1
|
Ashraf M, El-Sawy HS, El Zaafarany GM, Abdel-Mottaleb MMA. Eucalyptus oil nanoemulsion for enhanced skin deposition of fluticasone propionate in psoriatic plaques: A combinatorial anti-inflammatory effect to suppress implicated cytokines. Arch Pharm (Weinheim) 2024:e2400557. [PMID: 39449230 DOI: 10.1002/ardp.202400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease that affects patients' quality of life. This study aimed to enhance the efficacy of topical application of fluticasone propionate (FP) using a eucalyptus oil-based nanoemulsion, an oil possessing anti-inflammatory activity and extracted from the leaves, fruits, and buds of Eucalyptus globulus or Eucalyptus maidenii, to improve the skin deposition of FP and aid its anti-inflammatory effect. Box-Behnken design was employed to optimize NE formulations, which were characterized for globule size, zeta potential, polydispersity index, rheological behavior, microscopic morphology, ex vivo skin permeation/deposition, and in vivo efficacy using imiquimod-induced psoriatic lesions. The optimized formulation depicted a droplet size of 188 ± 22.4 nm, a zeta potential of -17.63 ± 1.66 mV, and a viscosity of 204.9 mPa s. In addition to the increased FP retention in different skin layers caused by the NE and the reduced PASI score compared to the marketed cream, the levels of inflammatory cytokines IL-1α, IL-6, IL17a were markedly lowered, indicating the improved anti-psoriatic curable efficacy of the optimized formulation in comparison to the FP-marketed product.
Collapse
Affiliation(s)
- Mohamed Ashraf
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
- Department of Pharmacy, Al-Kut University College, Kut, Wasit, Iraq
| | - Ghada M El Zaafarany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona M A Abdel-Mottaleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Cheng L, Zhang S, Zhang Q, Gao W, Mu S, Wang B. Wound healing potential of silver nanoparticles from Hybanthus enneaspermus on rats. Heliyon 2024; 10:e36118. [PMID: 39286104 PMCID: PMC11403429 DOI: 10.1016/j.heliyon.2024.e36118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
In this study, we green synthesized silver nanoparticles (Ag Nps) from Hybanthus enneaspermus leaves (HE-Ag NPs) and evaluated their antimicrobial and wound-healing properties. The synthesized HE-Ag NPs were characterized using various techniques, revealing face-centered polygonal structures, a well-dispersed appearance, and an average particle size of 42-51 nm. The antimicrobial effects of HE-Ag NPs and their embedded cotton fabrics were tested against several pathogens, showing effective inhibition of growth. The cytotoxicity and anti-inflammatory properties of HE-Ag NPs were assessed using MTT assays on L929 and RAW 264.7 cells and by measuring inflammatory cytokine levels in LPS-treated RAW 264.7 cells. HE-Ag NPs did not affect the viability of L929 and RAW 264.7 cells and significantly reduced inflammatory cytokine levels. In vivo studies using an excision wound model demonstrated that HE-Ag NPs-loaded ointment significantly increased hydroxyproline, total protein, and antioxidant levels and enhanced the wound contraction rate. These findings suggest that HE-Ag NPs have potent antimicrobial properties and promote wound healing, indicating their potential for use in topical ointments for wound care.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Song Zhang
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Qian Zhang
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Wenjie Gao
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Shengzhi Mu
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Benfeng Wang
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| |
Collapse
|
3
|
Alharbi WS, Alshehri AA, Ahmed TA, Shadab M, Almehmady AM, Alshabibi MA, Altamimi RM, El-Say KM. Enhancing the Antiproliferative Activity of Perillyl Alcohol against Glioblastoma Cell Lines through Synergistic Formulation with Natural Oils. Curr Pharm Des 2024; 30:1075-1084. [PMID: 38532602 DOI: 10.2174/0113816128293758240318080527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND Due to its volatility, photostability, and gastrointestinal toxicity, Perillyl Alcohol (POH), a monoterpenoid component of various plant species, is a chemotherapeutic drug with insufficient efficacy. Many naturally occurring bioactive compounds have well-known antiproliferative properties, including sefsol, jojoba, tea tree, and moringa oils. OBJECTIVE This study sought to develop an oil-based Self Nanoemulsifying Drug Delivery System (SNEDDS) using tween 80 as the surfactant and Dimethyl Sulfoxide (DMSO) or Polyethylene Glycol (PEG) 400 as the cosurfactant; the oils were used in a range of 10-20% to boost POH's anticancer efficacy. METHODS The formulations' size, charge, and impact on the viability of glioma cell lines, ANGM-CSS and A172, were evaluated. RESULTS The developed SNEDDS formulations ranged from 3 nm to 362 nm in size, with electronegative surface charges between 5.05 and 17.0 mV and polydispersity indices between 0.3 and 1.0. CONCLUSION The findings indicated that the antiproliferative effect of POH-loaded Nanoemulsion (NE) could be used as a possible anticancer therapy for glioblastoma in vitro, particularly when paired with the tested natural oils. Before asserting that this delivery technique is appropriate for glioblastoma therapy, additional in vitro and in vivo investigations are required.
Collapse
Affiliation(s)
- Waleed S Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdullah A Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md Shadab
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alshaimaa M Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manal A Alshabibi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Reem M Altamimi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Nataraj G, Jagadeesan G, Manoharan AL, Muniyandi K, Sathyanarayanan S, Thangaraj P. Ipomoea pes-tigridis L. extract accelerates wound healing in Wistar albino rats in excision and incision models. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116808. [PMID: 37343652 DOI: 10.1016/j.jep.2023.116808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE An annual herb, Ipomoea pes-tigridis L. (Convolvulaceae) is widely used for its anti-inflammatory and anti-spasmodic properties in traditional medicine. As well as treating wounds, fever, skin disorders, and other ailments, it is also used for other purposes. AIM OF THE STUDY This study investigated polyphenolic content, antioxidant activity, RP-HPLC, wound healing, and antioxidant enzyme activity. In terms of I. pes-tigridis potential for healing wounds, there is no scientific data available. Hence this study is designed to use animal models to investigate the ethnopharmacological report. MATERIALS METHODS The crude extracts of stem and leaf were subjected to phytochemicals, TPC, TTC, TFC, and free radical scavenging assays (DPPH, ABTS, etc). Excision and incision models were used to assess wound healing using the screened extracts (IPLEA, IPLM, IPSEA, and IPSM). Various tissue parameters (hydroxyproline, hexosamine, hexuronic acid content), as well as antioxidant enzyme activity (SOD, Catalase, GPX, LPO), were also examined. RESULTS The maximum amount of polyphenolic content was found in IPLM (TPC- 118.86 ± 5.94 mg GAE/g, TTC - 75.25 ± 2.64 mg TAE/g, and TFC-25.73 ± 0.99 mg GAE/g) with significant IC50 value of 1.65 ± 0.87 μg/mL among all the extracts. Coumaric acid was reported high (92.86 mg/g) in RP-HPLC analysis of crude extract in IPLEA. The in vivo excision wound healing model revealed that 1% IPLM had better healing property with the maximum wound healing area (0.098 ± 0.03 cm) and wound concentration (95.56 ± 1.95%) was reported with the significance level of ***P < 0.001, **P < 0.01, *P < 0.05. In the incision model, IPLM represented maximum tensile strength (27500 gf). A significant functional effect of the granulation tissue parameters and enzyme antioxidants on the wound-healed area of dry tissue was also observed. Finally, the histopathological analysis showed enhanced re-epithelialization, fibroblast proliferation, and collagen synthesis in wound-treated animal tissue in both models. CONCLUSION According to the present study, antioxidant-rich I. pes-tigridis promotes healthy cell regeneration while reducing inflammation and oxidative stress for wound healing. Additionally, it also enhances circulation and promotes healing.
Collapse
Affiliation(s)
- Gayathri Nataraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Gayathri Jagadeesan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India; BRAINS Research Group, Department of Neurology, McGovern Medical School, The University of Texas Health Science at Houston 6431 Fannin St., Houston, TX, 77030, USA
| | - Ashwini Lydia Manoharan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Kasipandi Muniyandi
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India; Department of Postharvest Science, Agricultural Research Organisation, The Volcani Center, HaMaccabim Rd 68, POB 15159, Rishon LeZion, 7528809, Israel
| | | | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
5
|
Jiang C, Ma R, Jiang X, Fang R, Ye J. A transfersomes hydrogel patch for cutaneous delivery of propranolol hydrochloride: formulation, in vitro, ex vivo and in vivo studies. J Liposome Res 2023:1-10. [PMID: 36594110 DOI: 10.1080/08982104.2022.2162539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE In this work, a propranolol hydrochloride (PRH) transfersomes loaded cutaneous hydrogel patch was developed for topical drug delivery in the affected area of infantile haemangioma. METHODS Sodium cholate was used as the edge activator to prepare the transfersomes. Based on the central composite design, transfersomes hydrogel patch formulation was optimised with 48 h cumulative penetration and time lag as response values. Particle sizes and morphology of the prepared transfersomes were assessed. They were loaded in a cutaneous hydrogel patch, after which their skin permeation abilities were evaluated, and histopathological effects were investigated using guinea pigs. Moreover, in vivo pharmacokinetics studies were performed in rats. RESULTS The transfersomes system had a encapsulation efficiency of 81.84 ± 0.53%, particle size of 186.8 ± 3.38 nm, polydispersity index of 0.186 ± 0.002, and a zeta potential of -28.6 ± 2.39 mV. Transmission electron microscopy images revealed sphericity of the particles. The ex vivo drug's penetration of the optimised transfersomes hydrogel patch was 111.05 ± 11.97 μg/cm2 through rat skin within 48 h. Assessment of skin tissue did not reveal any histopathological alterations in epidermal and dermal cells. Pharmacokinetic studies showed that skin Cmax (68.22 μg/cm2) and AUC0-24 (1007.33 μg/cm2 × h) for PRH transfersomes hydrogel patch were significantly higher than those of commercially available oral dosage form and hydrogel patch without transfersomes. These findings imply that the transfersomes hydrogel patch can prolong drug accumulation in the affected skin area, and reduce systemic drug distribution via the blood stream. CONCLUSIONS The hydrogel patch-loaded PRH transfersomes is a potentially useful drug formulation for infantile haemangioma.
Collapse
Affiliation(s)
- Changzhao Jiang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Rui Ma
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Xiumei Jiang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Renhua Fang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| | - Jincui Ye
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Institute of Materia Medica, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
6
|
Reddy MR, Gubbiyappa KS. Formulation development, optimization and characterization of Pemigatinib-loaded supersaturable self-nanoemulsifying drug delivery systems. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Pemigatinib is a small molecule tyrosine kinase inhibitor of fibroblast growth factor receptor inhibitors. The oral bioavailability of Pemigatinib is constricted due to its limited solubility at physiological pH. It is essential to develop a novel formulation of Pemigatinib to improve the intrinsic solubility and to reduce the pharmacokinetic variability. Self-nanoemulsifying drug delivery system is an effective, smart and more adequate formulation approach for poorly soluble drugs. Different from conventional self-nanoemulsifying drug delivery system, a supersaturable self-nanoemulsifying drug delivery system of Pemigatinib was prepared by using a supersaturation promoter.
Results
Among all the oils, Captex® 300 have shown maximum solubility of Pemigatinib. Considering the solubilization potential and emulsification ability Kolliphor®RH 40 was selected as surfactant. Transcutol®HP was selected as co-surfactant. The composition of oil, surfactant and co-surfactant was identified using phase diagrams and further adjusted by simplex-lattice design. HPMC K4M as precipitation inhibitor at 5% concentration resulted in effective supersaturating with increased self-emulsification time. The droplet of sSNEDDS ranges from 166.78 ± 3.14 to 178.86 ± 1.24 nm with PDI 0.212 – 0.256, which is significantly smaller than that observed with plain SNEDDS. TEM images revealed the spherical shape of the nanodroplets. The final optimized formulation formed spontaneous nanoemulsion within 15 secs when added to physiological fluids. The percent transmittance of the diluted formulation was found to be 99.12 ± 0.46. The viscosity was found to be 574 ± 26 centipoises indicating the good flow ability. FTIR and DSC studies indicated the amorphization of the drug. The dissolution profile of sSNEDDS indicated the faster release of drug compared to both pure drug suspension and SNEDDS formulation. The drug release rate is directly proportional to the concentration of the drug. The drug release from the insoluble matrix is a square root of time-dependent Fickian diffusion process. The formulation was found to be stable and transparent at all pH values and the percent transmittance was more than 95%. Any kind of separation or precipitation was not observed at different temperatures cycles. No significant difference was observed with all the samples exposed at different storage conditions.
Conclusions
This study demonstrated the feasibility of stabilizing and improving the in-vitro performance of self-nanoemulsifying drug delivery systems of Pemigatinib by incorporating HPMC K4M as precipitation inhibitor.
Collapse
|
7
|
Santiago-Villarreal O, Rojas-González L, Bernad-Bernad MJ, Miranda-Calderón JE. Self-emulsifying Drug Delivery System for Praziquantel with Enhanced Ex Vivo Permeation. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Teja PK, Mithiya J, Kate AS, Bairwa K, Chauthe SK. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153890. [PMID: 35026510 DOI: 10.1016/j.phymed.2021.153890] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 11/14/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Herbal Nano Medicines (HNMs) are nano-sized medicine containing herbal drugs as extracts, enriched fractions or biomarker constituents. HNMs have certain advantages because of their increased bioavailability and reduced toxicities. There are very few literature reports that address the common challenges of herbal nanoformulations, such as selecting the type/class of nanoformulation for an extract or a phytochemical, selection and optimisation of preparation method and physicochemical parameters. Although researchers have shown more interest in this field in the last decade, there is still an urgent need for systematic analysis of HNMs. PURPOSE This review aims to provide the recent advancement in various herbal nanomedicines like polymeric herbal nanoparticles, solid lipid nanoparticles, phytosomes, nano-micelles, self-nano emulsifying drug delivery system, nanofibers, liposomes, dendrimers, ethosomes, nanoemulsion, nanosuspension, and carbon nanotube; their evaluation parameters, challenges, and opportunities. Additionally, regulatory aspects and future perspectives of herbal nanomedicines are also being covered to some extent. METHODS The scientific data provided in this review article are retrieved by a thorough analysis of numerous research and review articles, textbooks, and patents searched using the electronic search tools like Sci-Finder, ScienceDirect, PubMed, Elsevier, Google Scholar, ACS, Medline Plus and Web of Science. RESULTS In this review, the authors suggested the suitability of nanoformulation for a particular type of extracts or enriched fraction of phytoconstituents based on their solubility and permeability profile (similar to the BCS class of drugs). This review focuses on different strategies for optimising preparation methods for various HNMs to ensure reproducibility in context with all the physicochemical parameters like particle size, surface area, zeta potential, polydispersity index, entrapment efficiency, drug loading, and drug release, along with the consistent therapeutic index. CONCLUSION A combination of herbal medicine with nanotechnology can be an essential tool for the advancement of herbal medicine research with enhanced bioavailability and fewer toxicities. Despite the challenges related to traditional medicine's safe and effective use, there is huge scope for nanotechnology-based herbal medicines. Overall, it is well stabilized that herbal nanomedicines are safer, have higher bioavailability, and have enhanced therapeutic value than conventional herbal and synthetic drugs.
Collapse
Affiliation(s)
- Parusu Kavya Teja
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Jinal Mithiya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Abhijeet S Kate
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India
| | - Khemraj Bairwa
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| | - Siddheshwar K Chauthe
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Opp. Air Force Station, Palaj, Gandhinagar, 382355, Gujarat, India..
| |
Collapse
|
9
|
Fabrication and evaluation of nanoencapsulated quercetin for wound healing application. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04094-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Khursheed R, Singh SK, Kumar B, Wadhwa S, Gulati M, A A, Awasthi A, Vishwas S, Kaur J, Corrie L, K R A, Kumar R, Jha NK, Gupta PK, Zacconi F, Dua K, Chitranshi N, Mustafa G, Kumar A. Self-nanoemulsifying composition containing curcumin, quercetin, Ganoderma lucidum extract powder and probiotics for effective treatment of type 2 diabetes mellitus in streptozotocin induced rats. Int J Pharm 2022; 612:121306. [PMID: 34813906 DOI: 10.1016/j.ijpharm.2021.121306] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Accepted: 11/14/2021] [Indexed: 01/06/2023]
Abstract
Liquid self-nanoemulsifying drug delivery system (L-SNEDDS) of curcumin and quercetin were prepared by dissolving them in isotropic mixture of Labrafil M1944CS®, Capmul MCM®, Tween-80® and Transcutol P®. The prepared L-SNEDDS were solidified using Ganoderma lucidum extract, probiotics and Aerosil-200® using spray drying. These were further converted into pellets using extrusion-spheronization. The mean droplet size and zeta potential of L-SNEDDS were found to be 63.46 ± 2.12 nm and - 14.8 ± 3.11 mV while for solid SNEDDS pellets, these were 72.46 ± 2.16 nm and -38.7 ± 1.34 mV, respectively. The dissolution rate for curcumin and quercetin each was enhanced by 4.5 folds while permeability was enhanced by 5.28 folds (curcumin) and 3.35 folds (quercetin) when loaded into SNEDDS pellets. The Cmax for curcumin and quercetin containing SNEDDS pellets was found 532.34 ± 5.64 ng/mL and 4280 ± 65.67 ng/mL, respectively. This was 17.55 and 3.48 folds higher as compared to their naïve forms. About 50.23- and 5.57-folds increase in bioavailability was observed for curcumin and quercetin respectively, upon loading into SNEDDS pellets. SNEDDS pellets were found stable at accelerated storage conditions. The developed formulation was able to normalize the levels of blood glucose, lipids, antioxidant biomarkers, and tissue architecture of pancreas and liver in streptozotocin induced diabetic rats as compared to their naïve forms.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Anupriya A
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Arya K R
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Plot No.32-34 Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Plot no. 32 - 34, Knowledge Park III, Greater Noida 201310, Uttar Pradesh, India
| | - Flavia Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Nitin Chitranshi
- Faculty of Medicine, Health and Human Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, Aldawadmi, Shaqra University, King Saud University
| | - Ankit Kumar
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Maharajpura, Gwalior, Madhya Pradesh 474005, India
| |
Collapse
|
11
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Kapoor B, Jain SK, Gowthamarajan K, Zacconi F, Chellappan DK, Gupta G, Jha NK, Gupta PK, Dua K. Development of mushroom polysaccharide and probiotics based solid self-nanoemulsifying drug delivery system loaded with curcumin and quercetin to improve their dissolution rate and permeability: State of the art. Int J Biol Macromol 2021; 189:744-757. [PMID: 34464640 DOI: 10.1016/j.ijbiomac.2021.08.170] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 02/07/2023]
Abstract
The role of mushroom polysaccharides and probiotics as pharmaceutical excipients for development of nanocarriers has never been explored. In the present study an attempt has been made to explore Ganoderma lucidum extract powder (GLEP) containing polysaccharides and probiotics to convert liquid self nanoemulsifying drug delivery system (SNEDDS) into solid free flowing powder. Two lipophilic drugs, curcumin and quercetin were used in this study due to their dissolution rate limited oral bioavailability and poor permeability. These were loaded into liquid SNEDDS by dissolving them into isotropic mixture of Labrafill M1944CS, Capmul MCM, Tween-80 and Transcutol P. The liquid SNEDDS were solidified using probiotics and mushroom polysaccharides as carriers and Aerosil-200 as coating agent. The solidification was carried out using spray drying process. The process and formulation variables for spray drying process of liquid SNEDDS were optimized using Box Behnken Design to attain required powder properties. The release of both drugs from the optimized spray dried (SD) formulation was found to be more than 90%, whereas, it was less than 20% for unprocessed drugs. The results of DSC, PXRD and SEM, showed that the developed L-SNEDDS preconcentrate was successfully loaded onto the porous surface of probiotics, mushroom polysaccharides and Aerosil-200.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Kuppusamy Gowthamarajan
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India; Centre of Excellence in Nanoscience & Technology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Flavia Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida 201310, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201310, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
12
|
Development of Multi-Compartment 3D-Printed Tablets Loaded with Self-Nanoemulsified Formulations of Various Drugs: A New Strategy for Personalized Medicine. Pharmaceutics 2021; 13:pharmaceutics13101733. [PMID: 34684026 PMCID: PMC8539993 DOI: 10.3390/pharmaceutics13101733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
This work aimed to develop a three-dimensional printed (3DP) tablet containing glimepiride (GLMP) and/or rosuvastatin (RSV) for treatment of dyslipidemia in patients with diabetes. Curcumin oil was extracted from the dried rhizomes of Curcuma longa and utilized to develop a self-nanoemulsifying drug delivery system (SNEDDS). Screening mixture experimental design was conducted to develop SNEDDS formulation with a minimum droplet size. Five different semi-solid pastes were prepared and rheologically characterized. The prepared pastes were used to develop 3DP tablets using extrusion printing. The quality attributes of the 3DP tablets were evaluated. A non-compartmental extravascular pharmacokinetic model was implemented to investigate the in vivo behavior of the prepared tablets and the studied marketed products. The optimized SNEDDS, of a 94.43 ± 3.55 nm droplet size, was found to contain 15%, 75%, and 10% of oil, polyethylene glycol 400, and tween 80, respectively. The prepared pastes revealed a shear-thinning of pseudoplastic flow behavior. Flat-faced round tablets of 15 mm diameter and 5.6–11.2 mm thickness were successfully printed and illustrated good criteria for friability, weight variation, and content uniformity. Drug release was superior from SNEDDS-based tablets when compared to non-SNEDDS tablets. Scanning electron microscopy study of the 3DP tablets revealed a semi-porous surface that exhibited some curvature with the appearance of tortuosity and a gel porous-like structure of the inner section. GLMP and RSV demonstrated relative bioavailability of 159.50% and 245.16%, respectively. Accordingly, the developed 3DP tablets could be considered as a promising combined oral drug therapy used in treatment of metabolic disorders. However, clinical studies are needed to investigate their efficacy and safety.
Collapse
|
13
|
Hosny KM, Alhakamy NA, Al Nahyah KS. The relevance of nanotechnology, hepato-protective agents in reducing the toxicity and augmenting the bioavailability of isotretinoin. Drug Deliv 2021; 28:123-133. [PMID: 33355019 PMCID: PMC7758053 DOI: 10.1080/10717544.2020.1862365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Acne Vulgaris is one of the most common chronic inflammatory skin disorders that affect majority of teen-agers worldwide. Isotretinoin (ITT) is the drug of choice in the management of acne, but, it suffers from serious side-effects including hepatotoxicity, and some psychological disturbances following its oral intake. The objective of this study was to develop and optimize ITT loaded nanoemulsions (ITT-SNEDDS) and to incorporate resveratrol (RSV)in optimum formulation to decrease ITT side effects The ITT solubility was first tested in various essential oils, surfactants, and co-surfactants to select the essential nanoemulsion ingredients. Mixture design was applied to study the effect of independent variables and their interactions on the selected dependent responses. The developed ITT-SNEDDS were characterized for their globule size and ex vivo permeation. The optimized batch was further loaded with RSV and evaluated for in vitro and ex vivo permeation and for in vivo hepatotoxicity. The developed ITT-SNEDDS exhibited globule size below 300 nm, up to 272.27 ± 7.12 mcg/cm2.h and 61.27 ± 2.83% of steady-state flux (JSS) and permeability % respectively. Optimum formulation consisted of 0.15 g oil mixture, 0.6 g of surfactant (Labrasol), and 0.250 g co-surfactant (Transcutol). Permeability studies confirmed the enhanced permeation percentage of ITT (40.77 ± 1.18%), and RSV (29.94 ± 2.02%) from optimized formulation, with enhanced steady-state flux (JSS). In vivo studies demonstrated the superior hepatoprotective activity of optimized formulation compared to a different drug formulations and marketed product. Therefore, RVS loaded ITT-SNEDDS might be a successful strategy for acne management with improved action, and minimum side effects.
Collapse
Affiliation(s)
- Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid S Al Nahyah
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Abdallah HM, El-Bassossy HM, El-Halawany AM, Ahmed TA, Mohamed GA, Malebari AM, Hassan NA. Self-Nanoemulsifying Drug Delivery System Loaded with Psiadia punctulata Major Metabolites for Hypertensive Emergencies: Effect on Hemodynamics and Cardiac Conductance. Front Pharmacol 2021; 12:681070. [PMID: 34177590 PMCID: PMC8222910 DOI: 10.3389/fphar.2021.681070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Vasodilators are an important class of antihypertensive agents. However, they have limited clinical use due to the reflex tachycardia associated with their use which masks most of its antihypertensive effect and raises cardiac risk. Chemical investigation of Psiadia punctulata afforded five major methoxylated flavonoids (1–5) three of which (1, 4, and 5) showed vasodilator activity. Linoleic acid-based self-nanoemulsifying drug delivery system (SNEDDS) was utilized to develop intravenous (IV) formulations that contain compounds 1, 4, or 5. The antihypertensive effect of the prepared SNEDDS formulations, loaded with each of the vasodilator compounds, was tested in the angiotensin-induced rat model of hypertension. Rats were subjected to real-time recording of blood hemodynamics and surface Electrocardiogram (ECG) while the pharmaceutical formulations were individually slowly injected in cumulative doses. Among the tested formulations, only that contains umuhengerin (1) and 5,3′-dihydroxy-6,7,4′,5′-tetramethoxyflavone (5) showed potent antihypertensive effects. Low IV doses, from the prepared SNEDDS, containing either compound 1 or 5 showed a marked reduction in the elevated systolic blood pressure by 10 mmHg at 12 μg/kg and by more than 20 mmHg at 36 μg/kg. The developed SNEDDS formulation containing either compound 1 or 5 significantly reduced the elevated diastolic, pulse pressure, dicrotic notch pressure, and the systolic–dicrotic notch pressure difference. Moreover, both formulations decreased the ejection duration and increased the non-ejection duration while they did not affect the time to peak. Both formulations did not affect the AV conduction as appear from the lack of effect on p duration and PR intervals. Similarly, they did not affect the ventricular repolarization as no effect on QTc or JT interval. Both formulations decreased the R wave amplitude but increased the T wave amplitude. In conclusion, the careful selection of linoleic acid for the development of SNEDDS formulation rescues the vasodilating effect of P. punctulata compounds from being masked by the reflex tachycardia that is commonly associated with the decrease in peripheral resistance by most vasodilators. The prepared SNEDDS formulation could be suggested as an effective medication in the treatment of hypertensive emergencies, after clinical evaluation.
Collapse
Affiliation(s)
- Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hany M El-Bassossy
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Ali M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Azizah M Malebari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noura A Hassan
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
15
|
Hosny KM, Alhakamy NA, Almodhwahi MA, Kurakula M, Almehmady AM, Elgebaly SS. Self-Nanoemulsifying System Loaded with Sildenafil Citrate and Incorporated within Oral Lyophilized Flash Tablets: Preparation, Optimization, and In Vivo Evaluation. Pharmaceutics 2020; 12:pharmaceutics12111124. [PMID: 33233372 PMCID: PMC7700536 DOI: 10.3390/pharmaceutics12111124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 01/02/2023] Open
Abstract
Sildenafil citrate is a drug used throughout the world primarily to treat erectile dysfunction. Several problems with the commercially available product decrease its efficacy, such as limited solubility, delayed onset of action, and low bioavailability with a large variability in the absorption profile. This study aimed to develop an optimized self-nanoemulsifying lyophilized tablet for the drug to conquer the foresaid problems. Sildenafil solubility in various surfactants, oils, and cosurfactants was attempted. An optimized formulation of a loaded self-nanoemulsion with a small droplet size was developed by applying a special cubic model of the mixture design. Sixteen formulations were prepared and characterized for droplet size. On the basis of solubility studies, a clove oil/oleic acid mixture, polysorbate 20 (Tween 20), and propylene glycol were selected as the proposed oil, surfactant, and cosurfactant, respectively. On the basis of desirability, an optimized sildenafil citrate-loaded self-nanoemulsifying delivery system containing 10% of the oil mixture, 60% of the surfactant, and 30% of the cosurfactant had a droplet size of 65 nm. Subsequently, the tablet form was fabricated with optimum ratios of 0.4% fumed silica, 0.1% hydroxypropyl methylcellulose, and 0.4% sodium starch glycolate. This formula showed satisfactory results in both disintegration and dissolution studies. In vivo pharmacokinetic studies indicated a higher bioavailability (1.44 times) and rapid absorption profile for the study’s tablets compared with commercially available tablets. In conclusion, highly bioavailable oral lyophilized flash tablets of sildenafil were successfully prepared. They will be a good alternative to the conventional solid-dosage form.
Collapse
Affiliation(s)
- Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.); (A.M.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef 62511, Egypt
- Correspondence: ; Tel.: +96-656-168-2377
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.); (A.M.A.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maeen A. Almodhwahi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.); (A.M.A.)
| | - Mallesh Kurakula
- Department of Biomedical Engineering, The Herff College of Engineering, University of Memphis, Memphis, TN 38152, USA;
| | - Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (M.A.A.); (A.M.A.)
| | - Samar S. Elgebaly
- Department of Medical Engineer, Elko-Medical Company, Algomhoria Street, Cairo 22132, Egypt;
| |
Collapse
|
16
|
Investigating the Potential of Transmucosal Delivery of Febuxostat from Oral Lyophilized Tablets Loaded with a Self-Nanoemulsifying Delivery System. Pharmaceutics 2020; 12:pharmaceutics12060534. [PMID: 32531910 PMCID: PMC7356236 DOI: 10.3390/pharmaceutics12060534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Gout is the most familiar inflammatory arthritis condition caused by the elevation of uric acid in the bloodstream. Febuxostat (FBX) is the latest drug approved by the United States Food and Drug Administration (US FDA) for the treatment of gout and hyperuricemia. FBX is characterized by low solubility resulting in poor gastrointestinal bioavailability. This study aimed at improving the oral bioavailability of FBX by its incorporation into self-nanoemulsifying delivery systems (SNEDS) with minimum globule size and maximum stability index. The SNEDS-incorporated FBX was loaded into a carrier substrate with a large surface area and lyophilized with other excipients to produce a fluffy, porous-like structure tablet for the transmucosal delivery of FBX. The solubility of FBX was studied in various oils, surfactants, and cosurfactants. Extreme vertices design was utilized to optimize FBX-SNEDS, and subsequently loaded into lyophilized tablets along with suitable excipients. The percentages of the main tablet excipients were optimized using a Box–Behnken design to develop self-nanoemulsifying lyophilized tablets (SNELTs) with minimum disintegration time and maximum drug release. The pharmacokinetics parameters of the optimized FBX-SNELTs were tested in healthy human volunteers in comparison with the marketed FBX tablets. The results revealed that the optimized FBX-SNELTs increased the maximum plasma concentration (Cmax) and decreased the time to reach Cmax (Tmax) with a large area under the curve (AUC) as a result of the enhanced relative oral bioavailability of 146.4%. The significant enhancement of FBX bioavailability is expected to lead to reduced side effects and frequency of administration during the treatment of gout.
Collapse
|
17
|
Alhakamy NA, Fahmy UA, Ahmed OAA, Almohammadi EA, Alotaibi SA, Aljohani RA, Alharbi WS, Alfaleh MA, Alfaifi MY. Development of an optimized febuxostat self-nanoemulsified loaded transdermal film: in-vitro, ex-vivo and in-vivo evaluation. Pharm Dev Technol 2019; 25:326-331. [PMID: 31794286 DOI: 10.1080/10837450.2019.1700520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Febuxostat (FBX) is used to treat gout and chronic hyperuricemia. However, its bioavailability is moderate (49%) as a result of low solubility and first-pass metabolism. Therefore, the aim of our study is to improve FBX bioavailability by enhancement its solubility using self-nanoemulsifying drug delivery system (SNEDDS) technique in the form of transdermal film to avoid hepatic metabolism. To accomplish this goal, Eight SNEDDS formulae were prepared according to a three-factor, two-level D-Optimal mixture design to evaluate the effect of different ratios of the Lemon oil (X1), the surfactant Tween-20 (X2), and the co-surfactant PEG-400 (X3) on the globule size in order to reach smallest globular size. Results revealed that SNEDDS globule size ranged from 177 to 454 nm. The optimized formula consisted of 20% oil, 40% surfactant and 40% co-surfactant. Diffusion study showed improved enhancement in skin permeation that was confirmed by imaging using fluorescence microscope. In vivo plasma data showed significant (p < 0.05) difference in FBX plasma levels and pharmacokinetic parameters when compared with raw FBX loaded film. In conclusion, FBX-SNEDDS loaded transdermal film could be a successful way to improve solubility and skin permeability that would lead to improvement in patient's compliance.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Enas A Almohammadi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shahad A Alotaibi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raghad A Aljohani
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed S Alharbi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed A Alfaleh
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
18
|
Alhakamy NA, Fahmy UA, Ahmed OAA. Attenuation of Benign Prostatic Hyperplasia by Optimized Tadalafil Loaded Pumpkin Seed Oil-Based Self Nanoemulsion: In Vitro and In Vivo Evaluation. Pharmaceutics 2019; 11:E640. [PMID: 31805693 PMCID: PMC6955804 DOI: 10.3390/pharmaceutics11120640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
The FDA has approved tadalafil (TDL) for the treatment of benign prostatic hyperplasia (BPH)-associated symptoms. Pumpkin seed oil (PSO) has shown promise for the relief of prostatitis-related lower urinary tract symptoms. The aim was to improve TDL delivery to the prostate and assess the combined effect of TDL with a PSO-based formula in the management of BPH. PSO, Tween 80, and polyethylene glycol 200 were selected for the optimization of self nano-emulsified drug delivery system (SNEDDS). The formed vesicles were assessed for their globule size and zeta potential. A rat in vivo study was carried out to investigate prostate weight and index, histopathology, and pharmacokinetics. The average globule size for the optimized TDL-PSO SNEDDS was 204.8 ± 18.76 nm, with a zeta-potential value of 7.86 ± 1.21 mV. TDL-PSO SNEDDS produced a marked drop in prostate weight by 35.51% and prostate index by 36.71% compared to the testosterone-only group. Pharmacokinetic data revealed a 2.3-fold increase of TDL concentration, from optimized TDL-PSO SNEDDS, in the prostate compared with the raw TDL group. This study indicated that the combination of TDL and PSO in an optimized TDL PSO SNEDDS formula improved the efficacy of TDL in the management of BPH.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
19
|
Pingili RB, Challa SR, Pawar AK, Toleti V, Kodali T, Koppula S. A systematic review on hepatoprotective activity of quercetin against various drugs and toxic agents: Evidence from preclinical studies. Phytother Res 2019; 34:5-32. [PMID: 31617262 DOI: 10.1002/ptr.6503] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/20/2019] [Accepted: 08/18/2019] [Indexed: 01/19/2023]
Abstract
Quercetin is one of the most abundant flavonoids in human diet that has been reported to exhibit a wide range of pharmacological properties. The biochemical and molecular mechanisms involved in the hepatoprotective activity of quercetin were discussed in this review. Quercetin exhibited hepatoprotective activity against 2-butoxyethanol, acrylamide, acrylonitrile, aflatoxin B1, aroclor-1254, arsenic, sodium arsenite, azathioprine, cadmium chloride, carbon tetrachloride, chlorpyrifos, cyclosporine A, diazinon, dimethylnitrosamine, doxorubicin, epirubicin, ethanol, fenvalerate, isoniazide, rifampicin, lead acetate, lindane, D-galactosamine, methotrexate, methylmercury, nickel sulfate, paracetamol, perfluorooctanoic acid, polychlorinated biphenyls, pyrrolizidine alkaloid clivorine, rotenone, sodium fluoride, streptazotocin, tert-butyl hydroperoxide, thioacetamide, titanium dioxide, tumor necrosis factor-α, tripterygium glycoside, triptolide, ultraviolet A light, concavalin A, bisphenol, and ischemia-induced hepatotoxicity in various animal models due to its antioxidant, free radical-scavenging,anti-inflammatory, antiapoptotic, and cytochrome P450 2E1 (CYP2E1) inhibitory activities. In this review, we provide an overview of the possible mechanisms by which quercetin reduced the hepatotoxicity of different hepatotoxicants. This will help the toxicologists, pharmacologists, and chemists to develop new safer pharmaceutical products with quercetin and other hepatotoxicants.
Collapse
Affiliation(s)
- Ravindra Babu Pingili
- Research and Development, Department of Pharmacy, Jawaharlal Nehru Technological University, Kakinada, India.,Department of Pharmacology, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, India
| | - Siva Reddy Challa
- Department of Pharmacology, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, India
| | - A Krishnamanjari Pawar
- Department of Pharmaceutical Analysis, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - Vyshnavi Toleti
- Department of Pharmacy Practice, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, India
| | - Tanvija Kodali
- Department of Pharmacy Practice, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, India
| | - Sirisha Koppula
- Department of Pharmacy Practice, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, India
| |
Collapse
|
20
|
Formulation and biopharmaceutical evaluation of supersaturatable self-nanoemulsifying drug delivery systems containing silymarin. Int J Pharm 2019; 555:63-76. [DOI: 10.1016/j.ijpharm.2018.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 12/23/2022]
|
21
|
Ahmed OA, El-Say KM, Aljaeid BM, Badr-Eldin SM, Ahmed TA. Optimized vinpocetine-loaded vitamin E D-α-tocopherol polyethylene glycol 1000 succinate-alpha lipoic acid micelles as a potential transdermal drug delivery system: in vitro and ex vivo studies. Int J Nanomedicine 2018; 14:33-43. [PMID: 30587983 PMCID: PMC6302827 DOI: 10.2147/ijn.s187470] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Vinpocetine (VNP), a semisynthetic natural product, is used as a vasodilator for cerebrovascular and age-related memory disorders. VNP suffers from low oral bioavailability owing to its low water solubility and extensive first-pass metabolism. This work aimed at utilizing D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and alpha lipoic acid (ALA) to develop efficient micellar system for transdermal delivery of VNP. Materials and methods VNP-TPGS-ALA micelles were prepared, characterized for particle size using particle size analyzer, and investigated for structure using transmission electron microscope. Optimization of VNP-TPGS-ALA micelles-loaded transdermal films was performed using Box–Behnken experimental design. The investigated factors were percentage of ALA in TPGS (X1), citral concentration (X2), and propylene glycol concentration (X3). Elongation percent (Y1), initial permeation after 2 hours (Y2), and cumulative permeation after 24 hours (Y3) were studied as responses. Results Statistical analysis revealed optimum levels of 16.62%, 3%, and 2.18% for X1, X2, and X3, respectively. Fluorescent laser microscopic visualization of skin penetration of the optimized transdermal film revealed marked widespread fluorescence intensity in skin tissue after 0.5, 2, and 4 hours compared with raw VNP transdermal film formulation, which indicated enhancement of VNP skin penetration. Conclusion The obtained results highlighted the potentiality of VNP nanostructure-based films for controlling the transdermal permeation of the drug and improving its effectiveness.
Collapse
Affiliation(s)
- Osama Aa Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt,
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Bader M Aljaeid
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia,
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia, .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
22
|
Subramanya SB, Venkataraman B, Meeran MFN, Goyal SN, Patil CR, Ojha S. Therapeutic Potential of Plants and Plant Derived Phytochemicals against Acetaminophen-Induced Liver Injury. Int J Mol Sci 2018; 19:ijms19123776. [PMID: 30486484 PMCID: PMC6321362 DOI: 10.3390/ijms19123776] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/02/2018] [Accepted: 09/15/2018] [Indexed: 12/18/2022] Open
Abstract
Acetaminophen (APAP), which is also known as paracetamol or N-acetyl-p-aminophenol is a safe and potent drug for fever, pain and inflammation when used at its normal therapeutic doses. It is available as over-the-counter drug and used by all the age groups. The overdose results in acute liver failure that often requires liver transplantation. Current clinical therapy for APAP-induced liver toxicity is the administration of N-acetyl-cysteine (NAC), a sulphydryl compound an approved drug which acts by replenishing cellular glutathione (GSH) stores in the liver. Over the past five decades, several studies indicate that the safety and efficacy of herbal extracts or plant derived compounds that are used either as monotherapy or as an adjunct therapy along with conventional medicines for hepatotoxicity have shown favorable responses. Phytochemicals mitigate necrotic cell death and protect against APAP-induced liver toxicityby restoring cellular antioxidant defense system, limiting oxidative stress and subsequently protecting mitochondrial dysfunction and inflammation. Recent experimental evidences indicat that these phytochemicals also regulate differential gene expression to modulate various cellular pathways that are implicated in cellular protection. Therefore, in this review, we highlight the role of the phytochemicals, which are shown to be efficacious in clinically relevant APAP-induced hepatotoxicity experimental models. In this review, we have made comprehensive attempt to delineate the molecular mechanism and the cellular targets that are modulated by the phytochemicals to mediate the cytoprotective effect against APAP-induced hepatotoxicity. In this review, we have also defined the challenges and scope of phytochemicals to be developed as drugs to target APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sandeep B Subramanya
- Department of Physiology, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| | - Sameer N Goyal
- Department of Pharmacology, SVKM's Institute of Pharmacy, Dhule, Maharashtra 424 001, India.
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425 405, India.
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425 405, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, PO Box # 17666, United Arab Emirates University, Al Ain 17666, UAE.
| |
Collapse
|
23
|
Ahmed OA, Badr-Eldin SM. In situ misemgel as a multifunctional dual-absorption platform for nasal delivery of raloxifene hydrochloride: formulation, characterization, and in vivo performance. Int J Nanomedicine 2018; 13:6325-6335. [PMID: 30349253 PMCID: PMC6188068 DOI: 10.2147/ijn.s181587] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Raloxifene hydrochloride (RLX) is approved by the US Food and Drug Administration for the treatment and prevention of osteoporosis, in addition to reducing the risk of breast cancer in postmenopausal women. RLX has the disadvantages of low aqueous solubility, extensive presystemic intestinal glucuronidation, and first-pass metabolism, resulting in a limited bio-availability of only 2%. The aim of this work was to enhance the bioavailability of RLX via the formulation of an in situ nasal matrix (misemgel) comprising micelles made of vitamin E and D-α-tocopheryl polyethylene glycol 1000 succinate and nanosized self-emulsifying systems (NSEMS). MATERIALS AND METHODS Optimization of the RLX-loaded NSEMS was performed using a mixture design. The formulations were characterized by particle size and then incorporated into an in situ nasal gel. Transmission electron microscopy, bovine nasal mucosa ex vivo permeation, and visualization using a fluorescence laser microscope were carried out on the RLX in situ misemgel comparing with raw RLX in situ gel. In addition, the in vivo performance was studied in rats. RESULTS The results revealed improved permeation parameters for RLX misemgel compared with control gel, with an enhancement factor of 2.4. In vivo studies revealed a 4.79- and 13.42-fold increased bioavailability for RLX in situ misemgel compared with control RLX in situ gel and commercially available tablets, respectively. The obtained results highlighted the efficacy of combining two different formulations to enhance drug delivery and the benefits of utilizing different possible paths for drug absorption. CONCLUSION The developed in situ misemgel matrix could be considered as a promising multifunctional platform for nasal delivery which works based on a dual-absorption mechanism.
Collapse
Affiliation(s)
- Osama Aa Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia,
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt,
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia,
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Nazari-Vanani R, Azarpira N, Heli H. Development of self-nanoemulsifying drug delivery systems for oil extracts of Citrus aurantium L. blossoms and Rose damascena and evaluation of anticancer properties. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Development of a fluvastatin-loaded self-nanoemulsifying system to maximize therapeutic efficacy in human colorectal carcinoma cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
A novel self-nanoemulsifying formulation for sunitinib: Evaluation of anticancer efficacy. Colloids Surf B Biointerfaces 2017; 160:65-72. [DOI: 10.1016/j.colsurfb.2017.09.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/13/2022]
|
27
|
Ahmed TA, El-Say KM, Hosny KM, Aljaeid BM. Development of optimized self-nanoemulsifying lyophilized tablets (SNELTs) to improve finasteride clinical pharmacokinetic behavior. Drug Dev Ind Pharm 2017; 44:652-661. [PMID: 29139305 DOI: 10.1080/03639045.2017.1405977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Preparation of an optimized finasteride (FSD) lyophilized tablets loaded with self-nanoemulsifying drug delivery system (SNEDDS). SIGNIFICANCE Enhance FSD bioavailability in male pattern baldness and benign prostatic hyperplasia. METHODS Two-step optimization was implemented to achieve the study goals. First; the mixture design was used to develop an optimized SNEDDS through which the effect of cosurfactant number of carbon atoms on SNEDDS particle size and thermodynamic stability has been tested. Second; the different tablet excipients have been used to develop an optimized self-nanoemulsifying lyophilized tablets (SNELTs). The prepared tablets have been fully characterized. Interaction among tablet components has been studied. Finally, FSD clinical pharmacokinetic has been investigated on human volunteers. RESULTS Anise oil and tween 80 were selected as oily phase and surfactant, respectively while different aliphatic alcohols were studied as cosurfactants. Percentages of oil, surfactant, and cosurfactants were significantly affecting SNEDDS particle size. Increasing cosurfactant number of carbon atoms achieved smaller particle size and higher stability. The optimized SNEDDS was found to contain 10.3455, 45.8972, and 43.7573% of anise oil, tween 80, and butanol, respectively. Variations in FSD cumulative release and disintegration time, from the prepared tablets, were attributed to change in the percent of plasdone XL, Avicel and silica. No interaction among components was noticed. Clinical pharmacokinetics illustrated significant enhancement in the studied parameters from the optimized lyophilized tablets loaded with drug SNEDDS when compared to marketed FSD product. CONCLUSION Lyophilized tablets could be considered as a good alternative for conventional solid dosage forms especially when loaded with drug nanosystems.
Collapse
Affiliation(s)
- Tarek A Ahmed
- a Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia.,b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo , Egypt
| | - Khalid M El-Say
- a Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia.,b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo , Egypt
| | - Khaled M Hosny
- a Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia.,c Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Beni-Suef University , Beni-Suef , Egypt
| | - Bader M Aljaeid
- a Department of Pharmaceutics, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia
| |
Collapse
|
28
|
Nazari-Vanani R, Moezi L, Heli H. In vivo evaluation of a self-nanoemulsifying drug delivery system for curcumin. Biomed Pharmacother 2017; 88:715-720. [DOI: 10.1016/j.biopha.2017.01.102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/11/2022] Open
|
29
|
Arya A, Ahmad H, Tulsankar S, Agrawal S, Mittapelly N, Boda R, Bhatta RS, Mitra K, Dwivedi AK. Bioflavonoid hesperetin overcome bicalutamide induced toxicity by co-delivery in novel SNEDDS formulations: Optimization, in vivo evaluation and uptake mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:954-964. [DOI: 10.1016/j.msec.2016.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/01/2016] [Accepted: 11/02/2016] [Indexed: 10/20/2022]
|
30
|
El-Say KM, Ahmed TA, Ahmed OAA, Hosny KM, Abd-Allah FI. Self-Nanoemulsifying Lyophilized Tablets for Flash Oral Transmucosal Delivery of Vitamin K: Development and Clinical Evaluation. J Pharm Sci 2017; 106:2447-2456. [PMID: 28087316 DOI: 10.1016/j.xphs.2017.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
Abstract
Owing to limited solubility, vitamin K undergoes low bioavailability with large inter-individual variability after oral administration. This article aimed to prepare self-nanoemulsifying lyophilized tablets (SNELTs) for the flash oral transmucosal delivery of vitamin K. Twenty-one formulae of vitamin K self-nanoemulsifying drug delivery systems (SNEDDS) were prepared using different concentrations of vitamin K, Labrasol, and Transcutol according to mixture design. The SNEDDS was loaded on porous carriers and formulated as lyophilized tablets. The release profile and the pharmacokinetic parameters of vitamin K SNELTs were evaluated in comparison with commercial tablets and ampoules on human volunteers. Results revealed that the optimized SNEDDS showed the smallest and most stable nanoemulsion globules. SNELTs were prepared successfully and showed substantial superiority drug release compared with the commercial tablets. Interestingly, SNELTs enhanced both rate and extent of vitamin K absorption as well as relative bioavailability (169.67%) in healthy subjects compared with the commercial tablets. SNELTs revealed promising no significant difference in the area under the curve compared with the commercial intramuscular injection. SNELTs enhanced dissolution and bioavailability that expected to have the strong impact on the efficiency of vitamin K in the prophylaxis and treatment of bleeding disorders in patients with hepatic dysfunction.
Collapse
Affiliation(s)
- Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Tarek A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fathy I Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
31
|
Ahmed TA, El-Say KM. Transdermal film-loaded finasteride microplates to enhance drug skin permeation: Two-step optimization study. Eur J Pharm Sci 2016; 88:246-56. [DOI: 10.1016/j.ejps.2016.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022]
|
32
|
Redox Nanoparticle Therapeutics for Acetaminophen-Induced Hepatotoxicity in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4984597. [PMID: 27073589 PMCID: PMC4814705 DOI: 10.1155/2016/4984597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/30/2016] [Accepted: 02/11/2016] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to evaluate the hepatoprotective effect of an antioxidative nanoparticle (RNP(N)) recently developed against APAP-induced hepatotoxicity in mice. The effects of oral administration of RNP(N) to APAP-treated mice were assessed for various biochemical liver function parameters: alanine transaminase (ALT) activity, aspartate transaminase (AST) activity, alkaline phosphatase (ALP) activity, prothrombin time, and serum albumin (ALB) level. The treatment effects were assessed in terms of free radical parameters: malondialdehyde (MDA) accumulation, glutathione peroxidase (GPx) activity, % inhibition of superoxide anion (O2 (-∙)), and histopathological examination. The N-acetylcysteine (NAC)-treated group exhibited an enhanced prothrombin time relative to the control group, while RNP(N) did not prolong prothrombin time. The RNP(N)-treated animals exhibited lower levels of ALT, AST, and ALP, while increased ALB levels were measured in these animals compared to those in the other groups. The RNP(N)-treated animals furthermore exhibited improved MDA levels, GPx activity, and % inhibition of O2 (-∙), which relate to oxidative damage. Histological staining of liver tissues from RNP(N)-treated animals did not reveal any microscopic changes relative to the other groups. The findings of this study suggest that RNP(N) possesses effective hepatoprotective properties and does not exhibit the notable adverse effects associated with NAC treatment.
Collapse
|
33
|
Ahmed TA. Preparation of finasteride capsules-loaded drug nanoparticles: formulation, optimization, in vitro, and pharmacokinetic evaluation. Int J Nanomedicine 2016; 11:515-27. [PMID: 26893559 PMCID: PMC4745848 DOI: 10.2147/ijn.s98080] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In this study, optimized freeze-dried finasteride nanoparticles (NPs) were prepared from drug nanosuspension formulation that was developed using the bottom–up technique. The effects of four formulation and processing variables that affect the particle size and solubility enhancement of the NPs were explored using the response surface optimization design. The optimized formulation was morphologically characterized using transmission electron microscopy (TEM). Physicochemical interaction among the studied components was investigated. Crystalline change was investigated using X-ray powder diffraction (XRPD). Crystal growth of the freeze-dried NPs was compared to the corresponding aqueous drug nanosuspension. Freeze-dried NPs formulation was subsequently loaded into hard gelatin capsules that were examined for in vitro dissolution and pharmacokinetic behavior. Results revealed that in most of the studied variables, some of the quadratic and interaction effects had a significant effect on the studied responses. TEM image illustrated homogeneity and shape of the prepared NPs. No interaction among components was noticed. XRPD confirmed crystalline state change in the optimized NPs. An enhancement in the dissolution rate of more than 2.5 times from capsules filled with optimum drug NPs, when compared to capsules filled with pure drug, was obtained. Crystal growth, due to Ostwald ripening phenomenon and positive Gibbs free energy, was reduced following lyophilization of the nanosuspension formulation. Pharmacokinetic parameters from drug NPs were superior to that of pure drug and drug microparticles. In conclusion, freeze-dried NPs based on drug nanosuspension formulation is a successful technique in enhancing stability, solubility, and in vitro dissolution of poorly water-soluble drugs with possible impact on the drug bioavailability.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
34
|
Kurakula M, Ahmed OAA, Fahmy UA, Ahmed TA. Solid lipid nanoparticles for transdermal delivery of avanafil: optimization, formulation, in-vitro and ex-vivo studies. J Liposome Res 2016; 26:288-96. [PMID: 26784833 DOI: 10.3109/08982104.2015.1117490] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Avanafil (AVA) is used in the treatment of erectile dysfunction, but is reported for its poor aqueous solubility. Solid lipid nanoparticles (SLNs) are lipid carriers that can greatly enhance drug solubility and bioavailability. OBJECTIVE This work was aimed to formulate and optimize AVA SLNs with subsequent loading into hydrogel films for AVA transdermal delivery. MATERIALS AND METHODS AVA SLNs were prepared utilizing homogenization followed by ultra-sonication technique. The prepared SLNs were characterized for particle size, charge, surface morphology and drug content. The optimized SLNs formulation was incorporated into transdermal films prepared using HPMC and chitosan. Hydrogel films were evaluated for ex-vivo rat skin permeation using automated Franz diffusion cells. The permeation parameters and the release mechanism were evaluated. The transdermal permeation of the prepared AVA SLNs through the skin layers was studied using confocal laser scanning microscope. RESULTS Lipid concentration and % of oil in lipid had a pronounced effect on particle size while, entrapment efficiency was significantly affected by lipid concentration and % of cholesterol. The optimized AVA SLNs showed particle size and entrapment efficiency of 86 nm and 85.01%, respectively. TEM images revealed spherecity of the particles. High permeation parameters were observed from HPMC films loaded with AVA SLNs. The release data were in favor of Higuchi diffusion model. The prepared AVA SLNs were able to penetrate deeper in skin layers. CONCLUSION HPMC transdermal film-loaded AVA SLNs is an effective and alternative to per-oral drug administration.
Collapse
Affiliation(s)
- Mallesh Kurakula
- a Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Advanced Pharmaceutics and Nanotechnology Lab, King Abdulaziz University , Jeddah , Saudi Arabia .,b Department of Chemistry , Faculty of Science, Polymer Research Lab, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Osama A A Ahmed
- a Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Advanced Pharmaceutics and Nanotechnology Lab, King Abdulaziz University , Jeddah , Saudi Arabia .,c Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Minia University , Minia , Egypt , and
| | - Usama A Fahmy
- a Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Advanced Pharmaceutics and Nanotechnology Lab, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Tarek A Ahmed
- a Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Advanced Pharmaceutics and Nanotechnology Lab, King Abdulaziz University , Jeddah , Saudi Arabia .,d Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Al-Azhar University , Cairo , Egypt
| |
Collapse
|
35
|
Du H, Liu M, Yang X, Zhai G. The role of glycyrrhetinic acid modification on preparation and evaluation of quercetin-loaded chitosan-based self-aggregates. J Colloid Interface Sci 2015; 460:87-96. [PMID: 26319324 DOI: 10.1016/j.jcis.2015.08.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 11/24/2022]
Abstract
Quercetin (QC), a type of plant-based chemical, has been reported to own anticancer activity in vivo. However, the poor water solubility limits its pharmaceutical application. In this study, two kinds of QC-loaded self-aggregates based on O-carboxymethyl chitosan-cholic acid conjugates (CMCA) were developed to improve the drug bioavailability in which glycyrrhetinic acid (GA) modification was utilized in the nanocarrier fabrication (QC-GA-CMCA) or not (QC-CMCA). These self-aggregates were prepared by a modified ultrasound-dialysis method and the role of GA modification on the evaluation of QC-loaded self-aggregates was investigated. Transmission Electron Microscopy (TEM) images revealed the formation of spherical particles of both self-aggregates. Dynamic Light Scattering (DLS) analysis and UV-VIS spectroscopy showed that the QC-GA-CMCA had smaller size, narrower size distribution, higher drug loading and entrapment efficiency than corresponding QC-CMCA aggregates. QC-GA-CMCA showed more obvious sensitivity to acidic pH condition based on the zeta potential measurements at various pHs, and fastest drug release was observed at pH 5.7 for QC-CMCA while at pH 6.5 for QC-GA-CMCA. In addition, QC-GA-CMCA demonstrated enhanced cell cytotoxicity and higher cell apoptosis rate in vitro, and also higher AUC value and a prolonged residence time of drug in vivo.
Collapse
Affiliation(s)
- Hongliang Du
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Mengrui Liu
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Xiaoye Yang
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, Jinan 250012, China.
| |
Collapse
|
36
|
Al-Subaie MM, Hosny KM, El-Say KM, Ahmed TA, Aljaeid BM. Utilization of nanotechnology to enhance percutaneous absorption of acyclovir in the treatment of herpes simplex viral infections. Int J Nanomedicine 2015; 10:3973-85. [PMID: 26109856 PMCID: PMC4474391 DOI: 10.2147/ijn.s83962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study aimed to formulate an optimized acyclovir (ACV) nanoemulsion hydrogel in order to provide a solution for the slow, variable, and incomplete oral drug absorption in patient suffering from herpes simplex viral infection. Solubility of ACV in different oils, surfactants, and cosurfactants was explored utilizing a cubic model mixture design to obtain a nanoemulsion with minimum globule size. Preparation of an optimized ACV nanoemulsion hydrogel using a three-factor, three-level Box–Behnken statistical design was conducted. The molecular weight of chitosan (X1), percentage of chitosan (X2), and percentage of Eugenol as a skin permeation enhancer (X3) were selected to study their effects on hydrogel spreadability (Y1) and percent ACV permeated through rat skin after 2.5 hours (Y2). A pharmacokinetic study of the optimized ACV nanoemulsion hydrogel was conducted in rats. Mixtures of clove oil and castor oil (3:1 ratio), Tween 80 and Span 80 (3:1 ratio), and propylene glycol and Myo-6V (3:1 ratio) were selected as the oil, surfactant, and cosurfactant phases, respectively. Statistical analysis indicated that the molecular weight of chitosan has a significant antagonistic effect on spreadability, but has no significant effect on the percent ACV permeated. The percentage of chitosan also has a significant antagonistic effect on the spreadability and percent ACV permeated. On the other hand, the percentage of Eugenol has a significant synergistic effect on percent ACV permeated, with no effect on spreadability. The ex vivo study demonstrated that the optimized ACV nanoemulsion hydrogel showed a twofold and 1.5-fold higher permeation percentage than the control gel and marketed cream, respectively. The relative bioavailability of the optimized ACV nanoemulsion hydrogel improved to 535.2% and 244.6% with respect to the raw ACV hydrogel and marketed cream, respectively, confirming improvement of the relative bioavailability of ACV in the formulated nanoemulsion hydrogel.
Collapse
Affiliation(s)
- Mutlaq M Al-Subaie
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia ; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt
| | - Khalid Mohamed El-Say
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia ; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Tarek A Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia ; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Bader M Aljaeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
37
|
Abourehab MAS, Khaled KA, Sarhan HAA, Ahmed OAA. Evaluation of combined famotidine with quercetin for the treatment of peptic ulcer: in vivo animal study. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2159-69. [PMID: 25926722 PMCID: PMC4403742 DOI: 10.2147/dddt.s81109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The aim of this work was to prepare a combined drug dosage form of famotidine (FAM) and quercetin (QRT) to augment treatment of gastric ulcer. FAM was prepared as freeze-dried floating alginate beads using ion gelation method and then coated with Eudragit RL100 to sustain FAM release. QRT was prepared as solid dispersion with polyvinyl pyrrolidone K30 to improve its solubility. Photo images and scanning electron microscope images of the prepared beads were carried out to detect floating behavior and to reveal surface and core shape of the prepared beads. Anti-ulcerogenic effect and histopathological examination of gastric tissues were carried out to investigate the effect of the combined drug formulation compared with commercial FAM tablets and FAM beads. Gastric glutathione (GSH), superoxide dismutase, catalase, tissue myeloperoxidase, and lipid peroxidation enzyme activities and levels in rat stomach tissues were also determined. Results revealed that spherical beads were formed with an average diameter of 1.64±0.33 mm. They floated immediately with no lag time before floating, and remained buoyant throughout the test period. Treatment with a combination of FAM beads plus QRT showed the absence of any signs of inflammation or hemorrhage, and significantly prevented the indomethacin-induced decrease in GSH levels (P<0.05) with regain of normal GSH gastric tissue levels. Also, there was a significant difference in the decrease of malondialdehyde level compared to FAM commercial tablets or beads alone (P<0.05). The combined formula significantly improved the myeloperoxidase level compared to both the disease control group and commercial FAM tablet-treated group (P<0.05). Formulation of FAM as floating beads in combination with solid dispersion of QRT improved the anti-ulcer activity compared to commercially available tablets, which reveals a promising application for treatment of peptic ulcer.
Collapse
Affiliation(s)
- Mohammed A S Abourehab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt ; Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Khaled A Khaled
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hatem A A Sarhan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Osama A A Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt ; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
38
|
Pashirova TN, Lukashenko SS, Zakharov SV, Voloshina AD, Zhiltsova EP, Zobov VV, Souto EB, Zakharova LY. Self-assembling systems based on quaternized derivatives of 1,4-diazabicyclo[2.2.2]octane in nutrient broth as antimicrobial agents and carriers for hydrophobic drugs. Colloids Surf B Biointerfaces 2015; 127:266-73. [DOI: 10.1016/j.colsurfb.2015.01.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 01/22/2015] [Accepted: 01/27/2015] [Indexed: 01/17/2023]
|
39
|
Fahmy UA, Ahmed OAA, Hosny KM. Development and evaluation of avanafil self-nanoemulsifying drug delivery system with rapid onset of action and enhanced bioavailability. AAPS PharmSciTech 2015; 16:53-8. [PMID: 25168449 DOI: 10.1208/s12249-014-0199-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 08/07/2014] [Indexed: 01/16/2023] Open
Abstract
Utilization of lipid-based drug delivery systems has recently gained focus for drugs characterized by poor aqueous solubility. The improved aqueous solubility overcomes one of the main barriers that limit their bioavailability. The objective of this work was to improve the solubility and oral bioavailability of Avanafil (AVA), a recently approved second generation type 5 phospodiesterase inhibitor used for erectile dysfunction.AVA was formulated as self-nanoemulsifying drug delivery system (SNEDDS) utilizing various oils, surfactants, and cosurfactants. The solubility of AVA in various oils, surfactants, and cosurfactants was determined. Ternary phase diagram was constructed to identify stable nanoemulsion region. The prepared AVA loaded SNEDDS were assessed for optical clarity, droplet size, conductivity, and stability studies. In vitro drug release and in vivo pharmacokinetic parameters using animal model were also investigated. Results revealed that stable AVA (SNEDDS) were successfully developed with a droplet size range of 65 to 190 nm. SNEDDS composed of 25% dill oil, 55% Tween 80, and 20% propylene glycol successfully improved solubilization of AVA (over 80% within 30 min) vis-a-vis the powder AVA (35% within 30 min). In vivo pharmacokinetic showed a significant (P < 0.05) increase in Cmax, reduction in Tmax, and SNEDDS enhanced the bioavailability in the rats by 1.4-fold when compared with pure drug.
Collapse
|
40
|
El-Say KM, Ahmed TA, Badr-Eldin SM, Fahmy U, Aldawsari H, Ahmed OAA. Enhanced permeation parameters of optimized nanostructured simvastatin transdermal films:ex vivoandin vivoevaluation. Pharm Dev Technol 2014; 20:919-926. [PMID: 25019166 DOI: 10.3109/10837450.2014.938859] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Khalid M El-Say
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia
- b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo , Egypt
| | - Tarek A Ahmed
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia
- b Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Al-Azhar University , Cairo , Egypt
| | - Shaimaa M Badr-Eldin
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia
- c Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt , and
| | - Usama Fahmy
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Hibah Aldawsari
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Osama A A Ahmed
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , King Abdulaziz University , Jeddah , Saudi Arabia
- d Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Minia University , Minia , Egypt
| |
Collapse
|
41
|
Ahmed OAA, Afouna MI, El-Say KM, Abdel-Naim AB, Khedr A, Banjar ZM. Optimization of self-nanoemulsifying systems for the enhancement of in vivo hypoglycemic efficacy of glimepiride transdermal patches. Expert Opin Drug Deliv 2014; 11:1005-13. [PMID: 24702435 DOI: 10.1517/17425247.2014.906402] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES To optimize and use of glimepiride (GMD)-loaded self-nanoemulsifying delivery systems (SNEDs) for the preparation of transdermal patches. METHODS Mixture design was utilized to optimize GMD-loaded SNEDs in acidic and aqueous pH media. Optimized GMD-loaded SNEDs were used in the preparation of chitosan (acidic) and hydroxypropyl methyl cellulose (HPMC) (aqueous) films. The prepared optimized formulations were investigated for ex vivo skin permeation, for in vivo hypoglycemic activity and for their pharmacokinetic parameters using animal model. RESULTS The optimized formulations showed flux value of (2.88 and 4.428 μg/cm(2)/h) through rat skin for chitosan and HPMC films, respectively. The pattern of GMD release from both formulations was in favor of Higuchi and approaching zero order models. The n values for Korsmeyer-Peppas equation were characteristic of anomalous (non-Fickian) release mechanism. Moreover, HPMC patches have shown significant reductions (p < 0.05) in blood glucose levels; (213.33 ± 15.19) mg/100 ml from the base-line measurement after 12 h of application. CONCLUSIONS Optimized GMD SNEDs patches were found to improve GMD skin permeability and the essential pharmacokinetic parameters. Further extensive pre/clinical studies are necessary prior to use transdermal GMD as a valuable alternative to peroral dosage forms with improved bioavailability, longer duration of action and more patient convenience.
Collapse
Affiliation(s)
- Osama A A Ahmed
- King Abdulaziz University, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Jeddah-21589 , Saudi Arabia +966 599120686 ; +966 26951696 ; ,
| | | | | | | | | | | |
Collapse
|