Vivo Administration of Rhodamine 123 in Rats. Pharm Res 2013; 31:861-73. [DOI: 10.1007/s11095-013-1208-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/12/2013] [Indexed: 01/09/2023]
|
9
|
Gao N, Zou D, Qiao HL. Concentration-dependent inhibitory effect of Baicalin on the plasma protein binding and metabolism of chlorzoxazone, a CYP2E1 probe substrate, in rats in vitro and in vivo. PLoS One 2013; 8:e53038. [PMID: 23301016 PMCID: PMC3534641 DOI: 10.1371/journal.pone.0053038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 11/22/2012] [Indexed: 12/02/2022] Open
Abstract
Some of the components found in herbs may be inhibitors or inducers of cytochrome P450 enzymes, which may therefore result in undesired herb-drug interactions. As a component extracted from Radix Scutellariae, the direct effect of baicalin on cytochrome P450 has not been investigated sufficiently. In this study, we investigated concentration-dependent inhibitory effect of baicalin on the plasma protein binding and metabolism of chlorzoxazone (CZN), a model CYP2E1 probe substrate, in rats in vitro and in vivo. Animal experiment was a randomized, three-period crossover design. Significant changes in pharmacokinetic parameters of CZN such as Cmax, t1/2 and Vd were observed after treatment with baicalin in vivo (P<0.05). Cmax decreased by 25% and 33%, whereas t1/2 increased by 34% and 53%, Vd increased by 37% and 50% in 225 mg/kg and 450 mg/kg baicalin-treated rats, respectively. The AUC and CL of CZN were not affected (P>0.05). Correlation analysis showed that the changes in CZN concentrations and baicalin concentrations were in good correlation (r>0.99). In vitro experiments, baicalin decreased the formation of 6-OH-chlorzoxazone in a concentration-dependent manner and exhibited a competitive inhibition in rat liver microsomes, with a Ki value of 145.8 µM. The values of Cmax/Ki were 20 and 39 after treatment with baicalin (225 and 450 mg/kg), respectively. Protein binding experiments in vivo showed that the plasma free-fraction (fu) of CZN increased 2.6-fold immediately after baicalin treatment (450 mg/kg) and in vitro showed that baicalin (125–2500 mg/L) increased the unbound CZN from 1.63% to 3.58%. The results indicate that pharmacokinetic changes in CZN are induced by inhibitory effect of baicalin on the plasma protein binding of CZN and CYP2E1 activity.
Collapse
Affiliation(s)
- Na Gao
- Department of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, P. R. China
| | - Dan Zou
- Department of Histology and Embryology, Henan Medical College for Staff and Workers, Zhengzhou, P. R. China
| | - Hai-Ling Qiao
- Department of Clinical Pharmacology, School of Medicine, Zhengzhou University, Zhengzhou, P. R. China
- * E-mail:
| |
Collapse
|
10
|
Ferrigno A, Richelmi P, Vairetti M. Troubleshooting and improving the mouse and rat isolated perfused liver preparation. J Pharmacol Toxicol Methods 2012; 67:107-14. [PMID: 23079697 DOI: 10.1016/j.vascn.2012.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Isolated perfused liver (IPL) model is not only widely performed in rats but is also used in mouse liver, although a detailed description of this procedure is absent. A comparison of the different techniques used on rats and mice will be discussed in this article association with a detailed description of the surgical and technical aspects needed to obtain and maintain the integrity of the livers during the organ isolation and perfusion. METHODS The surgical procedures, the IPL set-up, and the evaluation of hepatic function and damage will be described in relation to both rats and mice. In particular, the heparin dosage and administration, the portal vein cannulation avoiding portal leakage, the use of suprahepatic caval vein output, and the insertion of a cannula for bile collection will be reported. For the settings, the perfusion circuit, the perfusion solution, the temperature and the flow rate will be described, with particular regard to the balance between perfusion pressure and oxygen delivery. The monitoring of liver integrity by measuring oxygen concentration and calculating oxygen delivery rate and oxygen uptake rate, and recommendations for the collection of perfusate and bile samples will be considered. Accurate pH measurement with normalization, and the perfusion portal pressure assay by a calibrated water manometer will be also reported. RESULTS AND DISCUSSION This work analyzes the parameters crucial to performing a correct IPL both in rat and mouse, comparing our experience with the equivalent practice from other laboratories. An updated example of IPL applications in liver toxicology and pharmacology, physiology and pathophysiology, and liver graft preservation will be briefly presented, underlining how this technique provides essential information allowing a more accurate planning of the in vivo studies.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy
| | | | | |
Collapse
|