1
|
Hyaluronan-cecropin B interactions studied by ultrasound velocimetry and isothermal titration calorimetry. Int J Biol Macromol 2023; 227:786-794. [PMID: 36549616 DOI: 10.1016/j.ijbiomac.2022.12.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Interactions between hyaluronan and the antimicrobial peptide cecropin B were studied in water and PBS using high-resolution ultrasonic spectroscopy and isothermal titration calorimetry. Although each technique is fundamentally different, they both gave identical results. It was found that the molecular weight of hyaluronan plays an important role in the interactions - in particular, the transition between the rod conformation and the random coil conformation. In water, interactions were saturated in a molar charge ratio of 1.5 and not 1.0 as expected. The later saturation of the interaction probably occurred either for steric reasons or due to the interaction between functional groups in the cecropin structure, which allowed complete dissociation of the antimicrobial peptide. In PBS, in contrast to water, no interactions were observed, irrespective of the molecular weight of hyaluronan. Thus, at a sufficiently high ionic strength, the interactions were suppressed.
Collapse
|
2
|
Tomé Constantino AB, Garcia-Rojas EE. Vitamin D3 microcapsules formed by heteroprotein complexes obtained from amaranth protein isolates and lactoferrin: Formation, characterization, and bread fortification. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
3
|
A Review of Gum Hydrocolloid Polyelectrolyte Complexes (PEC) for Biomedical Applications: Their Properties and Drug Delivery Studies. Processes (Basel) 2021. [DOI: 10.3390/pr9101796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The utilization of natural gum polysaccharides as the vehicle for drug delivery systems and other biomedical applications has increased in recent decades. Their biocompatibility, biodegradability, and price are much cheaper than other materials. It is also renewable and available in massive amounts, which are the main reasons for its use in pharmaceutical applications. Gum can be easily functionalized with other natural polymers to enhance their applications. Various aspects of the utilization of natural gums in the forms of polyelectrolyte complexes (PECs) for drug delivery systems are discussed in this review. The application of different mathematical models were used to represent the drug release mechanisms from PECs; these models include a zero-order equation, first-order equation, Higuchi, simplified Higuchi, Korsmeyer–Peppas, and Peppas–Sahlin.
Collapse
|
4
|
Use of thermodynamics in understanding drug release from xanthan gum matrices: The influence of clay-drug complexes. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Application of Focus Variation Microscopy and Dissolution Imaging in Understanding the Behaviour of Hydrophilic Matrices. Pharmaceutics 2020; 12:pharmaceutics12121162. [PMID: 33260657 PMCID: PMC7759878 DOI: 10.3390/pharmaceutics12121162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrophilic matrix systems can be found in a wide range of extended release pharmaceutical formulations. The main principle of these systems is that upon contact with water, the hydrophilic component swells to form a hydrated gel layer which controls drug release. The following work demonstrates an explorative study into the use of dissolution imaging and focus variation microscopy with hydrophilic polymers. This study investigated the surface properties of xanthan gum (XG), polyethylene oxide (PEO), and hypromellose (hydroxypropyl methylcellulose, HPMC) compacts with each of these three hydrophilic polymers from one of each classification of natural, semi-synthetic, or synthetic polymer using a focus variation instrument. The auto correlation length (Sal) showed all surface profiles from the compacts displayed a value below 0.1 mm, indicating that only high frequency components (i.e., roughness) were considered and that the analysis had been successful. The developed interfacial area ratio (Sdr) displayed values below 5% in line with ISO guidelines for all the polymers studied with their texture aspect ratio values (Str) > 0.5, indicating uniformity of the surfaces of the produced compacts. Of the various parameters studied, areal material ratio (Smr2) predicted XG to wet and hydrate quicker than PEO, with PEO also wetting and hydrating quicker than the HPMC. The dissolution imaging and initial swelling studies proved to concur with the findings from the areal material ratio (Smr2) parameter, suggesting porosity was not an indicator for the ease with which water ingress occurs. This study suggests the Smr2 surface parameter to potentially predict wetting and initial hydration of hydrophilic polymers, however care should be taken as this study consists of a selected number of hydrophilic polymers.
Collapse
|
6
|
Bastos LPH, de Carvalho CWP, Garcia-Rojas EE. Formation and characterization of the complex coacervates obtained between lactoferrin and sodium alginate. Int J Biol Macromol 2018; 120:332-338. [DOI: 10.1016/j.ijbiomac.2018.08.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 02/08/2023]
|
7
|
Souza CJ, Souza CS, Heckert Bastos LP, Garcia-Rojas EE. Interpolymer complexation of egg white proteins and carrageenan: Phase behavior, thermodynamics and rheological properties. Int J Biol Macromol 2018; 109:467-475. [DOI: 10.1016/j.ijbiomac.2017.12.116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 11/29/2022]
|
8
|
Souza CJF, da Costa AR, Souza CF, Tosin FFS, Garcia-Rojas EE. Complex coacervation between lysozyme and pectin: Effect of pH, salt, and biopolymer ratio. Int J Biol Macromol 2017; 107:1253-1260. [PMID: 29017886 DOI: 10.1016/j.ijbiomac.2017.09.104] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 12/24/2022]
Abstract
The complexation between lysozyme and pectin was studied by acidification using zeta potential, turbidity measurements and calorimetry titration. The complexes were analyzed in various NaCl concentrations with different ratios. At ratio 1:1 with 0.01M NaCl, is worth mentioning that the insoluble complexes were formed between pH 2.0 and 7.0, which represents a great range to apply this complex to different food matrices. When the ratio was increased from 1:1 to 3:1, the pH range between the pHφ1 and pHφ2 increased even more. When the NaCl concentration was increased from 0.01M to 0.2M, a progressive reduction of turbidity was observed. At 0.4M NaCl, there was total suppression of complex formation at ratio ≤ 3:1. The process of complex coacervate formation occurred in two different steps, presenting favorable enthalpic as well as entropic contributions. The positive entropy change is a strong indication that water molecules have been released from the complex surface, however the positive sign of TΔS suggests that hydrophobic interactions were involved in the interaction between lysozyme and pectin. Microscopy images of the samples revealed that the complexes presented a spheroid-like appearance which may contribute to possible future applications.
Collapse
Affiliation(s)
- Clitor J F Souza
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Universidade Federal Rural de Rio de Janeiro (UFRRJ), Rodovia BR 465, Km 7, Seropédica, RJ 23890-000, Brazil
| | - Angélica R da Costa
- Laboratório de Engenharia e Tecnologia Agroindustrial (LETA), Universidade Federal Fluminense (UFF), Av. dos Trabalhadores, 420, Volta Redonda, RJ 27255-125, Brazil
| | - Clyselen F Souza
- Laboratório de Engenharia e Tecnologia Agroindustrial (LETA), Universidade Federal Fluminense (UFF), Av. dos Trabalhadores, 420, Volta Redonda, RJ 27255-125, Brazil
| | - Fernanda Fogagnoli Simas Tosin
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná (UFPR), Av. Coronel Francisco Heráclito dos Santos, 210, Centro Politécnico, Curitiba, PR 81531-980, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe (IPPPP), Faculdades Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba, PR 80250-060, Brazil
| | - Edwin E Garcia-Rojas
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Universidade Federal Rural de Rio de Janeiro (UFRRJ), Rodovia BR 465, Km 7, Seropédica, RJ 23890-000, Brazil; Laboratório de Engenharia e Tecnologia Agroindustrial (LETA), Universidade Federal Fluminense (UFF), Av. dos Trabalhadores, 420, Volta Redonda, RJ 27255-125, Brazil.
| |
Collapse
|
9
|
Backofen M, Schwach G, Koechling W, Weiss T, Goepferich A. Polyanion based controlled release system for the GnRH-receptor antagonist degarelix. Eur J Pharm Sci 2017; 104:65-71. [DOI: 10.1016/j.ejps.2017.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/18/2017] [Accepted: 03/24/2017] [Indexed: 11/16/2022]
|