1
|
Samie A, Alavian H. A Perspective on the Permeability of Cocrystals/Organic Salts of Oral Drugs. Mol Pharm 2024; 21:4860-4911. [PMID: 39284012 DOI: 10.1021/acs.molpharmaceut.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
According to the BCS classification system, the differentiation of drugs is based on two essential parameters of solubility and permeability, meaning the latter is as pivotal as the former in creating marketable pharmaceutical products. Nevertheless, the indispensable role of permeability in pharmaceutical cocrystal profiles has not been sufficiently cherished, which can be most probably attributed to two principal reasons. First, responsibility may be on more user-friendly in vitro measurement procedures for solubility compared to permeability, implying the permeability measurement process seems unexpectedly difficult for researchers, whereas they have a complete understanding of solubility concepts and experiments. Besides, it may be ascribed to the undeniable attraction of introducing new crystal-based structures which mostly leaves the importance of improving the function of existing multicomponents behind. Bringing in new crystalline entities, to rephrase it, researchers have a fairly better chance of achieving high-class publications. Although the Food and Drug Administration (FDA) has provided a golden opportunity for pharmaceutical cocrystals to straightforwardly enter the market by simply considering them as derivatives of the existing active pharmaceutical ingredients, inattention to assessing and scaling up permeability which is intimately linked with solubility has resulted in limited numbers of them in the global pharmaceutical market. Casting a glance at the future, it is apprehended that further development in the field of permeability of pharmaceutical cocrystals and organic salts requires a meticulous perception of achievements to date and potentials to come. Thence, this perspective scrutinizes the pathway of permeation assessment making researchers confront their fear upfront through mapping the simplest way of permeability measurement for multicomponents of oral drugs.
Collapse
Affiliation(s)
- Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy and Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hoda Alavian
- Department of Medicinal Chemistry, School of Pharmacy and Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
2
|
Aitipamula S, Bolla G. Optimizing Drug Development: Harnessing the Sustainability of Pharmaceutical Cocrystals. Mol Pharm 2024; 21:3121-3143. [PMID: 38814314 DOI: 10.1021/acs.molpharmaceut.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Environmental impacts of the industrial revolution necessitate adoption of sustainable practices in all areas of development. The pharmaceutical industry faces increasing pressure to minimize its ecological footprint due to its significant contribution to environmental pollution. Over the past two decades, pharmaceutical cocrystals have received immense popularity due to their ability to optimize the critical attributes of active pharmaceutical ingredients and presented an avenue to bring improved drug products to the market. This review explores the potential of pharmaceutical cocrystals as an ecofriendly alternative to traditional solid forms, offering a sustainable approach to drug development. From reducing the number of required doses to improving the stability of actives, from eliminating synthetic operations to using pharmaceutically approved chemicals, from the use of continuous and solvent-free manufacturing methods to leveraging published data on the safety and toxicology, the cocrystallization approach contributes to sustainability of drug development. The latest trends suggest a promising role of pharmaceutical cocrystals in bringing novel and improved medicines to the market, which has been further fuelled by the recent guidance from the major regulatory agencies.
Collapse
Affiliation(s)
- Srinivasulu Aitipamula
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Geetha Bolla
- Department of Chemistry & Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
3
|
Kraisit P, Hirun N, Limpamanoch P, Sawaengsuk Y, Janchoochai N, Manasaksirikul O, Limmatvapirat S. Effect of Cremophor RH40, Hydroxypropyl Methylcellulose, and Mixing Speed on Physicochemical Properties of Films Containing Nanostructured Lipid Carriers Loaded with Furosemide Using the Box-Behnken Design. Polymers (Basel) 2024; 16:1605. [PMID: 38891551 PMCID: PMC11174878 DOI: 10.3390/polym16111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to examine the characteristics of H-K4M hydroxypropyl methylcellulose (HPMC) films containing nanostructured lipid carriers (NLCs) loaded with furosemide. A hot homogenization technique and an ultrasonic probe were used to prepare and reduce the size of the NLCs. Films were made using the casting technique. This study used a Box-Behnken design to evaluate the influence of three key independent variables, specifically H-K4M concentration (X1), surfactant Cremophor RH40 concentration (X2), and mixing speed (X3), on the physicochemical properties of furosemide-loaded NLCs and films. The furosemide-loaded NLCs had a particle size ranging from 54.67 to 99.13 nm, and a polydispersity index (PDI) ranging from 0.246 to 0.670. All formulations exhibited a negative zeta potential, ranging from -7.05 to -5.61 mV. The prepared films had thicknesses and weights ranging from 0.1240 to 0.2034 mm and 0.0283 to 0.0450 g, respectively. The drug content was over 85%. Film surface wettability was assessed based on the contact angle, ranging from 32.27 to 68.94°. Film tensile strength varied from 1.38 to 7.77 MPa, and their elongation at break varied from 124.19 to 170.72%. The ATR-FTIR analysis confirmed the complete incorporation of the drug in the film matrix. Therefore, the appropriate selection of values for key parameters in the synthesis of HPMC films containing drug-loaded NLCs is important in the effective development of films for medical applications.
Collapse
Affiliation(s)
- Pakorn Kraisit
- Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT-Pharm), Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (N.H.); (P.L.)
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (Y.S.); (N.J.); (O.M.)
| | - Namon Hirun
- Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT-Pharm), Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (N.H.); (P.L.)
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (Y.S.); (N.J.); (O.M.)
| | - Premjit Limpamanoch
- Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT-Pharm), Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (N.H.); (P.L.)
| | - Yongthida Sawaengsuk
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (Y.S.); (N.J.); (O.M.)
| | - Narumol Janchoochai
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (Y.S.); (N.J.); (O.M.)
| | - Ornpreeya Manasaksirikul
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand; (Y.S.); (N.J.); (O.M.)
| | - Sontaya Limmatvapirat
- Pharmaceutical Biopolymer Group (PBiG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| |
Collapse
|
4
|
Lozano JD, Velasquez-Diaz S, Galindo-Leon L, Sanchez C, Jiménez E, Macías MA. Co-crystals of pyrazinamide (PZA) with terephthalic (TPH) and trimesic (TMS) acids: Structural insights and dissolution study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Verma V, Patel P, Ryan KM, Hudson S, Padrela L. Production of hydrochlorothiazide nanoparticles with increased permeability using top-spray coating process. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2022.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Syed TA, Ansari KB, Banerjee A, Wood DA, Khan MS, Al Mesfer MK. Machine‐learning predictions of caffeine co‐crystal formation accompanying experimental and molecular validations. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tanweer A. Syed
- Department of Chemical Engineering Institute of Chemical Technology Mumbai Maharashtra India
| | - Khursheed B. Ansari
- Department of Chemical Engineering Zakir Husain College of Engineering and Technology, Aligarh Muslim University Aligarh Uttar Pradesh India
| | - Arghya Banerjee
- Department of Chemical Engineering Indian Institute of Technology Ropar Punjab India
| | | | - Mohd Shariq Khan
- Department of Chemical Engineering, College of Engineering Dhofar University Salalah Oman
| | | |
Collapse
|
7
|
Chauhan V, Mardia R, Patel M, Suhagia B, Parmar K. Technical and Formulation Aspects of Pharmaceutical Co‐Crystallization: A Systematic Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202202588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vishva Chauhan
- Affiliation: a-ROFEL Shri G.M. Bilakhia College of Pharmacy Namdha campus Vapi Gujarat India 396191
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Rajnikant Mardia
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Mehul Patel
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Bhanu Suhagia
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Komal Parmar
- Affiliation: a-ROFEL Shri G.M. Bilakhia College of Pharmacy Namdha campus Vapi Gujarat India 396191
| |
Collapse
|
8
|
Intermolecular Interactions of 3,5-bis(4-Methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide in a Cocrystal with 1,3-bis(4-Methoxyphenyl)prop-2-en-1-one and Dimethylformamide Solvate. CRYSTALS 2022. [DOI: 10.3390/cryst12050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Two new multicomponent crystals consisting of 3,5-bis(4-methoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide (1) with 1,3-bis(4-methoxyphenyl)prop-2-en-1-one (2) and with dimethylformamide (DMF), both in 1:1 ratio, prepared and structurally characterized. The occurrence of 1 in different crystal structures enabled a comparison of hydrogen bonding contacts between the two structures as well as with the known structure of pure 1. The backbone of molecule 1 was similar in the structures but the orientation of the methoxy groups varied. Molecule 1 was involved in various combinations of the possible hydrogen bonding contacts, including N–H…O=C, N–H…OMe, and N–H…S. Both N–H hydrogens in the cocrystal (1–2) and the solvate (1-DMF) participated in hydrogen bonding but only one hydrogen atom took part in the structure of pure 1. The S atom accepted contacts in both the structures of pure 1 and cocrystal 1–2 but not in that of the 1-DMF solvate. The oxygen atoms of both methoxy groups acted as acceptors in the structure of pure 1, whereas one oxygen was involved in the 1-DMF solvate and none in cocrystal 1–2.
Collapse
|
9
|
Experimental and Hirshfeld Surface Investigations for Unexpected Aminophenazone Cocrystal Formation under Thiourea Reaction Conditions via Possible Enamine Assisted Rearrangement. CRYSTALS 2022. [DOI: 10.3390/cryst12050608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Considering the astounding biomedicine properties of pharmaceutically active drug, 4-aminophenazone, also known as 4-aminoantipyrine, the work reported in this manuscript details the formation of novel cocrystals of rearranged 4-aminophenazone and 4-nitro-N-(4-nitrobenzoyl) benzamide in 1:1 stoichiometry under employed conditions for thiourea synthesis by exploiting the use of its active amino component. However, detailed analysis via various characterization techniques such as FT-IR, nuclear magnetic resonance spectroscopy and single crystal XRD, for this unforeseen, but useful cocrystalline synthetic adduct (4 and 5) prompted us to delve into its mechanistic pathway under provided reaction conditions. The coformer 4-nitro-N-(4-nitrobenzoyl) benzamide originates via nucleophilic addition reaction following tetrahedral mechanism between para-nitro substituted benzoyl amide and its acid halide (1). While the enamine nucleophilic addition reaction by 4-aminophenazone on 4-nitrosubstituted aroyl isothiocyanates under reflux temperature suggests the emergence of rearranged counterpart of cocrystal named N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazole-4-carbonothioyl)-4-nitrobenzamide. Crystallographic studies reveal triclinic system P-1 space group for cocrystal (4 and 5) and depicts two different crystallographically independent molecules with prominent C–H···O and N–H···O hydrogen bonding effective for structure stabilization. Hirshfeld surface analysis also displays hydrogen bonding and van der Waals interactions as dominant interactions in crystal packing. Further insight into the cocrystal synthetic methodologies supported the occurrence of solution-based evaporation/cocrystallization methodology in our case during purification step, promoting the synthesis of this first-ever reported novel cocrystal of 4-aminophenazone with promising future application in medicinal industry.
Collapse
|
10
|
Taraka SKK, Pasala PK, Sahoo RK, Laddha UD, Khairnar SJ, Bendale AR, Rudrapal M. Atorvastatin ascorbic acid cocrystal strategy to improve the safety and efficacy of atorvastatin. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e80072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The study was aimed to investigate the effect of dissolution enhancement on the hypolipidemic effect and hepatotoxicity of the drug in hyperlipidemic rats. Atorvastatin ascorbic acid cocrystals were prepared by phase solution methods and characterized by Fourier transformation infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, X-Ray powder diffraction. Results of characterization confirmed that atorvastatin ascorbic acid cocrystals exhibited particle size was 221 nm. In in vitro study, results of dissolution test showed that the release of atorvastatin was increased to 1.6 folds. From In vivo study results, it was observed that in atorvastatin ascorbic acid cocrystals treated rats, serum total cholesterol, triglycerides, liver transaminase levels were significantly decreased, and liver glutathione activity was increased. In conclusion, atorvastatin ascorbic acid cocrystals therapy exhibited less hepatotoxicity in presence of ascorbic acid when compared to atorvastatin alone therapy and also the efficacy of therapy was improved.
Collapse
|
11
|
La Rocca M, Rinaldi A, Bruni G, Friuli V, Maggi L, Bini M. New Emerging Inorganic–Organic Systems for Drug-Delivery: Hydroxyapatite@Furosemide Hybrids. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02302-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AbstractIn the pharmaceutical market, the need to find effective systems for the efficient release of poorly bioavailable drugs is a forefront topic. The inorganic–organic hybrid materials have been recognized as one of the most promising systems. In this paper, we developed new Hydroxypapatite@Furosemide hybrids with improved dissolution rates in different media with respect to the drug alone. The hybrids formation was demonstrated by SEM/EDS measurements (showing homogeneous distribution of the elements) and FT-IR spectroscopy. The drug was adsorbed onto hydroxyapatite surfaces in amorphous form, as demonstrated by XRPD and its thermal stability was improved due to the absence, in the hybrids, of melting and decomposition peaks typical of the drug. The Sr substitution on Ca sites in hydroxyapatite allows increasing the surface area and pore volume, foreseeing a high capacity of drug loading. The dissolution tests of the hybrid compounds show dissolution rates much faster than the drug alone in different fluids, and also their solubility and wetting ability is improved in comparison to furosemide alone.
Collapse
|
12
|
Chaudhari KR, Savjani JK, Savjani KT, Shah H. Improved Pharmaceutical Properties of Ritonavir through Co-crystallization Approach with Liquid Assisted Grinding Method. Drug Dev Ind Pharm 2022; 47:1633-1642. [PMID: 35156497 DOI: 10.1080/03639045.2022.2042553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ritonavir is a BCS class II antiretroviral agent which shows poor aqueous solubility and low oral bioavailability. The cocrystallization approach was selected to overcome these problems and to improve the physicochemical and mechanical properties of Ritonavir. The novel pharmaceutical Ritonavir-L-tyrosine cocrystals (RTC at a molar ratio of 1:1) were synthesized using the liquid assisted grinding (LAG) method. The possibility of molecular interactions between drug and coformer were studied using Gold software version 5.2. The newly formed crystalline solid phase was characterized through Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform-infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), and Solid-State Nuclear magnetic resonance (SSNMR). The improved pharmaceutical properties were confirmed by solubility, dissolution, and powder compaction study. The prepared cocrystals exhibited an 11.24-fold increase in solubility and a 3.73-fold increase in % of drug release at 1 h compared to pure drug. Tabletability and compaction behaviour of the pure drug and cocrystal with added excipients assessed. The tabletability profile of cocrystals showed enhanced tabletting performance as compared to pure drug. The stability studies revealed that cocrystals were stable for at least one month when stored at 40 °C/75% RH and 25 °C/60% RH conditions. The cocrystallization approach was found to be very promising and showed an overall improved performance of Ritonavir.
Collapse
Affiliation(s)
| | - Jignasa K Savjani
- Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujarat, India
| | | | - Harsh Shah
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy, Long Island University, Brooklyn, New York, 11201, USA
| |
Collapse
|
13
|
Li Y, Sun Y, Li Q, Lei J, Yang B, Shen Y, Cai Y, Deng X. Study of temperature-dependent terahertz spectra of isonicotinamide in the form I using the quasi-harmonic approximation. Chemphyschem 2022; 23:e202100849. [PMID: 35098625 DOI: 10.1002/cphc.202100849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/20/2022] [Indexed: 11/08/2022]
Abstract
Anharmonicity of molecular vibrational motions is closely associated with the thermal property of crystals. However, the origin of anharmonicity is still not fully understood. Low-frequency vibrations, which are usually defined in the terahertz (THz) range, show excellent sensitivity to anharmonicity. In this work, anharmonicity of isonicotinamide in the form I was investigated by using temperature-dependent terahertz time-domain spectroscopy and quasi-harmonic approximation (QHA) approach at PBE-D3 and PBE-MBD levels. Both DFT calculations suggest the variation of p-p stacking conformation dominates in the thermal expansion of unit cell. The frequency shifts of the modes in THz range obtained by QHA approach are found to be qualitatively consistent with the observation, demonstrating QHA approach is a useful tool for the interpretation of frequency shifts of modes induced by temperature.
Collapse
Affiliation(s)
- Yin Li
- Nanchang University, Department of Physics, Nanchang, CHINA
| | - Yiwen Sun
- Shenzhen University, School of Biomedical Engineering, Shenzhen, CHINA
| | - Qiqi Li
- Shenzhen University, School of Biomedical Engineering, Shenzhen, CHINA
| | - Jiangtao Lei
- Nanchang University, Institute of Space Science and Technology, Nanchang, CHINA
| | - Bo Yang
- Nanchang University, Department of Materials and Chemicals, Nanchang, CHINA
| | - Yun Shen
- Nanchang University, Department of Physics, Nanchang, CHINA
| | - Yingxiang Cai
- Nanchang University, Department of Physics, Nanchang, CHINA
| | - Xiaohua Deng
- Nanchang University, department of physics, Xuefu Avenue 999, Nanchang City, Jiangxi Province, 330031, Nanchang, CHINA
| |
Collapse
|
14
|
Sun Y. Improved solubility of gefitinib achieved by the water-acetone solvate. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Stanton SA, Du JJ, Lai F, Stanton G, Hawkins BA, Ong JA, Groundwater PW, Platts JA, Hibbs DE. Understanding Hygroscopicity of Theophylline via a Novel Cocrystal Polymorph: A Charge Density Study. J Phys Chem A 2021; 125:9736-9756. [PMID: 34731566 DOI: 10.1021/acs.jpca.0c09536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The charge density distribution in a novel cocrystal (1) complex of 1,3-dimethylxanthine (theophylline) and propanedioic acid (malonic acid) has been determined. The molecules crystallize in the triclinic, centrosymmetric space group P1̅, with four independent molecules (Z = 4) in the asymmetric unit (two molecules each of theophylline and malonic acid). Theophylline has a notably high hygroscopic nature, and numerous cocrystals have shown a significant improvement in stability to humidity. A charge density study of the novel polymorph has identified interesting theoretical results correlating the stability enhancement of theophylline via cocrystallization. Topological analysis of the electron density highlighted key differences (up to 17.8) in Laplacian (∇2ρ) between the experimental (EXP) and single-point (SP) models, mainly around intermolecular-bonded carbonyls. Further investigation via molecular electrostatic potential maps reaffirmed that the charge redistribution enhanced intramolecular hydrogen bonding, predominantly for N(2') and N(2) (61.2 and 61.8 kJ mol-1, respectively). An overall weaker lattice energy of the triclinic form (-126.1 kJ mol-1) compared to that of the monoclinic form (-133.8 kJ mol-1) suggests a lower energy threshold to overcome to initiate dissociation. Future work via physical testing of the novel cocrystal in both dissolution and solubility will further solidify the correlation between theoretical and experimental results.
Collapse
Affiliation(s)
- Stephen A Stanton
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jonathan J Du
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Felcia Lai
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gyte Stanton
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bryson A Hawkins
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jennifer A Ong
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul W Groundwater
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - James A Platts
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - David E Hibbs
- Sydney School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
16
|
Mechanochemical synthesis and characterization of Zidovudine-lamivudine solid dispersion (binary eutectic mixture). J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Solares-Briones M, Coyote-Dotor G, Páez-Franco JC, Zermeño-Ortega MR, de la O Contreras CM, Canseco-González D, Avila-Sorrosa A, Morales-Morales D, Germán-Acacio JM. Mechanochemistry: A Green Approach in the Preparation of Pharmaceutical Cocrystals. Pharmaceutics 2021; 13:790. [PMID: 34070646 PMCID: PMC8228148 DOI: 10.3390/pharmaceutics13060790] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Mechanochemistry is considered an alternative attractive greener approach to prepare diverse molecular compounds and has become an important synthetic tool in different fields (e.g., physics, chemistry, and material science) since is considered an ecofriendly procedure that can be carried out under solvent free conditions or in the presence of minimal quantities of solvent (catalytic amounts). Being able to substitute, in many cases, classical solution reactions often requiring significant amounts of solvents. These sustainable methods have had an enormous impact on a great variety of chemistry fields, including catalysis, organic synthesis, metal complexes formation, preparation of multicomponent pharmaceutical solid forms, etc. In this sense, we are interested in highlighting the advantages of mechanochemical methods on the obtaining of pharmaceutical cocrystals. Hence, in this review, we describe and discuss the relevance of mechanochemical procedures in the formation of multicomponent solid forms focusing on pharmaceutical cocrystals. Additionally, at the end of this paper, we collect a chronological survey of the most representative scientific papers reporting the mechanochemical synthesis of cocrystals.
Collapse
Affiliation(s)
- Mizraín Solares-Briones
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Guadalupe Coyote-Dotor
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - José C. Páez-Franco
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| | - Miriam R. Zermeño-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Carmen Myriam de la O Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario No. 1, Nuevo Campus Universitario, Apdo. Postal 1552, Chihuahua, C.P. 31125, Mexico; (M.R.Z.-O.); (C.M.d.l.OC.)
| | - Daniel Canseco-González
- CONACYT-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma de Chapingo, Texcoco de Mora, C.P. 56230, Mexico;
| | - Alcives Avila-Sorrosa
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Ciudad de México, C.P. 11340, Mexico;
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, Mexico
| | - Juan M. Germán-Acacio
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica-UNAM, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Ciudad de México, C.P. 14000, Mexico; (M.S.-B.); (G.C.-D.); (J.C.P.-F.)
| |
Collapse
|
18
|
Ngilirabanga JB, Samsodien H. Pharmaceutical co‐crystal: An alternative strategy for enhanced physicochemical properties and drug synergy. NANO SELECT 2021. [DOI: 10.1002/nano.202000201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
| | - Halima Samsodien
- School of Pharmacy, Faculty of Science University of the Western Cape Bellville South Africa
| |
Collapse
|
19
|
Queiroz ALP, Rodrigues M, Zeglinski J, Crean AM, Sarraguça MC, Vucen S. Determination of co-crystal phase purity by mid infrared spectroscopy and multiple curve resolution. Int J Pharm 2021; 595:120246. [PMID: 33482224 DOI: 10.1016/j.ijpharm.2021.120246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/29/2022]
Abstract
Multivariate Curve Resolution (MCR) was used to determine the phase purity of pharmaceutical co-crystals from mid infrared spectra. An in-silico coformer screening was used to choose one of ten potential coformers. This analysis used quantum chemistry simulation to predict which coformers are thermodynamically inclined to form cocrystals with the model drug, hydrochlorothiazide. The coformer chosen was nicotinamide. An experimental solvent screening by ultrasound assisted slurry co-crystallization was performed to evaluate the capacity of the method to determine phase purity. Afterwards, slurry and slow evaporation co-crystallizations were performed at 10, 25, and 40 °C using 7 solvent systems, and two levels of agitation for the evaporation co-crystallization (on and off). Mid infrared spectroscopy (MIRS) analysis of the products of these co-crystallizations was used to develop an MCR model to determine co-crystal phase purity. The MCR results were compared with a reference co-crystal. Experimental design (DoE) was used to investigate the effect of solvents, temperature, and agitation on the purity of co-crystals produced by slurry and evaporation co-crystallization. DoE revealed that evaporation co-crystallization with agitating at 65 rpm formed co-crystals with greater phase purity. The optimal temperature varied with the solvent used.
Collapse
Affiliation(s)
- Ana Luiza P Queiroz
- SSPC Pharmaceutical Research Centre, School of Pharmacy, University College Cork, Cork, Ireland; APC Ltd., Building 11, Cherrywood Business Park, Loughlinstown, Dublin D18 DH50, Ireland
| | - Marisa Rodrigues
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Jacek Zeglinski
- APC Ltd., Building 11, Cherrywood Business Park, Loughlinstown, Dublin D18 DH50, Ireland
| | - Abina M Crean
- SSPC Pharmaceutical Research Centre, School of Pharmacy, University College Cork, Cork, Ireland
| | - Mafalda Cruz Sarraguça
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sonja Vucen
- SSPC Pharmaceutical Research Centre, School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Wong SN, Chen YCS, Xuan B, Sun CC, Chow SF. Cocrystal engineering of pharmaceutical solids: therapeutic potential and challenges. CrystEngComm 2021. [DOI: 10.1039/d1ce00825k] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This highlight presents an overview of pharmaceutical cocrystal production and its potential in reviving problematic properties of drugs in different dosage forms. The challenges and future outlook of its translational development are discussed.
Collapse
Affiliation(s)
- Si Nga Wong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
| | - Yu Chee Sonia Chen
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
- Department of Pharmacy, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Bianfei Xuan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, L2-08B, Laboratory Block, 21 Sassoon Road Pokfulam, Hong Kong SAR, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, Hong Kong SAR, China
| |
Collapse
|
21
|
Coty JB, Martin C, Telò I, Spitzer D. Use of Spray Flash Evaporation (SFE) technology to improve dissolution of poorly soluble drugs: Case study on furosemide nanocrystals. Int J Pharm 2020; 589:119827. [PMID: 32866647 DOI: 10.1016/j.ijpharm.2020.119827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
The poor solubility and related low bioavailability are a major concern for a large number of small molecule drugs, both on the market and in development. Several formulation strategies exist to overcome this issue. Among them, particle engineering is of outmost importance. The aim of this work is to present the potential of Spray Flash Evaporation (SFE), a new technology for drug particle engineering. To assess the potential of SFE, we carried out a case study on the nano-crystallization of furosemide, a BCS class IV drug. A thorough characterization of the obtained nanocrystals is presented along with a study of dissolution which highlights the solubility improvement provided by nanocrystals produced via SFE technology. The obtained results show a particle size reduction when compared to the raw material, as well as an increase of the dissolution rate of 4.5-fold.
Collapse
Affiliation(s)
| | - Cédric Martin
- Spinofrin SAS, 20 bis Rue Danjou, 92100 Boulogne-Billancourt, France
| | - Isabella Telò
- Spinofrin SAS, 20 bis Rue Danjou, 92100 Boulogne-Billancourt, France
| | - Denis Spitzer
- Spinofrin SAS, 20 bis Rue Danjou, 92100 Boulogne-Billancourt, France; Nanomatériaux pour les Systèmes Sous Sollicitations Extrêmes (NS3E), ISL-CNRS-UNISTRA UMR 3208, French-German Research Institute of Saint-Louis, 5, rue du Général Cassagnou, B.P. 70034, 68301 Saint-Louis, France
| |
Collapse
|
22
|
Diniz LF, Carvalho PS, Pena SAC, Gonçalves JE, Souza MAC, de Souza Filho JD, Bomfim Filho LFO, Franco CHJ, Diniz R, Fernandes C. Enhancing the solubility and permeability of the diuretic drug furosemide via multicomponent crystal forms. Int J Pharm 2020; 587:119694. [PMID: 32726610 DOI: 10.1016/j.ijpharm.2020.119694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/23/2020] [Indexed: 01/06/2023]
Abstract
Furosemide (FSM) is a biopharmaceutical classification system (BCS) class IV drug, being a potent loop diuretic used in the treatment of congestive heart failure and edema. Due to its low solubility and permeability, FSM is known for exhibiting poor oral bioavailability. In order to overcome or even minimize these undesirable biopharmaceutical attributes, in this work we have focused on the development of more soluble and permeable multicomponent solid forms of FSM. Using solvent evaporation as crystallization method, a salt and a cocrystal of FSM with imidazole (IMI) and 5-fluorocytosine (5FC) coformers, named FSM-IMI and FSM-5FC, respectively, were successfully prepared. A detailed structural study of these new solid forms was conducted using single and powder X-ray diffraction (SCXRD, PXRD), Fourier Transform Infrared (FT-IR) and proton Nuclear Magnetic Resonance (1H NMR) spectroscopy and thermal analysis (thermogravimetry, differential scanning calorimetry and hot-stage microscopy). Both FSM-IMI and FSM-5FC showed substantial enhancements in the solubility (up 118-fold), intrinsic dissolution (from 1.3 to 2.6-fold) and permeability (from 2.1 to 2.8-fold), when compared to the pure FSM. These results demonstrate the potential of these new solid forms to increase the limited bioavailability of FSM.
Collapse
Affiliation(s)
- Luan F Diniz
- Laboratório de Controle de Qualidade de Medicamentos e Cosméticos, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil; Departamento de Química, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil
| | - Paulo S Carvalho
- Instituto de Física, Universidade Federal do Mato Grosso do Sul, 79074-460 Campo Grande, MS, Brazil
| | - Sarah A C Pena
- Laboratório de Controle de Qualidade de Medicamentos e Cosméticos, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - José E Gonçalves
- Laboratório de Controle de Qualidade de Medicamentos e Cosméticos, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Mateus A C Souza
- Laboratório de Controle de Qualidade de Medicamentos e Cosméticos, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - José D de Souza Filho
- Departamento de Química, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil
| | - Lucius F O Bomfim Filho
- Departamento de Química, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil
| | - Chris H J Franco
- Departamento de Química, Instituto de Ciências Exatas (ICE), Universidade Federal de Juiz de Fora, 36036-900-Juiz de Fora, MG, Brazil
| | - Renata Diniz
- Departamento de Química, Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais, 31270-901-Belo Horizonte, MG, Brazil
| | - Christian Fernandes
- Laboratório de Controle de Qualidade de Medicamentos e Cosméticos, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
23
|
Co-Crystal Structures of Furosemide:Urea and Carbamazepine:Indomethacin Determined from Powder X-Ray Diffraction Data. CRYSTALS 2020. [DOI: 10.3390/cryst10010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Co-crystallization is a promising approach to improving both the solubility and the dissolution rate of active pharmaceutical ingredients. Crystal structure determination from powder diffraction data plays an important role in determining co-crystal structures, especially those generated by mechanochemical means. Here, two new structures of pharmaceutical interest are reported: a 1:1 co‑crystal of furosemide with urea formed by liquid-assisted grinding and a second polymorphic form of a 1:1 co‑crystal of carbamazepine with indomethacin, formed by solvent evaporation. Energy minimization using dispersion-corrected density functional theory was used in finalizing both structures. In the case of carbamazepine:indomethacin, this energy minimization step was essential in obtaining a satisfactory final Rietveld refinement.
Collapse
|
24
|
Sarmah KK, Nath N, Rao DR, Thakuria R. Mechanochemical synthesis of drug–drug and drug–nutraceutical multicomponent solids of olanzapine. CrystEngComm 2020. [DOI: 10.1039/c9ce01504c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Drug–drug and drug–nutraceutical multicomponent solids of an antipsychotic drug olanzapine (OLN) are prepared using mechanochemistry.
Collapse
Affiliation(s)
| | - Nilamoni Nath
- Department of Chemistry
- Gauhati University
- Guwahati 781014
- India
| | | | - Ranjit Thakuria
- Department of Chemistry
- Gauhati University
- Guwahati 781014
- India
| |
Collapse
|
25
|
An overview of techniques for multifold enhancement in solubility of poorly soluble drugs. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Poor water solubility of newly discovered compounds has become the most common challenge in the drug development process. Indeed, poor solubility is considered as the root cause of failure of drug during drug development phases. Moreover, it has also been reported to be the main reason for bioavailability issues such as poor, inconsistent, incomplete and highly variable bioavailability of the marketed products. As per an estimate, approximately 90% of drug molecules suffer with poor water solubility at early stage and approximately 40% of the marketed drugs have bioavailability problems mainly due to poor water solubility. Solubility enhancement of the newly discovered compounds is primary research area for the pharmaceutical industries and research institutions. The conventional techniques to improve aqueous solubility of drugs employ salt formation, prodrug formation, co-crystallization, complexation, amorphous solid dispersion and use of co-solvent, surfactants or hydrotropic agents. Current advancement in the science and technology has enabled the use of relatively new techniques under the umbrella of nanotechnology. These include the development of nanocrystals, nanosuspensions, nanoemulsions, microemulsions, liposomes and nanoparticles to enhance the solubility. This review focuses on the conventional and current approaches of multifold enhancement in the solubility of poorly soluble marketed drugs, including newly discovered compounds.
Collapse
|
26
|
Campbell MTD, Jones DS, Andrews GP, Li S. Understanding the physicochemical properties and degradation kinetics of nicotinamide riboside, a promising vitamin B 3nutritional supplement. Food Nutr Res 2019; 63:3419. [PMID: 31807125 PMCID: PMC6878970 DOI: 10.29219/fnr.v63.3419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/11/2019] [Accepted: 10/16/2019] [Indexed: 11/20/2022] Open
Abstract
Nicotinamide riboside (NR), a newly recognised form of vitamin B3 and a precursor to nicotinamide adenine dinucleotide (NAD+), has been demonstrated to show therapeutic potential and the possibility of becoming a drug compound in addition to its proven role in rejuvenating ageing cells in mice. However, current literature is devoid of information relating to the physicochemical characterisation of NR and its respective impact upon formulation and final product processing. Here we report physicochemical properties of NR including pKa, log P, solubility, melting point, degradation mechanics, and kinetics, with a special focus on its stability under thermal and physiologically relevant conditions. A simple and rapid HPLC method confirms a base-catalysed hydrolysis degradation of NRCl to nicotinamide and sugar in simulated gastrointestinal (GI) fluids. Given the antagonising effect of nicotinamide against NR, the presented data have a profound impact on how NRCl should be handled both during formulation and storage to prevent formation and to limit accumulation of nicotinamide. The innovative combinatorial use of 1H NMR and Differential Scanning Calorimetry (DSC) was employed to investigate thermal events during NR melting. NRCl degrades upon melting and in solution undergoes hydrolysis in a buffer and in simulated intestinal environments. The results suggest that a proper and evidence-based formulation of NRCl is vital to enable further investigation and clinical analysis of this promising and novel nutrient. Any formulation would need to promote the stability of NRCl and protect it from hostile environments to prevent the accumulation of a potentially antagonistic degradation product. With the current work, we have filled a niche but vital gap in NR literature and the data presented may prove useful in furthering the understanding, specifically the formulation and processing of NRCl.
Collapse
Affiliation(s)
| | - David S Jones
- School of Pharmacy, Queens University Belfast, Belfast, Norther Ireland, UK
| | - Gavin P Andrews
- School of Pharmacy, Queens University Belfast, Belfast, Norther Ireland, UK
| | - Shu Li
- School of Pharmacy, Queens University Belfast, Belfast, Norther Ireland, UK
| |
Collapse
|
27
|
Bhalla Y, Chadha K, Chadha R, Karan M. Daidzein cocrystals: An opportunity to improve its biopharmaceutical parameters. Heliyon 2019; 5:e02669. [PMID: 31763466 PMCID: PMC6861730 DOI: 10.1016/j.heliyon.2019.e02669] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 06/19/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022] Open
Abstract
The present study involves the contribution of cocrystallization towards the modification of the biopharmaceutical parameters of poorly watersoluble plant-originated isoflavone, daidzein (DAID). The cocrystals were prepared with GRAS status coformers i.e., isonicotinamide, theobromine and cytosine using mechanochemical grinding and characterized by various analytical techniques (DSC, FT-IR, PXRD and solid-state NMR). Crystal structures were obtained from PXRD data using BIOVIA Materials Studio software and compared in terms of supramolecular motifs. An additional qualitative and quantitative insight into interactions between both components of the cocrystal illustrated the presence of OH⋯N and OH⋯O=C heterosynthons and revealed a stabilizing role of hydrogen bonding. The cocrystals were further evaluated for their solubility, intrinsic dissolution and in vivo profile. Solubility and dissolution studies of pure daidzein and its cocrystals, namely daidzein-isonicotinamide (DIS), daidzein-cytosine (DCYT) and daidzein-theobromine (DTB) exhibited an almost 2-fold improvement. Evaluation of maximum concentration (Cmax) of cocrystals reveals that the DIS cocrystal shows the highest Cmax of 1848.7 ng/ml followed by DCYT cocrystal (1614.9 ng/ml) and DTB cocrystal (1326.0 ng/ml) in comparison to DAID which has a Cmax 870.5 ng/ml. Each of these cocrystals showed significant enhancement in in vivo and in vitro activities in comparison to daidzein. Thus, this report suggests cocrystallization as a viable approach to resolve the solubility and bioavailability issues that circumvent the use of a therapeutically potential isoflavone, daidzein.
Collapse
Affiliation(s)
- Yashika Bhalla
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Kunal Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Maninder Karan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
28
|
Teraoka R, Fukami T, Furuishi T, Nagase H, Ueda H, Tode C, Yutani R, Kitagawa S, Sakane T. Improving the Solid-State Photostability of Furosemide by Its Cocrystal Formation. Chem Pharm Bull (Tokyo) 2019; 67:940-944. [PMID: 31474733 DOI: 10.1248/cpb.c18-00812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Reiko Teraoka
- Department of Pharmaceutical Technology, College of Pharmaceutical Sciences Himeji Dokkyo University
- Laboratory of Pharmaceutical Technology, Kobe Pharmaceutical University
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meij Pharmaceutical University
| | | | - Hiromasa Nagase
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| | - Haruhisa Ueda
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University
| | - Chisato Tode
- Instrumental Analysis Center, Kobe Pharmaceutical University
| | - Reiko Yutani
- Laboratory of Pharmaceutical Technology, Kobe Pharmaceutical University
| | | | - Toshiyasu Sakane
- Laboratory of Pharmaceutical Technology, Kobe Pharmaceutical University
| |
Collapse
|
29
|
Panzade P, Shendarkar G. Superior Solubility and Dissolution of Zaltoprofen via Pharmaceutical Cocrystals. Turk J Pharm Sci 2019; 16:310-316. [PMID: 32454729 DOI: 10.4274/tjps.galenos.2018.15013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/07/2018] [Indexed: 12/01/2022]
Abstract
Objectives Pharmaceutical cocrystals are a promising tool to enhance the solubility and dissolution of poorly soluble drugs. Zaltoprofen (ZFN) is nonsteroidal anti-inflammatory drug with a prevalent solubility problem. The present study was undertaken to enhance the solubility and dissolution of ZFN through pharmaceutical cocrystals by screening various coformers. Materials and Methods Cocrystals of ZFN were prepared in 1:1 and 1:2 ratio of drug:coformer by the dry grinding method. The melting point and solubility of the crystalline phase were determined. The potential cocrystals were characterized by differential scanning calorimetry (DSC), infrared spectroscopy, and powder X-ray diffraction (PXRD). Cocrystals were subjected to dissolution rate and stability study. Results ZFN-nicotinamide (NIC) cocrystals demonstrated deviation in melting point and solubility. The cocrystals were obtained in both 1:1 and 1:2 ratios with NIC. The infrared analysis noticeably indicated the shifting of characteristic bands of ZFN. The crystallinity of the cocrystals was evident from the XRPD pattern and notable difference in the 2θ values of intense peaks. The DSC spectra of the cocrystals exhibited altered endotherms analogous to melting point. The cocrystals showed a faster dissolution rate and a 55% increase in the extent of dissolution compared to pure drug. The cocrystals were stable at room temperature and accelerated conditions. Conclusion The prepared cocrystals exhibited greater solubility and dissolution compared to the pure drug and were stable at room temperature and accelerated conditions.
Collapse
Affiliation(s)
- Prabhakar Panzade
- Center for Research in Pharmaceutical Sciences, Nanded Pharmacy College, Opp. Kasturba Matruseva Kendra, Sham Nagar, Nanded, India
| | - Giridhar Shendarkar
- Center for Research in Pharmaceutical Sciences, Nanded Pharmacy College, Opp. Kasturba Matruseva Kendra, Sham Nagar, Nanded, India
| |
Collapse
|
30
|
Bolla G, Nangia A. Supramolecular synthon hierarchy in sulfonamide cocrystals with syn-amides and N-oxides. IUCRJ 2019; 6:751-760. [PMID: 31316818 PMCID: PMC6608642 DOI: 10.1107/s2052252519005037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/12/2019] [Indexed: 06/10/2023]
Abstract
Sulfonamide drugs are well known antibacterial and antimicrobial molecules for pharmaceutical development. Building a library of suitable supramolecular synthons for the sulfonamide functional group and understanding their crystal structures with partner coformer molecules continues to be a challenge in crystal engineering. Although a few sulfonamide cocrystals with amides and N-oxides have been reported, the body of work on sulfonamide synthons is limited compared with those that have carb-oxy-lic acids and carboxamides. To address this structural gap, the present work is primarily focused on sulfonamide-lactam and sulfonamide-syn-amide synthons with drugs such as celecoxib, hydro-chloro-thia-zide and furosemide. Furthermore, the electrostatic potential of previously reported cocrystals has been recalculated to show that the negative electrostatic potential on the lactam and syn-amide O atom is higher compared with the charge on carboxamide and pyridine N-oxide O atoms. The potential of sulfonamide molecules to form cocrystals with syn-amides and lactams are evaluated in terms of the electrostatic potential energy for the designed supramolecular synthons.
Collapse
Affiliation(s)
- Geetha Bolla
- School of Chemistry, University of Hyderabad, Gachibowli, Central University P.O., Hyderabad 500 046, India
| | - Ashwini Nangia
- School of Chemistry, University of Hyderabad, Gachibowli, Central University P.O., Hyderabad 500 046, India
- Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| |
Collapse
|
31
|
Essa EA, Elbasuony AR, Abdelaziz AE, El Maghraby GM. Co-crystallization for enhanced dissolution rate of bicalutamide: preparation and evaluation of rapidly disintegrating tablets. Drug Dev Ind Pharm 2019; 45:1215-1223. [DOI: 10.1080/03639045.2019.1571504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Aya R. Elbasuony
- College of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | | |
Collapse
|
32
|
Zilka M, Yates JR, Brown SP. An NMR crystallography investigation of furosemide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:191-199. [PMID: 30141257 PMCID: PMC6492277 DOI: 10.1002/mrc.4789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/16/2018] [Accepted: 08/06/2018] [Indexed: 05/04/2023]
Abstract
This paper presents an NMR crystallography study of three polymorphs of furosemide. Experimental magic-angle spinning (MAS) solid-state NMR spectra are reported for form I of furosemide, and these are assigned using density-functional theory (DFT)-based gauge-including projector augmented wave (GIPAW) calculations. Focusing on the three known polymorphs, we examine the changes to the NMR parameters due to crystal packing effects. We use a recently developed formalism to visualise which regions are responsible for the chemical shielding of particular sites and hence understand the variation in NMR parameters between the three polymorphs.
Collapse
Affiliation(s)
- Miri Zilka
- Department of PhysicsUniversity of WarwickCoventryUnited Kingdom
| | | | - Steven P. Brown
- Department of PhysicsUniversity of WarwickCoventryUnited Kingdom
| |
Collapse
|
33
|
Shariare MH, Altamimi MA, Marzan AL, Tabassum R, Jahan B, Reza HM, Rahman M, Ahsan G, Kazi M. In vitro dissolution and bioavailability study of furosemide nanosuspension prepared using design of experiment (DoE). Saudi Pharm J 2019; 27:96-105. [PMID: 30662312 PMCID: PMC6323151 DOI: 10.1016/j.jsps.2018.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/01/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Nanotechnology can offer the advantages of increasing solubility and bioavailability of delivering drugs like Furosemide. The aim of the current study is to investigate the in vitro and in vivo performance of furosemide nanosuspensions. METHODS Furosemide nanosuspensions were prepared by antisolvent precipitation method using full factorial experimental design. Four factors were employed namely; Stirring time, Injection rate, antisolvent: solvent ratio & stabilizer: drug ratio (at two levels = high & low). The in vitro dissolution experiments were conducted to compare the representative formulation with raw drug powder. The bioavailability of nanosuspension was, also, evaluated in mice as an animal model. RESULTS Solid state characterization (PXRD, DSC and FESEM) did show physical changes during preparation and optimization of the furosemide nanosuspensions. Individual material attributes showed more significant impact on the average particle size of the nanocrystals compared to process parameters. Two-way interactions between material attributes and process parameters significantly affected nanosuspension particle size distribution. Dissolution rate of furosemide nanosuspemsion was significantly higher than that observed for raw furosemide powder. The in vivo pharmacokinetics parameters of nanosuspension in comparison to pure drug showed significant increase in Cmax and AUC(0-t), about 233% and 266%, respectively. The oral bioavailability of furosemide from nanosuspension was about 2.3 fold higher as compared with the bioavailability from pure drug. CONCLUSIONS Furosemide nanosuspensions prepared using antisolvent precipitation method enhanced the dissolution rate and oral bioavailability compared to raw furosemide powder.
Collapse
Affiliation(s)
- Mohammad H. Shariare
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Akbar L. Marzan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Rahnuma Tabassum
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Basarat Jahan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Hasan M. Reza
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Mahbubur Rahman
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - G.U. Ahsan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Nechipadappu SK, Trivedi DR. Cocrystal of nutraceutical sinapic acid with Active Pharmaceutical Ingredients ethenzamide and 2-chloro-4-Nitrobenzoic acid: Equilibrium solubility and stability study. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
35
|
Garbacz P, Wesolowski M. DSC, FTIR and Raman Spectroscopy Coupled with Multivariate Analysis in a Study of Co-Crystals of Pharmaceutical Interest. Molecules 2018; 23:E2136. [PMID: 30149571 PMCID: PMC6225128 DOI: 10.3390/molecules23092136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/19/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022] Open
Abstract
Co-crystals have garnered increasing interest in recent years as a beneficial approach to improving the solubility of poorly water soluble active pharmaceutical ingredients (APIs). However, their preparation is a challenge that requires a simple approach towards co-crystal detection. The objective of this work was, therefore, to verify to what extent a multivariate statistical approach such as principal component analysis (PCA) and cluster analysis (CA) can be used as a supporting tool for detecting co-crystal formation. As model samples, physical mixtures and co-crystals of indomethacin with saccharin and furosemide with p-aminobenzoic acid were prepared at API/co-former molar ratios 1:1, 2:1 and 1:2. Data acquired from DSC curves and FTIR and Raman spectroscopies were used for CA and PCA calculations. The results obtained revealed that the application of physical mixtures as reference samples allows a deeper insight into co-crystallization than is possible with the use of API and co-former or API and co-former with physical mixtures. Thus, multivariate matrix for PCA and CA calculations consisting of physical mixtures and potential co-crystals could be considered as the most profitable and reliable way to reflect changes in samples after co-crystallization. Moreover, complementary interpretation of results obtained using DSC, FTIR and Raman techniques is most beneficial.
Collapse
Affiliation(s)
- Patrycja Garbacz
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80416 Gdansk, Poland.
| | - Marek Wesolowski
- Department of Analytical Chemistry, Medical University of Gdansk, Gen. J. Hallera 107, 80416 Gdansk, Poland.
| |
Collapse
|
36
|
Drug‑Drug and Drug‑Nutraceutical Cocrystal/Salt as Alternative Medicine for Combination Therapy: A Crystal Engineering Approach. CRYSTALS 2018. [DOI: 10.3390/cryst8020101] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Abstract
Pharmaceutical cocrystals belong to a sub-class of cocrystals wherein one of the components is a drug molecule (or an active pharmaceutical ingredient, API) and the second is a benign food or drug grade additive (generally regarded as safe, GRAS). The two components are hydrogen-bonded in a fixed stoichiometric ratio in the crystal lattice. In the past decade, pharmaceutical cocrystals have demonstrated significant promise in their ability to modify the physicochemical and pharmacokinetic properties of drug substances, such as the solubility and dissolution rate, bioavailability, particle morphology and size, tableting and compaction, melting point, physical form, biochemical and hydration stability, and permeability. In this feature review, we highlight some prominent examples of drug cocrystals which exhibit variable hardness/softness and elasticity/plasticity depending on coformer selection, improvement of solubility and permeability in the same cocrystal, increase of the melting point for solid formulation, enhanced color performance, photostability and hydration stability, and a longer half-life. Cocrystals of flavanoids and polyphenols can make improved pharmaceuticals and also extend to the larger class of nutraceuticals. The application of crystal engineering to assemble ternary cocrystals expands this field to drug-drug cocrystals which may be useful in multi-drug resistance, mitigating side effects of drugs, or attenuating/enhancing drug action synergistically by rational selection. The advent of new techniques for structural characterization beyond the standard X-ray diffraction will provide a better understanding of drug phases which are at the borderline of crystalline-amorphous nature and even newer opportunities in the future.
Collapse
Affiliation(s)
- Geetha Bolla
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500 046, India.
| | - Ashwini Nangia
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500 046, India. and CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India.
| |
Collapse
|
38
|
Tanida S, Takata N, Takano R, Sakon A, Ueto T, Shiraki K, Kadota K, Tozuka Y, Ishigai M. Cocrystal structure design for CH5134731 based on isomorphism. CrystEngComm 2018. [DOI: 10.1039/c7ce01878a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystal engineering approach based on isomorphism succeeded in crystallizing a pharmaceutical cocrystal in the early stage.
Collapse
Affiliation(s)
- S. Tanida
- Research Division
- Chugai Pharmaceutical Co. Ltd
- Gotemba
- Japan
| | - N. Takata
- Research Division
- Chugai Pharmaceutical Co. Ltd
- Gotemba
- Japan
| | - R. Takano
- Research Division
- Chugai Pharmaceutical Co. Ltd
- Gotemba
- Japan
| | - A. Sakon
- Research Division
- Chugai Pharmaceutical Co. Ltd
- Gotemba
- Japan
| | - T. Ueto
- Research Division
- Chugai Pharmaceutical Co. Ltd
- Gotemba
- Japan
| | - K. Shiraki
- Research Division
- Chugai Pharmaceutical Co. Ltd
- Gotemba
- Japan
| | - K. Kadota
- Osaka University of Pharmaceutical Sciences
- Takatsuki
- Japan
| | - Y. Tozuka
- Osaka University of Pharmaceutical Sciences
- Takatsuki
- Japan
| | - M. Ishigai
- Research Division
- Chugai Pharmaceutical Co. Ltd
- Gotemba
- Japan
| |
Collapse
|
39
|
Widdifield CM, Robson H, Hodgkinson P. Furosemide's one little hydrogen atom: NMR crystallography structure verification of powdered molecular organics. Chem Commun (Camb) 2017; 52:6685-8. [PMID: 27115483 DOI: 10.1039/c6cc02171a] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The potential of NMR crystallography to verify molecular crystal structures deposited in structural databases is evaluated, with two structures of the pharmaceutical furosemide serving as examples. While the structures differ in the placement of one H atom, using this approach, we verify one of the structures in the Cambridge Structural Database using quantitative tools, while establishing that the other structure does not meet the verification criteria.
Collapse
Affiliation(s)
| | - Harry Robson
- Department of Chemistry, University of Durham, Durham DH1 3LE, UK.
| | - Paul Hodgkinson
- Department of Chemistry, University of Durham, Durham DH1 3LE, UK.
| |
Collapse
|
40
|
Chavan RB, Bhargavi N, Lodagekar A, Shastri NR. Near infra red spectroscopy: a tool for solid state characterization. Drug Discov Today 2017; 22:1835-1843. [DOI: 10.1016/j.drudis.2017.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/04/2017] [Accepted: 09/03/2017] [Indexed: 11/28/2022]
|
41
|
Debnath D, Purkayastha A, Kirillov A, Ganguly R, Misra TK. Study of an efficient conversion of 1,3-dimethyl-5-(Arylazo)-6-Amino-Uracils to 1,3-dimethyl-8-(Aryl)-Azapurin-2,6-Diones. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.08.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Cvetkovski A, Ferretti V, Bertolasi V. New pharmaceutical salts containing pyridoxine. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2017; 73:1064-1070. [PMID: 29206116 DOI: 10.1107/s2053229617015765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/30/2017] [Indexed: 02/08/2023]
Abstract
Two mixed crystals were obtained by crystallizing the active pharmaceutical ingredient pyridoxine [systematic name: 4,5-bis(hydroxymethyl)-2-methylpyridin-3-ol, PN] with (E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid (ferulic acid) and 4-hydroxy-3,5-dimethoxybenzoic acid (syringic acid). PN and the coformers crystallize in the form of pharmaceutical salts in a 1:1 stoichiometric ratio, namely 3-hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridin-1-ium (E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate, C8H12NO3+·C9H9O5-, and 3-hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridin-1-ium 4-hydroxy-3,5-dimethoxybenzoate monohydrate, C8H12NO3+·C10H11O5-·H2O, the proton exchange between PN and the acidic partner being supported by the differences of the pKa values of the two components and by the C-O bond lengths of the carboxylate groups. Besides complex hydrogen-bonding networks, π-π interactions between aromatic moieties have been found to be important for the packing architecture in both crystals. Hirshfeld surface analysis was used to explore the intermolecular interactions in detail and compare them with the interactions found in similar pyridoxine/carboxylic acid salts.
Collapse
Affiliation(s)
- Aleksandar Cvetkovski
- Faculty of Medical Sciences, University Goce Delcev, Krste Misirkov bb, 2000 PO 201, Štip, The Former Yugoslav Republic of Macedonia
| | - Valeria Ferretti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 17, Ferrara I-44121, Italy
| | - Valerio Bertolasi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 17, Ferrara I-44121, Italy
| |
Collapse
|
43
|
Panzade P, Shendarkar G, Shaikh S, Balmukund Rathi P. Pharmaceutical Cocrystal of Piroxicam: Design, Formulation and Evaluation. Adv Pharm Bull 2017; 7:399-408. [PMID: 29071222 PMCID: PMC5651061 DOI: 10.15171/apb.2017.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 11/16/2022] Open
Abstract
Purpose: Cocrystallisation of drug with coformers is a promising approach to alter the solid sate properties of drug substances like solubility and dissolution. The objective of the present work was to prepare, formulate and evaluate the piroxicam cocrystal by screening various coformers. Methods: Cocrystals of piroxicam were prepared by dry grinding method. The melting point and solubility of crystalline phase was determined. The potential cocrystal was characterized by DSC, IR, XRPD. Other pharmaceutical properties like solubility and dissolution rate were also evaluated. Orodispersible tablets of piroxicam cocrystal were formulated, optimized and evaluated using 32 factorial design. Results: Cocrystals of piroxicam-sodium acetate revealed the variation in melting points and solubility. The cocrystals were obtained in 1:1 ratio with sodium acetate. The analysis of Infrared explicitly indicated the shifting of characteristic bands of piroxicam. The X-Ray Powder Diffraction pattern denoted the crystallinity of cocrystals and noteworthy difference in 2θ value of intense peaks. Differential scanning calorimetry spectra of cocrystals indicated altered endotherms corresponding to melting point. The pH solubility profile of piroxicam showed sigmoidal curve, which authenticated the pKa-dependent solubility. Piroxicam cocrystals also exhibited a similar pH-solubility profile. The cocrystals exhibited faster dissolution rate owing to cocrystallization as evident from 30% increase in the extent of dissolution. The orodispersible tablets of piroxicam cocrystals were successfully prepared by direct compression method using crosscarmelose sodium as superdisintegrant with improved disintegration time (30 sec) and dissolution rate. Conclusion: The piroxicam cocrystal with modified properties was prepared with sodium acetate and formulated as orodispersible tablets having faster disintegration and greater dissolution rate.
Collapse
Affiliation(s)
- Prabhakar Panzade
- Department of Pharmacognosy, Nanded Pharmacy College, Opp. Kasturba Matruseva Kendra, Shyam Nagar, Nanded, India
| | - Giridhar Shendarkar
- Department of Pharmacognosy, Nanded Pharmacy College, Opp. Kasturba Matruseva Kendra, Shyam Nagar, Nanded, India
| | - Sarfaraj Shaikh
- Department of Pharmaceutics, Shri Bhagwan College of Pharmacy, Dr. Y. S. khedkar Marg, CIDCO, Aurangabad, India
| | - Pavan Balmukund Rathi
- Department of Pharmaceutics, Shri Bhagwan College of Pharmacy, Dr. Y. S. khedkar Marg, CIDCO, Aurangabad, India
| |
Collapse
|
44
|
Debnath D, Roy S, Purkayastha A, Bauzá A, Choudhury R, Ganguly R, Frontera A, Misra TK. Synthesis and structure of 1,3-dimethyl-5-( p -sulfonamide-phenylazo)-6-aminouracil and its Ni(II) complex: Topological insights and investigation for noncovalent interactions. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Cerreia Vioglio P, Chierotti MR, Gobetto R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv Drug Deliv Rev 2017; 117:86-110. [PMID: 28687273 DOI: 10.1016/j.addr.2017.07.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/23/2017] [Accepted: 07/03/2017] [Indexed: 11/28/2022]
Abstract
In recent years many efforts have been devoted to the screening and the study of new solid-state forms of old active pharmaceutical ingredients (APIs) with salification or co-crystallization processes, thus modulating final properties without changing the pharmacological nature. Salts, hydrates/solvates, and cocrystals are the common solid-state forms employed. They offer the intriguing possibility of exploring different pharmaceutical properties for a single API in the quest of enhancing the final drug product. New synthetic strategies and advanced characterization techniques have been recently proposed in this hot topic for pharmaceutical companies. This paper reviews the recent progresses in the field particularly focusing on the characterization challenges encountered when the nature of the solid-state form must be determined. The aim of this article is to offer the state-of-the-art on this subject in order to develop new insights and to promote cooperative efforts in the fascinating field of API salt and cocrystal forms.
Collapse
Affiliation(s)
| | - Michele R Chierotti
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Roberto Gobetto
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
46
|
Pindelska E, Sokal A, Kolodziejski W. Pharmaceutical cocrystals, salts and polymorphs: Advanced characterization techniques. Adv Drug Deliv Rev 2017; 117:111-146. [PMID: 28931472 DOI: 10.1016/j.addr.2017.09.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/21/2017] [Accepted: 09/14/2017] [Indexed: 12/11/2022]
Abstract
The main goal of a novel drug development is to obtain it with optimal physiochemical, pharmaceutical and biological properties. Pharmaceutical companies and scientists modify active pharmaceutical ingredients (APIs), which often are cocrystals, salts or carefully selected polymorphs, to improve the properties of a parent drug. To find the best form of a drug, various advanced characterization methods should be used. In this review, we have described such analytical methods, dedicated to solid drug forms. Thus, diffraction, spectroscopic, thermal and also pharmaceutical characterization methods are discussed. They all are necessary to study a solid API in its intrinsic complexity from bulk down to the molecular level, gain information on its structure, properties, purity and possible transformations, and make the characterization efficient, comprehensive and complete. Furthermore, these methods can be used to monitor and investigate physical processes, involved in the drug development, in situ and in real time. The main aim of this paper is to gather information on the current advancements in the analytical methods and highlight their pharmaceutical relevance.
Collapse
|
47
|
Arafa MF, El-Gizawy SA, Osman MA, El Maghraby GM. Co-crystallization for enhanced dissolution rate of nateglinide: In vitro and in vivo evaluation. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
48
|
Ghadi R, Dand N. BCS class IV drugs: Highly notorious candidates for formulation development. J Control Release 2017; 248:71-95. [PMID: 28088572 DOI: 10.1016/j.jconrel.2017.01.014] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/08/2017] [Indexed: 12/20/2022]
Abstract
BCS class IV drugs (e.g., amphotericin B, furosemide, acetazolamide, ritonavir, paclitaxel) exhibit many characteristics that are problematic for effective oral and per oral delivery. Some of the problems associated include low aqueous solubility, poor permeability, erratic and poor absorption, inter and intra subject variability and significant positive food effect which leads to low and variable bioavailability. Also, most of the class IV drugs are substrate for P-glycoprotein (low permeability) and substrate for CYP3A4 (extensive pre systemic metabolism) which further potentiates the problem of poor therapeutic potential of these drugs. A decade back, extreme examples of class IV compounds were an exception rather than the rule, yet today many drug candidates under development pipeline fall into this category. Formulation and development of an efficacious delivery system for BCS class IV drugs are herculean tasks for any formulator. The inherent hurdles posed by these drugs hamper their translation to actual market. The importance of the formulation composition and design to successful drug development is especially illustrated by the BCS class IV case. To be clinically effective these drugs require the development of a proper delivery system for both oral and per oral delivery. Ideal oral dosage forms should produce both a reasonably high bioavailability and low inter and intra subject variability in absorption. Also, ideal systems for BCS class IV should produce a therapeutic concentration of the drug at reasonable dose volumes for intravenous administration. This article highlights the various techniques and upcoming strategies which can be employed for the development of highly notorious BCS class IV drugs. Some of the techniques employed are lipid based delivery systems, polymer based nanocarriers, crystal engineering (nanocrystals and co-crystals), liquisolid technology, self-emulsifying solid dispersions and miscellaneous techniques addressing the P-gp efflux problem. The review also focuses on the roadblocks in the clinical development of the aforementioned strategies such as problems in scale up, manufacturing under cGMP guidelines, appropriate quality control tests, validation of various processes and variable therein etc. It also brings to forefront the current lack of regulatory guidelines which poses difficulties during preclinical and clinical testing for submission of NDA and subsequent marketing. Today, the pharmaceutical industry has as its disposal a series of reliable and scalable formulation strategies for BCS Class IV drugs. However, due to lack of understanding of the basic physical chemistry behind these strategies formulation development is still driven by trial and error.
Collapse
Affiliation(s)
- Rohan Ghadi
- IPDO, Innovation Plaza, Dr Reddy's Laboratories Ltd., Bachupally, Hyderabad, 500090, India.
| | - Neha Dand
- Department of Pharmaceutics, Bharati Vidyapeeth's College of Pharmacy, CBD Belapur, Navi Mumbai, 400064, India
| |
Collapse
|
49
|
Ali H, Prasad Verma PR, Dubey SK, Venkatesan J, Seo Y, Kim SK, Singh SK. In vitro–in vivo and pharmacokinetic evaluation of solid lipid nanoparticles of furosemide using Gastroplus™. RSC Adv 2017. [DOI: 10.1039/c7ra04038e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, we conducted pharmacokinetic studies and established the in vitro and in vivo correlation (IVIVC) of furosemide (FRS) loaded solid lipid nanoparticles (FSLN).
Collapse
Affiliation(s)
- Hasan Ali
- Department of Pharmaceutical Sciences and Technology
- Birla Institute of Technology
- Ranchi-835215
- India
| | | | - Sunil Kumar Dubey
- Department of Pharmacy
- Birla Institute of Technology and Science
- Pilani
- India
| | | | - Youngwan Seo
- Department of Marine Life Sciences
- Korean Maritime and Ocean University
- Busan 49112
- Republic of Korea
| | - Se-Kwon Kim
- Kolmar Korea Co., Ltd
- Seoul
- Republic of Korea
- Department of Marine Life Sciences
- Korean Maritime and Ocean University
| | - Sandeep Kumar Singh
- Department of Pharmaceutical Sciences and Technology
- Birla Institute of Technology
- Ranchi-835215
- India
- Marine Bioprocess Research Centre and Department of Marine Bio-convergence Science
| |
Collapse
|
50
|
Arenas-García JI, Herrera-Ruiz D, Morales-Rojas H, Höpfl H. Interrelation of the dissolution behavior and solid-state features of acetazolamide cocrystals. Eur J Pharm Sci 2017; 96:299-308. [DOI: 10.1016/j.ejps.2016.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/19/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023]
|