1
|
Mi W, Zhang X, Wang B, Sun R, Ma S, Hu Z, Dai X. Absolute protein quantification based on calibrated particle counting using electrospray-differential mobility analysis. Anal Chim Acta 2024; 1304:342534. [PMID: 38637035 DOI: 10.1016/j.aca.2024.342534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
The traceability of in vitro diagnostics or drug products is based on the accurate quantification of proteins. In this study, we developed an absolute quantification approach for proteins. This method is based on calibrated particle counting using electrospray-differential mobility analysis (ES-DMA) coupled with a condensation particle counter (CPC). The absolute concentration of proteins was quantified with the observed protein particle number measured with ES-DMA-CPC, and the detection efficiency was determined by calibrators. The measurement performance and quantitative level were verified using two certificated reference materials, BSA and NIMCmAb. The linear regression fit for the detection efficiency values of three reference materials and one highly purified protein (myoglobin, BSA, NIMCmAb and fibrinogen) indicated that the detection efficiency and the particle size distribution of these proteins exhibited a linear relationship. Moreover, to explore the suitability of the detection efficiency-particle size curve for protein quantification, the concentrations of three typical proteinaceous particles, including two high molecular weight proteins (NIST reference material 8671 and D-dimer) and one protein complex (glutathione S-transferase dimer), were determined. This work suggests that this calibrated particle counting method is an efficient approach for nondestructive, rapid and accurate quantification of proteins, especially for measuring proteinaceous particles with tremendous size and without reference standards.
Collapse
Affiliation(s)
- Wei Mi
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| | - Xinyi Zhang
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China
| | - Bin Wang
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China
| | - Ruixue Sun
- College of Life Sciences, China Jiliang University, Xueyuan Street 258, Hangzhou, 310018, China
| | - Shangying Ma
- College of Life Sciences, China Jiliang University, Xueyuan Street 258, Hangzhou, 310018, China
| | - Zhishang Hu
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| | - Xinhua Dai
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| |
Collapse
|
2
|
Quantifying protein aggregation kinetics using electrospray differential mobility analysis. J Pharm Biomed Anal 2020; 177:112845. [DOI: 10.1016/j.jpba.2019.112845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 11/18/2022]
|
3
|
Wang W, Roberts CJ. Protein aggregation – Mechanisms, detection, and control. Int J Pharm 2018; 550:251-268. [DOI: 10.1016/j.ijpharm.2018.08.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
|
4
|
Brinet D, Gaie-Levrel F, Delatour V, Kaffy J, Ongeri S, Taverna M. In vitro monitoring of amyloid β-peptide oligomerization by Electrospray differential mobility analysis: An alternative tool to evaluate Alzheimer's disease drug candidates. Talanta 2017; 165:84-91. [DOI: 10.1016/j.talanta.2016.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/04/2016] [Accepted: 12/06/2016] [Indexed: 11/27/2022]
|
5
|
Clouet-Foraison N, Gaie-Levrel F, Coquelin L, Ebrard G, Gillery P, Delatour V. Absolute Quantification of Bionanoparticles by Electrospray Differential Mobility Analysis: An Application to Lipoprotein Particle Concentration Measurements. Anal Chem 2017; 89:2242-2249. [DOI: 10.1021/acs.analchem.6b02909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Noémie Clouet-Foraison
- Laboratoire National de Métrologie et d’Essais, LNE, Chemistry and Biology Division, 1 rue Gaston Boissier, 75724 Paris Cedex 15, France
| | - Francois Gaie-Levrel
- Laboratoire National de Métrologie et d’Essais, LNE, Chemistry and Biology Division, 1 rue Gaston Boissier, 75724 Paris Cedex 15, France
| | - Loic Coquelin
- Laboratoire National de Métrologie et d’Essais, LNE, Chemistry and Biology Division, 1 rue Gaston Boissier, 75724 Paris Cedex 15, France
| | - Géraldine Ebrard
- Laboratoire National de Métrologie et d’Essais, LNE, Chemistry and Biology Division, 1 rue Gaston Boissier, 75724 Paris Cedex 15, France
| | - Philippe Gillery
- University
of
Reims Champagne-Ardenne, Faculty of Medicine, UMR CNRS/URCA n°7369
and University Hospital of Reims, Laboratory of Pediatric Biology
and Research, 45 rue Cognacq-Jay, 51092 Reims Cedex, France
| | - Vincent Delatour
- Laboratoire National de Métrologie et d’Essais, LNE, Chemistry and Biology Division, 1 rue Gaston Boissier, 75724 Paris Cedex 15, France
| |
Collapse
|
6
|
Engel NY, Weiss VU, Marchetti-Deschmann M, Allmaier G. nES GEMMA Analysis of Lectins and Their Interactions with Glycoproteins - Separation, Detection, and Sampling of Noncovalent Biospecific Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:77-86. [PMID: 27644941 PMCID: PMC5174143 DOI: 10.1007/s13361-016-1483-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/24/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
In order to better understand biological events, lectin-glycoprotein interactions are of interest. The possibility to gather more information than the mere positive or negative response for interactions brought mass spectrometry into the center of many research fields. The presented work shows the potential of a nano-electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA) to detect weak, noncovalent, biospecific interactions besides still unbound glycoproteins and unreacted lectins without prior liquid phase separation. First results for Sambucus nigra agglutinin, concanavalin A, and wheat germ agglutinin and their retained noncovalent interactions with glycoproteins in the gas phase are presented. Electrophoretic mobility diameters (EMDs) were obtained by nES GEMMA for all interaction partners correlating very well with molecular masses determined by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of the individual molecules. Moreover, EMDs measured for the lectin-glycoprotein complexes were in good accordance with theoretically calculated mass values. Special focus was laid on complex formation for different lectin concentrations and binding specificities to evaluate the method with respect to results obtained in the liquid phase. The latter was addressed by capillary electrophoresis on-a-chip (CE-on-a-chip). Of exceptional interest was the fact that the formed complexes could be sampled according to their size onto nitrocellulose membranes after gas-phase separation. Subsequent immunological investigation further proved that the collected complex actually retained its native structure throughout nES GEMMA analysis and sampling. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Nicole Y Engel
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria
| | - Victor U Weiss
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria
| | - Martina Marchetti-Deschmann
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria
| | - Günter Allmaier
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria.
| |
Collapse
|
7
|
Martínez-Ortega A, Herrera A, Salmerón-García A, Cabeza J, Cuadros-Rodríguez L, Navas N. Study and ICH validation of a reverse-phase liquid chromatographic method for the quantification of the intact monoclonal antibody cetuximab. J Pharm Anal 2015; 6:117-124. [PMID: 29403971 PMCID: PMC5762446 DOI: 10.1016/j.jpha.2015.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/31/2023] Open
Abstract
Cetuximab (CTX) is a potent chimeric mouse/human monoclonal antibody (mAb) approved worldwide for treatment of metastatic colorectal cancer. Among the various biological and physical analyses performed for full study on this biopharmaceutic, the determination of the concentration preparations throughout manufacturing and subsequent handling in hospital is particularly relevant. In the present work, the study and validation of a method for quantifying intact CTX by reverse-phase high-performance liquid chromatography with diode array detection ((RP)HPLC/DAD) is presented. With that end, we checked the performance of a chromatographic method for quantifying CTX and conducted a study to validate the method as stability-indicating in accordance with the International Conference on Harmonization guidelines (ICH) for biotechnological drugs; therefore, we evaluated linearity, accuracy, precision, detection and quantification limits, robustness and system suitability. The specificity of the method and the robustness of the mAb formulation against external stress factors were estimated by comprehensive chromatographic analysis by subjecting CTX to several informative stress conditions. As demonstrated, the method is rapid, accurate, and reproducible for CTX quantification. It was also successfully used to quantify CTX in a long-term stability study performed under hospital conditions.
Collapse
Affiliation(s)
- Antonio Martínez-Ortega
- Department of Analytical Chemistry, University of Granada, Faculty of Science, Campus Fuentenueva s/n, E-18071 Granada, Spain
| | - Agustín Herrera
- Department of Analytical Chemistry, University of Granada, Faculty of Science, Campus Fuentenueva s/n, E-18071 Granada, Spain
| | - Antonio Salmerón-García
- UGC Intercentro Interniveles Farmacia Granada, San Cecilio Hospital, Biomedical Research Institute ibs. GRANADA. Hospitales Universitarios de Granada, University of Granada, E-18012 Granada, Spain
| | - José Cabeza
- UGC Intercentro Interniveles Farmacia Granada, San Cecilio Hospital, Biomedical Research Institute ibs. GRANADA. Hospitales Universitarios de Granada, University of Granada, E-18012 Granada, Spain
| | - Luis Cuadros-Rodríguez
- Department of Analytical Chemistry, Science Faculty, Biomedical Research Institute ibis. GRANADA, University of Granada, Campus Fuentenueva s/n, E-18071 Granada, Spain
| | - Natalia Navas
- Department of Analytical Chemistry, Science Faculty, Biomedical Research Institute ibis. GRANADA, University of Granada, Campus Fuentenueva s/n, E-18071 Granada, Spain
| |
Collapse
|
8
|
Sandra K, Vandenheede I, Sandra P. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization. J Chromatogr A 2014; 1335:81-103. [DOI: 10.1016/j.chroma.2013.11.057] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
|
9
|
Competitive adsorption-desorption of IgM monomers-dimers on silica and modified silica surfaces. J Colloid Interface Sci 2013; 402:291-9. [PMID: 23628202 DOI: 10.1016/j.jcis.2013.02.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 11/22/2022]
Abstract
Understanding competitive adsorption-desorption of proteins onto surfaces is an important area of research in food processing and biomedical engineering. Here, we demonstrate, how electrospray-differential mobility analysis that has been traditionally used for characterizing bionanoparticles, can be used for quantifying complex competitive adsorption-desorption of oligomeric proteins or multiprotein systems using monomers and dimers of IgM as a model example onto silica and modified silica surfaces. Using ES-DMA, we show that IgM dimers show a preference to stay adsorbed to different surfaces although monomers adsorb more easily and desorption rates of monomers and dimers of IgM are surface-type-dependent and are not significantly affected by shear. We anticipate that this demonstration will make ES-DMA a popular "label-free" method for studying multicomponent multi-oligomeric protein adsorption to different surfaces in the future.
Collapse
|
10
|
Guha S, Li M, Tarlov MJ, Zachariah MR. Electrospray–differential mobility analysis of bionanoparticles. Trends Biotechnol 2012; 30:291-300. [DOI: 10.1016/j.tibtech.2012.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
|