1
|
Conway SL, Rosenberg KJ, Sotthivirat S, Goldfarb DJ. A Rational Hierarchy to Capture Raw Material Attribute Variability in the Pharmaceutical Drug Product Development and Manufacturing Lifecycle. J Pharm Sci 2024; 113:523-538. [PMID: 37838275 DOI: 10.1016/j.xphs.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Assessing the robustness of a drug product formulation and manufacturing process to variations in raw material (RM) properties is an essential aspect of pharmaceutical product development. Motivated by the need to demonstrate understanding of attribute-performance relationships at the time of new product registration and for subsequent process maintenance, we review practices to explore RM variations. We describe limitations that can arise when active ingredients and excipients invariably undergo changes during a drug product lifecycle. Historical approaches, such as Quality-by-Design (QbD) experiments, are useful for initial evaluations but can be inefficient and cumbersome to maintain once commercial manufacturing commences. The relatively miniscule data sets accessible in product development - used to predict response to a hypothetical risk of variation - become less relevant as real-world experience of actual variability in the commercial landscape grows. Based on our observations of development and manufacturing, we instead propose a holistic framework exploiting a hierarchy of RM variability, and challenge this with common failure modes. By explicitly incorporating higher ranking RM variations as perturbations, material-conserving experiments are shown to provide powerful and enduring robustness data. Case studies illustrate how correctly contextualizing such data in formulation and process development can avoid the traps of historical QbD approaches and become valuable for evaluating changes occurring later in the drug product lifecycle.
Collapse
Affiliation(s)
- Stephen L Conway
- Center for Materials Science and Engineering, MMD, Merck & Co., Inc., Rahway, NJ, USA; Current affiliation Packaging Commercialization, MMD Merck & Co., Inc., Rahway, NJ, USA.
| | - Kenneth J Rosenberg
- Center for Materials Science and Engineering, MMD, Merck & Co., Inc., Rahway, NJ, USA; Formerly of Merck & Co., Inc., Rahway, NJ, USA
| | - Sutthilug Sotthivirat
- Oral Formulation Sciences and Technology, MRL, Merck & Co., Inc., Rahway, NJ, USA; Formerly of Merck & Co., Inc., Rahway, NJ, USA
| | - David J Goldfarb
- Center for Materials Science and Engineering, MMD, Merck & Co., Inc., Rahway, NJ, USA
| |
Collapse
|
2
|
Simões A, Veiga F, Vitorino C. Question-based review for pharmaceutical development: An enhanced quality approach. Eur J Pharm Biopharm 2024; 195:114174. [PMID: 38160986 DOI: 10.1016/j.ejpb.2023.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Over the last years, the pharmaceutical industry has faced real challenges regarding quality assurance. In this context, the establishment of more holistic approaches to the pharmaceutical development has been encouraged. The emergence of the Quality by Design (QbD) paradigm as systematic, scientific and risk-based methodology introduced a new concept of pharmaceutical quality. In essence, QbD can be interpreted as a strategy to maximize time and cost savings. An in-depth understanding of the formulation and manufacturing process is demanded to optimize the safety, efficacy and quality of a drug product at all stages of development. This innovative approach streamlines the pharmaceutical Research and Development (R&D) process, provides greater manufacturing flexibility and reduces regulatory burden. To assist in QbD implementation, International Conference on Harmonisation (ICH), U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) organized and launched QbD principles in their guidance for industry, identifying key concepts and tools to design and develop a high-quality drug product. Despite the undeniable advantages of the QbD approach, and the widespread information on QbD regulatory expectations, its full implementation in the pharmaceutical field is still limited. The present review aims to establish a crosswise overview on the current application status of QbD within the framework of the ICH guidelines (ICH Q8(R2) - Q14 and ICH Q2(R2)). Moreover, it outlines the way information gathered from the QbD methodology is being harmonized in Marketing Authorization Applications (MAAs) for European market approval. This work also highlights the challenges that hinder the deployment of the QbD strategy as a standard practice.
Collapse
Affiliation(s)
- Ana Simões
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV/REQUIMTE), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology (LAQV/REQUIMTE), Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra 3004-535 Coimbra, Portugal.
| |
Collapse
|
3
|
Tanabe S, Muraki T, Yaginuma K, Kim S, Kano M. Greedy design space construction based on regression and latent space extraction for pharmaceutical development. Int J Pharm 2023; 642:123178. [PMID: 37364782 DOI: 10.1016/j.ijpharm.2023.123178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Implementation of the design space (DS) is a scientific concept for ensuring quality to be submitted as a part of the regulatory filing of a drug product for approval to market. An empirical approach is constructing the DS based on the regression model whose inputs are process parameters and material attributes over the different unit operations, i.e., a high-dimensional statistical model. While the high-dimensional model assures quality and process flexibility through a comprehensive process understanding, it has difficulty visualizing the feasible range of input parameters, i.e., DS. Therefore, this study proposes a greedy approach to constructing the extensive and flexible low-dimensional DS based on the high-dimensional statistical model and the observed internal representations that satisfies both comprehensive process understanding and the DS visualization capability. Introducing the observed correlation structure enabled the dimensionality reduction of the DS. The non-critical controllable parameters were fixed to the target values in visualizing the low-dimensional DS as a function of critical parameters. The expected variation of non-critical non-controllable parameters was considered the source of variation in prediction. The case study demonstrated the proposed approach's usefulness for developing the pharmaceutical manufacturing process.
Collapse
Affiliation(s)
- Shuichi Tanabe
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, 2540014 Hiratsuka, Japan.
| | - Tatsuya Muraki
- Department of Systems Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 6068501, Japan
| | - Keita Yaginuma
- Formulation Technology Research Laboratories, Daiichi Sankyo Co., Ltd., 1-12-1 Shinomiya, 2540014 Hiratsuka, Japan
| | - Sanghong Kim
- Department of Applied Physics and Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 1840012, Japan
| | - Manabu Kano
- Department of Systems Science, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto 6068501, Japan
| |
Collapse
|
4
|
Hong SH, Dinh L, Abuzar SM, Lee ES, Hwang SJ. Synthesis of Celecoxib-Eutectic Mixture Particles via Supercritical CO 2 Process and Celecoxib Immediate Release Tablet Formulation by Quality by Design Approach. Pharmaceutics 2022; 14:pharmaceutics14081549. [PMID: 35893805 PMCID: PMC9331714 DOI: 10.3390/pharmaceutics14081549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Significant improvements in the wettability and dissolution rate of celecoxib (CEL), a poorly soluble selective cyclooxygenase-2 (COX-2) inhibitor, have been shown by Huyn et al., 2019 by combining the binary pharmaceutical compositions including CEL and one of the two co-formers, adipic acid (ADI) and saccharin (SAC), into eutectic mixtures (EM). Purpose: In this study, we developed a therapeutic eutectic system for CEL which is a promising approach for oral delivery to enhance bioavailability. CEL EM were synthesized by novel techniques including supercritical CO2 techniques and new tablet formulations were purposed. Methods: CEL EM were synthesized by evaporation crystallization method, spray drying, supercritical fluid (SCF) techniques. The CEL EM particles were then characterized by differential scanning calorimetry, powder X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscope, and particle size analysis. Dissolution studies were carried out. With a quality by design approach, a statistical method through design of experiment and data analysis by JMP® (SAS institute) was applied to CEL EM immediate release tablet formulation development. Results: CEL EM produced by spray drying technique, supercritical fluid (SCF) techniques were identified and characterized. The enhancement of dissolution was observed for SCF processed samples. The design space for CEL-ADI EM IR tablet and control limits for individual parameters were determined.
Collapse
Affiliation(s)
- Seung-Hyeon Hong
- College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea; (S.-H.H.); (L.D.); (S.M.A.); (E.S.L.)
- Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
| | - Linh Dinh
- College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea; (S.-H.H.); (L.D.); (S.M.A.); (E.S.L.)
- Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
| | - Sharif Md Abuzar
- College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea; (S.-H.H.); (L.D.); (S.M.A.); (E.S.L.)
- Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
| | - Eun Seok Lee
- College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea; (S.-H.H.); (L.D.); (S.M.A.); (E.S.L.)
- Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
| | - Sung-Joo Hwang
- College of Pharmacy, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea; (S.-H.H.); (L.D.); (S.M.A.); (E.S.L.)
- Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Korea
- Correspondence: ; Tel.: +82-32-7494518
| |
Collapse
|
5
|
Sarisaltik-Yasin D, Uslu A, Uyar E, Erdinc M, Teksin ZS. QbD Application for a Fixed-Dose Combination with Biowaiver Potential: Evaluations of In Vitro and In Vivo Applications. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Jakubowska E, Ciepluch N. Blend Segregation in Tablets Manufacturing and Its Effect on Drug Content Uniformity-A Review. Pharmaceutics 2021; 13:pharmaceutics13111909. [PMID: 34834324 PMCID: PMC8620778 DOI: 10.3390/pharmaceutics13111909] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022] Open
Abstract
Content uniformity (CU) of the active pharmaceutical ingredient is a critical quality attribute of tablets as a dosage form, ensuring reproducible drug potency. Failure to meet the accepted uniformity in the final product may be caused either by suboptimal mixing and insufficient initial blend homogeneity, or may result from further particle segregation during storage, transfer or the compression process itself. This review presents the most relevant powder segregation mechanisms in tablet manufacturing and summarizes the currently available, up-to-date research on segregation and uniformity loss at the various stages of production process—the blend transfer from the bulk container to the tablet press, filling and discharge from the feeding hopper, as well as die filling. Formulation and processing factors affecting the occurrence of segregation and tablets’ CU are reviewed and recommendations for minimizing the risk of content uniformity failure in tablets are considered herein, including the perspective of continuous manufacturing.
Collapse
Affiliation(s)
- Emilia Jakubowska
- Chair and Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznan, Poland
- Correspondence:
| | - Natalia Ciepluch
- Department of Medical Rescue, Chair of Emergency Medicine, Faculty of Health Sciences, Poznan University of Medical Sciences, 7 Rokietnicka Street, 60-806 Poznan, Poland;
| |
Collapse
|
7
|
Jiwa N, Ozalp Y, Yegen G, Aksu B. Critical Tools in Tableting Research: Using Compaction Simulator and Quality by Design (QbD) to Evaluate Lubricants' Effect in Direct Compressible Formulation. AAPS PharmSciTech 2021; 22:151. [PMID: 33977355 DOI: 10.1208/s12249-021-02004-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/27/2021] [Indexed: 11/30/2022] Open
Abstract
As commonly known, the product development stage is quite complex, requires intensive knowledge, and is time-consuming. The selection of the excipients with the proper functionality and their corresponding levels is critical to drug product performance. The objective of this study was to apply quality by design (QbD) principles for formulation development and to define the desired product quality profile (QTPP) and critical quality attributes (CQA) of a product. QbD is a risk- and science-based holistic approach for upgraded pharmaceutical development. In this study, Ibuprofen DC 85W was used as a model drug, Cellactose® 80 along with MicroceLac® 100 as a filler, and magnesium stearate, stearic acid, and sodium stearyl fumarate as lubricants. By applying different formulation parameters to the filler and lubricants, the QbD approach furthers the understanding of the effect of critical formulation and process parameters on CQAs and the contribution to the overall quality of the drug product. An experimental design study was conducted to determine the changes of the obtained outputs of the formulations, which were evaluated using the Modde Pro 12.1 statistical computer program that enables optimization by modeling complex relationships. The results of the optimum formulation revealed that MicroceLac® 100 was the superior filler, while magnesium stearate at 1% was the optimum lubricant. A design space that indicates the safety operation limits for the process and formulation variables was also created. This study enriches the understanding of the effect of excipients in formulation and assists in enhancing formulation design using experimental design and mathematical modeling methods in the frame of the QbD approach.
Collapse
|
8
|
Than YM, Titapiwatanakun V. Tailoring immediate release FDM 3D printed tablets using a quality by design (QbD) approach. Int J Pharm 2021; 599:120402. [PMID: 33640426 DOI: 10.1016/j.ijpharm.2021.120402] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/31/2021] [Accepted: 02/13/2021] [Indexed: 01/14/2023]
Abstract
The aims of this work were to produce immediate release printed tablets using fused deposition modelling (FDM) technique and to systematically explore the effects of different compositions on drug release by Quality by Design approach. Screening studies of various drug loadings and excipients were conducted by hot melt extrusion and FDM printing to set up the appropriate limit of each independent factor (critical material attribute, CMA) in Design of Experiment. This study demonstrated that the use of polymeric mixture containing different theophylline loadings (10, 30 and 60% w/w) in combination with multiple pharmaceutical polymers (hydroxy propyl cellulose (HPC), Eudragit® EPO, Kollidon® VA 64) and disintegrant (sodium starch glycolate) were successfully hot melt-extruded and FDM printed with no plasticizer. Rheological measurement was performed to understand the critical process parameters (CPP) while the mechanical property of extrudable and printable filaments was investigated by 3-point test for the formulation development. Surprisingly, HPC were found to be superior as a flexibility modifier in all printable filaments. A range of pharmaceutical characterizations were examined to ensure the critical quality attributes (CQA). Characteristic dissolution profiles were obtained. D-optimal mixture design of 17 formulations suggested that theophylline release was considerably affected by the combined action of different excipients and could predict the optimum formulation with the required quality target product profile (QTPP) in pharmacopoeia (85% release at 30 min). Therefore, this can be a useful platform to develop immediate release products for a specific group of patients commercially.
Collapse
Affiliation(s)
- Yee Mon Than
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai road, Pathumwan, Bangkok 10330, Thailand
| | - Varin Titapiwatanakun
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
9
|
Izutsu KI, Abe Y, Yoshida H. Approaches to supply bioequivalent oral solid pharmaceutical formulations through the lifecycles of products: Four-media dissolution monitoring program in Japan. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Grangeia HB, Silva C, Simões SP, Reis MS. Quality by design in pharmaceutical manufacturing: A systematic review of current status, challenges and future perspectives. Eur J Pharm Biopharm 2020; 147:19-37. [DOI: 10.1016/j.ejpb.2019.12.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022]
|
11
|
|
12
|
dos Santos GCM, Rosado LHG, Alves MCC, de Paula Lima I, Ferreira TP, Borges DA, de Oliveira PC, de Sousa Magalhães V, Scott FB, Cid YP. Fipronil Tablets: Development and Pharmacokinetic Profile in Beagle Dogs. AAPS PharmSciTech 2019; 21:9. [PMID: 31797083 DOI: 10.1208/s12249-019-1571-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022] Open
Abstract
Increased human-pet interactions have led to concerns related to the prevention and treatment of ectoparasite infestations. Fipronil (FIP) is a widely used ectoparasiticide in veterinary medicine available for topical administration; however, its use may cause damage to the owners and the environment. The aim of the study was to develop immediate-release tablets of FIP, as well as to determine its pharmacokinetic properties after oral administration in beagle dogs. The prepared FIP tablets were evaluated for pre-compression (angle of repose, speed flow, and Carr's index) and post-compression (weight variation, friability, thickness, hardness, disintegration time, and dissolution rate) parameters. Orally administered FIP at a dose of 2 mg/kg was rapidly absorbed with Cmáx of 3.13 ± 1.39 μg/mL at 1.83 ± 0.40 h post treatment (P.T.) and metabolized with 1.27 ± 1.04 μg/mL at 2.33 ± 0.82 h P.T. for fipronil sulfone (SULF) (the primary metabolite). The elimination of FIP and SULF occurred slowly and had maintained quantifiable plasma levels in the blood for up to 28 days P.T. The goal of the study is aligned with the concept of One Health, which aims to collaboratively achieve the best health for people, animals, and the environment. Therefore, the use of FIP tablets for the control of ectoparasites in dogs may be a safer alternative for owners and the environment.
Collapse
|
13
|
Phadke C, Sharma J, Sharma K, Bansal AK. Effect of Variability of Physical Properties of Povidone K30 on Crystallization and Drug–Polymer Miscibility of Celecoxib–Povidone K30 Amorphous Solid Dispersions. Mol Pharm 2019; 16:4139-4148. [DOI: 10.1021/acs.molpharmaceut.9b00452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Binte Abu Bakar SY, Salim M, Clulow AJ, Hawley A, Boyd BJ. Revisiting dispersible milk-drug tablets as a solid lipid formulation in the context of digestion. Int J Pharm 2019; 554:179-189. [PMID: 30391337 PMCID: PMC6328708 DOI: 10.1016/j.ijpharm.2018.10.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/01/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022]
Abstract
Oral delivery of dispersible tablets is a preferred route of administration for paediatrics due to ease of administration and dose control. Milk has gained interest as a drug delivery system due to its ability to dissolve poorly water-soluble drugs. There are no reports of milk tablet formulations being assessed in the context of lipid digestion, which is critical in influencing orally administered drug solubility and bioavailability. Milk-drug tablets were formulated by blending freeze-dried bovine milk or infant formula with the poorly water-soluble drug cinnarizine, which were directly compressed. Tablet strength, friability and dispersibility were quantified and synchrotron X-ray scattering was used to determine the lipid liquid crystalline phases formed during in vitro digestion of dispersed tablets and their effects on drug solubilisation. Tableting had a significant impact on the self-assembly of lipids in redispersed milk tablets whereas no effect was seen for infant formula tablets. Incorporation of the disintegrant poly(vinylpolypyrrolidone) to reduce tablet dispersion times promoted the formation of hexagonal liquid crystalline phases upon digestion but had minimal effect on drug solubilisation. These findings show that similar to the use of liquid milk, the formulation of milk-drug tablets can be used to improve solubilisation of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Syaza Y Binte Abu Bakar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Malinda Salim
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Andrew J Clulow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, Victoria 3169, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia.
| |
Collapse
|
15
|
Tobyn M, Ferreira AP, Lightfoot J, Martin EB, Ghimire M, Vesey C, Kasuboski-Freeman A, Rajabi-Siahboomi A. Multivariate analysis as a method to understand variability in a complex excipient, and its contribution to formulation performance. Pharm Dev Technol 2018; 23:1146-1155. [PMID: 30303433 DOI: 10.1080/10837450.2018.1534862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A key part of the Risk Assessment of excipients is to understand how raw material variability could (or does) contribute to differences in performance of the drug product. Here we demonstrate an approach which achieves the necessary understanding for a complex, functional, excipient. Multivariate analysis (MVA) of the certificates of analysis of an ethylcellulose aqueous dispersion (Surelease) formulation revealed low overall variability of the properties of the systems. Review of the scores plot to highlight batches manufactured using the same ethylcellulose raw material in the formulation, indicated that these batches tend to be more closely related than other randomly selected batches. This variability could result in potential differences in the quality of drug product lots made from these batches. Manufacture of a model drug product from Surelease batches coated using different lots of starting material revealed small differences in the release of a model drug, which could be detected by certain model dependent dissolution modeling techniques, but they were not observed when using model-independent techniques. This illustrates that the techniques are suitable for detecting and understanding excipient variability, but that, in this case, the product was still robust.
Collapse
Affiliation(s)
- Mike Tobyn
- a Drug Product Science & Technology , Bristol-Myers Squibb , Moreton, Wirral , UK
| | | | - Jane Lightfoot
- b Department of Chemical Engineering and Advanced Materials , University of Newcastle , Newcastle , UK
| | - Elaine B Martin
- b Department of Chemical Engineering and Advanced Materials , University of Newcastle , Newcastle , UK
| | | | | | | | | |
Collapse
|
16
|
2 3 Full Factorial Model for Particle Size Optimization of Methotrexate Loaded Chitosan Nanocarriers: A Design of Experiments (DoE) Approach. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7834159. [PMID: 30356374 PMCID: PMC6176313 DOI: 10.1155/2018/7834159] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/16/2018] [Indexed: 01/06/2023]
Abstract
Purpose To build and inquire a statistically significant mathematical model for manufacturing methotrexate loaded chitosan nanoparticles (CsNP) of desired particle size. The study was also performed to evaluate the effect of formulation variables in the explored design space. Method Ionotropic gelation technique was followed for chitosan nanocarriers by changing formulation variables suggested as per Design Expert software. Altering the levels of Chitosan, tripolyphosphate, methotrexate by 23 factorial design served the purpose. The CsNP were characterized for nanocarrier formation, particle size, and statistical analysis. Then mathematical model was statistically analyzed for fabricating desired formulation having particle size less than 200nm. Results FT-IR, XRD reports confirmed the structural change in chitosan which lead to the formation of CsNP. For particle size, linear model was found to be best fit to explain effect of variables. Besides, high R2 (0.9958) defends the constancy of constructed model. Chitosan exhibited higher t-value in Pareto chart and a p-value <0.0001. Based on maximum desirability, optimization was performed and amount of variables for preparing CsNP of 180nm was predicted. The experiment was carried out with software suggested combination and particle size was found to be 176±4nm. Conclusion Low p-value endorsed the greater dominance of chitosan on particle size. Good model adequacy and small percentage error between predicted and experimented value established the reliability of constructed model for robust preparation of CsNP.
Collapse
|
17
|
Chattoraj S, Daugherity P, McDermott T, Olsofsky A, Roth WJ, Tobyn M. Sticking and Picking in Pharmaceutical Tablet Compression: An IQ Consortium Review. J Pharm Sci 2018; 107:2267-2282. [DOI: 10.1016/j.xphs.2018.04.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022]
|
18
|
N. Politis S, Colombo P, Colombo G, M. Rekkas D. Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm 2017; 43:889-901. [DOI: 10.1080/03639045.2017.1291672] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Stavros N. Politis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Paolo Colombo
- Department of Pharmacy, University of Parma, Parma, Italy
- PlumeStars s.r.l., Parma, Italy
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dimitrios M. Rekkas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Panzitta M, Ponti M, Bruno G, Cois G, D'Arpino A, Minghetti P, Mendicino FR, Perioli L, Ricci M. The strategic relevance of manufacturing technology: An overall quality concept to promote innovation preventing drug shortage. Int J Pharm 2016; 516:144-157. [PMID: 27838294 DOI: 10.1016/j.ijpharm.2016.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/01/2016] [Accepted: 11/04/2016] [Indexed: 11/25/2022]
Abstract
Manufacturing is the bridge between research and patient: without product, there is no clinical outcome. Shortage has a variety of causes, in this paper we analyse only causes related to manufacturing technology and we use shortage as a paradigm highliting the relevance of Pharmaceutical Technology. Product and process complexity and capacity issues are the main challenge for the Pharmaceutical Industry Supply chain. Manufacturing Technology should be acknowledged as a R&D step and as a very important matter during University degree in Pharmacy and related disciplines, promoting collaboration between Academia and Industry, measured during HTA step and rewarded in terms of price and reimbursement. The above elements are not yet properly recognised, and manufacturing technology is taken in to consideration only when a shortage is in place. In a previous work, Panzitta et al. proposed to perform a full technology assessment at the Health Technological Assessment stage, evaluating three main technical aspects of a medicine: manufacturing process, physicochemical properties, and formulation characteristics. In this paper, we develop the concept of manufacturing appraisal, providing a technical overview of upcoming challenges, a risk based approach and an economic picture of shortage costs. We develop also an overall quality concept, not limited to GMP factors but broaden to all elements leading to a robust supply and promoting technical innovation.
Collapse
Affiliation(s)
- Michele Panzitta
- Department of Pharmaceutical Sciences Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy; AFI, Study Group on Pharmaceutical Economy, Viale Ranzoni 1 20041 Milano, Italy
| | - Mauro Ponti
- AFI, Study Group on Pharmaceutical Economy, Viale Ranzoni 1 20041 Milano, Italy; Sanofi-Genzyme, Viale Luigi Bodio 37/b, 20158 Milano, Italy
| | - Giorgio Bruno
- AFI-Associazione Farmaceutici dell'Industria, viale Ranzoni 1, 20041 Milano, Italy; Recipharm AB, Via Filippo Serpero, 2, Masate (MI), Italy
| | - Giancarlo Cois
- AFI, Study Group on Pharmaceutical Economy, Viale Ranzoni 1 20041 Milano, Italy; Chiesi Via San Leonardo, 96A, 43122 Parma, Italy
| | - Alessandro D'Arpino
- AFI, Study Group on Pharmaceutical Economy, Viale Ranzoni 1 20041 Milano, Italy; Perugia Hospital, Pharmacy Department, 06132 Sant'Andrea delle Fratte, Perugia, Italy
| | - Paola Minghetti
- AFI-Associazione Farmaceutici dell'Industria, viale Ranzoni 1, 20041 Milano, Italy; School of Hospital Pharmacy, Pharmaceutical Sciences Department, Università degli Studi di Milano, Via Festa del Perdono 7 - Milano, Italy
| | | | - Luana Perioli
- Department of Pharmaceutical Sciences Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy; AFI, Study Group on Pharmaceutical Economy, Viale Ranzoni 1 20041 Milano, Italy; School of Hospital Pharmacy, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| |
Collapse
|
20
|
Castillo-Peinado LDLS, Luque de Castro MD. The role of ultrasound in pharmaceutical production: sonocrystallization. J Pharm Pharmacol 2016; 68:1249-67. [DOI: 10.1111/jphp.12614] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/05/2016] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
The main aim of this review was to develop a critical discussion of the key role ultrasound (US) can play on the production of active pharmaceutical ingredients (APIs) by discussing the versatile effect this type of energy produces.
Methods
The different crystallization techniques that can be assisted and improved by US are discussed in the light of the available US devices and the effect pursued by application of US energy. Simple and complex analytical methods to monitor API changes are also discussed.
Key findings
The countless achievements of API US-assisted production are summarized in a table, and outstanding effects such as narrower particle size distribution; decreased particle size, induction time, metastable zone and supersaturation levels; or a solubility increase are critically discussed.
Conclusions
The indisputable advantages of sonocrystallization over other ways of API production have been supported on multiple examples, and pending goals in this field (clarify the effect of US frequency on crystallization, know the mechanism of sonocrystallization, determine potential degradation owing to US energy, avoid calculation of the process yield by determining the concentration of the target drug remaining in the solution, etc.) should be achieved.
Collapse
Affiliation(s)
- Laura de los Santos Castillo-Peinado
- Department of Analytical Chemistry, University of Córdoba, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
| | - María Dolores Luque de Castro
- Department of Analytical Chemistry, University of Córdoba, Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
| |
Collapse
|
21
|
Orubu SEF, Hobson NJ, Basit AW, Tuleu C. The Milky Way: paediatric milk-based dispersible tablets prepared by direct compression - a proof-of-concept study. ACTA ACUST UNITED AC 2016; 69:417-431. [PMID: 27349946 DOI: 10.1111/jphp.12570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/10/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Dispersible tablets are proposed by the World Health Organization as the preferred paediatric formulation. It was hypothesised that tablets made from a powdered milk-base that disperse in water to form suspensions resembling milk might be a useful platform to improve acceptability in children. METHODS Milk-based dispersible tablets containing various types of powdered milk and infant formulae were formulated. The influence of milk type and content on placebo tablet properties was investigated using a design-of-experiments approach. Responses measured included friability, crushing strength and disintegration time. Additionally, the influence of compression force on the tablet properties of a model formulation was studied by compaction simulation. KEY FINDINGS Disintegration times increased as milk content increased. Compaction simulation studies showed that compression force influenced disintegration time. These results suggest that the milk content, rather than type, and compression force were the most important determinants of disintegration. CONCLUSION Up to 30% milk could be incorporated to produce 200 mg 10-mm flat-faced placebo tablets by direct compression disintegrating within 3 min in 5-10 ml of water, which is a realistic administration volume in children. The platform could accommodate 30% of a model active pharmaceutical ingredient (caffeine citrate).
Collapse
Affiliation(s)
- Samuel E F Orubu
- University College London School of Pharmacy, 29 - 39 Brunswick Square, London, WC1N 1AX, UK
| | - Nicholas J Hobson
- University College London School of Pharmacy, 29 - 39 Brunswick Square, London, WC1N 1AX, UK
| | - Abdul W Basit
- University College London School of Pharmacy, 29 - 39 Brunswick Square, London, WC1N 1AX, UK
| | - Catherine Tuleu
- University College London School of Pharmacy, 29 - 39 Brunswick Square, London, WC1N 1AX, UK
| |
Collapse
|
22
|
Integrated Application of Quality-by-Design Principles to Drug Product Development: A Case Study of Brivanib Alaninate Film-Coated Tablets. J Pharm Sci 2016; 105:168-81. [PMID: 26852852 DOI: 10.1016/j.xphs.2015.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/08/2015] [Accepted: 11/10/2015] [Indexed: 11/23/2022]
Abstract
Modern drug product development is expected to follow quality-by-design (QbD) paradigm. At the same time, although there are several issue-specific examples in the literature that demonstrate the application of QbD principles, a holistic demonstration of the application of QbD principles to drug product development and control strategy, is lacking. This article provides an integrated case study on the systematic application of QbD to product development and demonstrates the implementation of QbD concepts in the different aspects of product and process design for brivanib alaninate film-coated tablets. Using a risk-based approach, the strategy for development entailed identification of product critical quality attributes (CQAs), assessment of risks to the CQAs, and performing experiments to understand and mitigate identified risks. Quality risk assessments and design of experiments were performed to understand the quality of the input raw materials required for a robust formulation and the impact of manufacturing process parameters on CQAs. In addition to the material property and process parameter controls, the proposed control strategy includes use of process analytical technology and conventional analytical tests to control in-process material attributes and ensure quality of the final product.
Collapse
|
23
|
Hertrampf A, Müller H, Menezes J, Herdling T. Advanced qualification of pharmaceutical excipient suppliers by multiple analytics and multivariate analysis combined. Int J Pharm 2015; 495:447-458. [DOI: 10.1016/j.ijpharm.2015.08.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 10/23/2022]
|
24
|
Chang LC, Kang JJ, Gau CS. The evolution and challenges for the international harmonization of the regulation of pharmaceutical excipients in Taiwan. Regul Toxicol Pharmacol 2015; 73:947-52. [PMID: 26387930 DOI: 10.1016/j.yrtph.2015.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 11/27/2022]
Abstract
Excipients, once considered an inert component, have been shown to greatly influence the characteristics of the drug product, such as quality and safety. Functionality-related characteristics of excipients could affect the performance of the drug product. Moreover, the impact of globalization has complicated the issue and made the supervision of supply chain highly important. Taiwan, a member of the Pharmaceutical Inspection Convention and Pharmaceutical Inspection Co-operation Scheme, makes efforts to harmonize with international regulations and to strengthen the protection of patients through regulatory controls. In order to improve the harmonization and the transparency of regulatory requirements, the aim of the present study was to investigate the regulatory framework and considerations of stringent regulatory authorities and to propose the draft regulatory requirements to the Taiwan Food and Drug Administration for jurisdiction. The proposal which was extensively discussed in the expert committee includes the regulatory considerations to ensure the safety and quality of the excipients and may serve as a platform to facilitate the communication with industries about the current thinking on related issues. Moreover, through the review of the recent guidelines published by the stringent regulatory authorities, the trend of the regulatory considerations was revealed and discussed.
Collapse
Affiliation(s)
- Lin-Chau Chang
- Center for Drug Evaluation, 3F, No.465, Sec.6, Zhongxiao E. Rd., Taipei 11557, Taiwan.
| | - Jaw-Jou Kang
- Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec.1, Jen Ai Rd., Taipei 10051, Taiwan.
| | - Churn-Shiouh Gau
- Center for Drug Evaluation, 3F, No.465, Sec.6, Zhongxiao E. Rd., Taipei 11557, Taiwan.
| |
Collapse
|
25
|
Understanding the impact of microcrystalline cellulose physicochemical properties on tabletability. Int J Pharm 2015; 490:47-54. [DOI: 10.1016/j.ijpharm.2015.05.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 05/07/2015] [Accepted: 05/09/2015] [Indexed: 11/22/2022]
|
26
|
Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment—A review. Int J Pharm 2014; 473:64-72. [DOI: 10.1016/j.ijpharm.2014.06.055] [Citation(s) in RCA: 231] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/22/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
|