1
|
Huntošová V, Benziane A, Zauška L, Ambro L, Olejárová S, Joniová J, Hlávková N, Wagnières G, Zelenková G, Diko P, Bednarčík J, Zákány F, Kovács T, Sedlák E, Vámosi G, Almáši M. The potential of metal-organic framework MIL-101(Al)-NH 2 in the forefront of antiviral protection of cells via interaction with SARS-CoV-2 spike RBD protein and their antibacterial action mediated with hypericin and photodynamic treatment. J Colloid Interface Sci 2025; 691:137454. [PMID: 40168900 DOI: 10.1016/j.jcis.2025.137454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
The global pandemic of SARS-CoV-2 has highlighted the necessity for innovative therapeutic solutions. This research presents a new formulation utilising the metal-organic framework MIL-101(Al)-NH2, which is loaded with hypericin, aimed at addressing viral and bacterial challenges. Hypericin, recognised for its antiviral and antibacterial efficacy, was encapsulated to mitigate its hydrophobicity, improve bioavailability, and utilise its photodynamic characteristics. The MIL-101(Al)-NH2 Hyp complex was synthesised, characterised, and evaluated for its biological applications for the first time. The main objective of this study was to demonstrate the multimodal potential of such a construct, in particular the effect on SARS-CoV-2 protein levels and its interaction with cells. Both in vitro and in vivo experiments demonstrated the effective transport of hypericin to cells that express ACE2 receptors, thereby mimicking mechanisms of viral entry. In addition, hypericin found in the mitochondria showed selective phototoxicity when activated by light, leading to a decrease in the metabolic activity of glioblastoma cells. Importantly, the complex also showed antibacterial efficacy by selectively targeting Gram-positive Staphylococcus epidermidis compared to Gram-negative Escherichia coli under photodynamic therapy (PDT) conditions. To our knowledge, this study was the first to demonstrate the interaction between hypericin, MIL-101(Al)-NH2 and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which inhibits cellular uptake and colocalises with ACE2-expressing cells. Therefore, the dual functionality of the complex - targeting the viral RBD and the antibacterial effect via PDT - emphasises its potential to mitigate complications of viral infections, such as secondary bacterial infections. In summary, these results suggest that MIL-101(Al)-NH2 Hyp is a promising multifunctional therapeutic agent for antiviral and antibacterial applications, potentially contributing to the improvement of COVID-19 treatment protocols and the treatment of co-infections.
Collapse
Affiliation(s)
- Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovak Republic; Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, SK-840 05 Bratislava, Slovak Republic.
| | - Anass Benziane
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Medicine, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Luboš Zauška
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovak Republic; BovaChem s.r.o, Laboratory-1, Kirejevská 22, SK-979 01 Rimavská Sobota, Slovak Republic
| | - Luboš Ambro
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovak Republic
| | - Soňa Olejárová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovak Republic; Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovak Republic
| | - Jaroslava Joniová
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology in Lausanne (EPFL), Station 3, Building PH, CH-1015 Lausanne, Switzerland
| | - Nina Hlávková
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovak Republic
| | - Georges Wagnières
- Laboratory for Functional and Metabolic Imaging, Institute of Physics, Swiss Federal Institute of Technology in Lausanne (EPFL), Station 3, Building PH, CH-1015 Lausanne, Switzerland
| | - Gabriela Zelenková
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, CZ-702 00 Ostrava, Czech Republic
| | - Pavel Diko
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, SK-040 01 Košice, Slovak Republic
| | - Jozef Bednarčík
- Depart of Condensed Matter Physics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovak Republic
| | - Florina Zákány
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Medicine, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Tamás Kovács
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Medicine, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovak Republic; Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovak Republic
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Doctoral School of Molecular Medicine, Egyetem tér 1, H-4032 Debrecen, Hungary.
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovak Republic.
| |
Collapse
|
2
|
Benziane A, Huntošová V, Pevná V, Zauška L, Vámosi G, Hovan A, Zelenková G, Zeleňák V, Almáši M. Synergistic effect of folic acid and hypericin administration to improve the efficacy of photodynamic therapy via folate receptors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 261:113046. [PMID: 39481178 DOI: 10.1016/j.jphotobiol.2024.113046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Transport systems are developed to improve the solubility of the transported drug, increase its stability, enhance its pharmacological activity and target cancer while minimising side effects. In this work, nanoporous silica particles that can be functionalized and loaded with a large number of hydrophobic molecules are proposed. The designed system was modified with folic acid to target the folic acid receptors of cancer cells. This modification enabled a higher uptake of the drug by the cells. Hypericin was selected as a hydrophobic molecule/drug with photodynamic properties suitable for diagnosis and therapy. Fluorescence microscopy and flow cytometry were used to detect the targeting and distribution of hypericin in the cancer cells. Furthermore, the combination of folic acid and hypericin has been shown to form singlet oxygen and to have a synergistic effect in improving the efficacy of photodynamic therapy. The functionalisation of the particles proposed in this work holds great potential for the delivery of hydrophobic drugs to other types of cancer cells with increased expression of the folic acid receptor to which the particles can be attached.
Collapse
Affiliation(s)
- Anass Benziane
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovak Republic; Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, SK-840 05 Bratislava, Slovak Republic.
| | - Viktória Pevná
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovak Republic
| | - Luboš Zauška
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovak Republic; BovaChem s.r.o, Laboratory-1, Kirejevská 22, SK-979 01 Rimavská Sobota, Slovak Republic
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Andrej Hovan
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovak Republic
| | - Gabriela Zelenková
- Department of Chemistry, Faculty of Science, University of Ostrava, 30. Dubna 22, CZ-702 00 Ostrava, Czech Republic
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovak Republic
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-041 54 Košice, Slovak Republic
| |
Collapse
|
3
|
Rajaram J, Mende LK, Kuthati Y. A Review of the Efficacy of Nanomaterial-Based Natural Photosensitizers to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:1120. [PMID: 39339158 PMCID: PMC11434998 DOI: 10.3390/pharmaceutics16091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Natural photosensitizers (PS) are compounds derived from nature, with photodynamic properties. Natural PSs have a similar action to that of commercial PSs, where cancer cell death occurs by necrosis, apoptosis, and autophagy through ROS generation. Natural PSs have garnered great interest over the last few decades because of their high biocompatibility and good photoactivity. Specific wavelengths could cause phytochemicals to produce harmful ROS for photodynamic therapy (PDT). However, natural PSs have some shortcomings, such as reduced solubility and lower uptake, making them less appropriate for PDT. Nanotechnology offers an opportunity to develop suitable carriers for various natural PSs for PDT applications. Various nanoparticles have been developed to improve the outcome with enhanced solubility, optical adsorption, and tumor targeting. Multidrug resistance (MDR) is a phenomenon in which tumor cells develop resistance to a wide range of structurally and functionally unrelated drugs. Over the last decade, several researchers have extensively studied the effect of natural PS-based photodynamic treatment (PDT) on MDR cells. Though the outcomes of clinical trials for natural PSs were inconclusive, significant advancement is still required before PSs can be used as a PDT agent for treating MDR tumors. This review addresses the increasing literature on MDR tumor progression and the efficacy of PDT, emphasizing the importance of developing new nano-based natural PSs in the fight against MDR that have the required features for an MDR tumor photosensitizing regimen.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Lokesh Kumar Mende
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| |
Collapse
|
4
|
Bao H, Wang N, Chen S, Wang Y, Shao H, Ni Y, Li Y, Liu X, Han X. Multimodal Theranostic Nanoparticles for Necrosis Targeting, Fluorescence/SPECT Imaging, and Radiotherapy of Residual Tumors after Hepatocellular Carcinoma Ablation. Mol Pharm 2024; 21:1729-1744. [PMID: 38449426 DOI: 10.1021/acs.molpharmaceut.3c01081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Thermal ablation has been commonly used as an effective treatment for hepatocellular carcinoma; however, peri-necrotic tumor residues after ablation play a significant role in tumor recurrence and poor prognosis. Therefore, developing agents that can effectively target and eliminate residual tumors is critically needed. Necrosis targeting strategies have potential implications for evaluating tumor necrosis areas and treating the surrounding residual tumors. To address this issue, we have developed a biodegradable nanoparticle with necrosis avidity that is compatible with fluorescence imaging, single photon emission computed tomography (SPECT) imaging, and necrosis targeted radiotherapy. The nanoparticles were synthesized using iodine-131-labeled hypericin (131I-Hyp) as the core and amphiphilic copolymer poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-PCL) as the shell. The developed nanoparticle, PNP@(131I-Hyp), has a uniform spherical morphology with a size of 33.07 ± 3.94 and 45.93 ± 0.58 nm determined by cryogenic transmission electron microscopy (cryo-TEM) and dynamic light-scattering analysis (polydispersity index = 0.19 ± 0.01), respectively, and having a good stability and blood compatibility in vitro. In mouse subcutaneous ablated-residual tumor models, fluorescence and SPECT imaging demonstrated that PNP@(131I-Hyp) prominently accumulated in the tumor and was retained for as long as 168 h following intravenous injection. Moreover, ex vivo analyses showed that PNP@(131I-Hyp) mainly gathered in the necrotic zones of subcutaneous tumors and inhibited residual tumors by radiotherapy. In addition, histological examination of harvested organs and hematological analysis demonstrated that intravenous injection of 5 mCi/kg nanoparticles caused no gross abnormalities. This multifunctional nanoparticle, therefore, has necrosis imaging and targeted therapeutic effects on residual tumors after thermal ablation of hepatocellular carcinoma, showing potential for clinical application.
Collapse
Affiliation(s)
- Han Bao
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110001, China
| | - Song Chen
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yang Wang
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China
| | - Haibo Shao
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yicheng Ni
- Department of Radiology, Zhongda Hospital, Southeast University, Nanjing 210000, China
| | - Yukang Li
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xian Liu
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiangjun Han
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
5
|
Pevná V, Zauška Ľ, Benziane A, Vámosi G, Girman V, Miklóšová M, Zeleňák V, Huntošová V, Almáši M. Effective transport of aggregated hypericin encapsulated in SBA-15 nanoporous silica particles for photodynamic therapy of cancer cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 247:112785. [PMID: 37714000 DOI: 10.1016/j.jphotobiol.2023.112785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Photodynamic therapy (PDT) represents an interesting modality for the elimination of damaged biomaterials and cells. This treatment takes advantage of the photosensitizing properties of molecules that are active only when irradiated with light. In the present work, a dual property of hypericin, a hydrophobic molecule with high performance in photodiagnostics and photodynamic therapy, was exploited. The non-fluorescent and photodynamically inactive form of hypericin aggregates was loaded into the nanopores of SBA-15 silica particles. The synthesized particles were characterized by infrared spectroscopy, thermogravimetry, differential thermal analysis, small-angle X-ray scattering and transmission electron microscopy. Hypericin aggregates were confirmed by absorption spectra typical of aggregated hypericin and by its short fluorescence lifetime. Release of hypericin from the particles was observed toward serum proteins, mimicking physiological conditions. Temperature- and time-dependent uptake of hypericin by cancer cells showed gradual release of hypericin from the particles and active cellular transport by endocytosis. A closer examination of SBA-15-hypericin uptake by fluorescence lifetime imaging showed that aggregated hypericin molecules, characterized by a short fluorescence lifetime (∼4 ns), were still present in the SBA-15 particles upon uptake by cells. However, monomerization of hypericin in cancer cells was observed by extending the hypericin fluorescence lifetime by ∼8 ns, preferentially in lipid compartments and the plasma membrane. This suggests a promising prognosis for delayed biological activity of the entire cargo, which was confirmed by effective PDT in vitro. In summary, this work presents an approach for safe, inactive delivery of hypericin that is activated at the target site in cells and tissues.
Collapse
Affiliation(s)
- Viktória Pevná
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovakia
| | - Ľuboš Zauška
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-041 54, Košice, Slovakia
| | - Anass Benziane
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Vladimír Girman
- Department of Solid State Physics, Faculty of Science, P.J. Šafárik University in Košice, Park Angelinum, SK-041 54, Košice, Slovakia
| | - Monika Miklóšová
- 2(nd) Department of Surgery, Faculty of Medicine, P.J. Šafárik University in Košice, Rastislavova 43, SK-040 01 Košice, Slovakia
| | - Vladimír Zeleňák
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-041 54, Košice, Slovakia
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, SK-041 54 Košice, Slovakia.
| | - Miroslav Almáši
- Department of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University in Košice, Moyzesova 11, SK-041 54, Košice, Slovakia
| |
Collapse
|
6
|
Jia X, Wen X, Russo DP, Aleksunes LM, Zhu H. Mechanism-driven modeling of chemical hepatotoxicity using structural alerts and an in vitro screening assay. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129193. [PMID: 35739723 PMCID: PMC9262097 DOI: 10.1016/j.jhazmat.2022.129193] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 05/20/2023]
Abstract
Traditional experimental approaches to evaluate hepatotoxicity are expensive and time-consuming. As an advanced framework of risk assessment, adverse outcome pathways (AOPs) describe the sequence of molecular and cellular events underlying chemical toxicities. We aimed to develop an AOP that can be used to predict hepatotoxicity by leveraging computational modeling and in vitro assays. We curated 869 compounds with known hepatotoxicity classifications as a modeling set and extracted assay data from PubChem. The antioxidant response element (ARE) assay, which quantifies transcriptional responses to oxidative stress, showed a high correlation to hepatotoxicity (PPV=0.82). Next, we developed quantitative structure-activity relationship (QSAR) models to predict ARE activation for compounds lacking testing results. Potential toxicity alerts were identified and used to construct a mechanistic hepatotoxicity model. For experimental validation, 16 compounds in the modeling set and 12 new compounds were selected and tested using an in-house ARE-luciferase assay in HepG2-C8 cells. The mechanistic model showed good hepatotoxicity predictivity (accuracy = 0.82) for these compounds. Potential false positive hepatotoxicity predictions by only using ARE results can be corrected by incorporating structural alerts and vice versa. This mechanistic model illustrates a potential toxicity pathway for hepatotoxicity, and this strategy can be expanded to develop predictive models for other complex toxicities.
Collapse
Affiliation(s)
- Xuelian Jia
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA
| | - Xia Wen
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Daniel P Russo
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | - Hao Zhu
- The Rutgers Center for Computational and Integrative Biology, Camden, NJ 08102, USA; Department of Chemistry, Rutgers University, Camden, NJ 08102, USA.
| |
Collapse
|
7
|
Some Natural Photosensitizers and Their Medicinal Properties for Use in Photodynamic Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041192. [PMID: 35208984 PMCID: PMC8879555 DOI: 10.3390/molecules27041192] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/26/2022]
Abstract
Despite significant advances in early diagnosis and treatment, cancer is one of the leading causes of death. Photodynamic therapy (PDT) is a therapy for the treatment of many diseases, including cancer. This therapy uses a combination of a photosensitizer (PS), light irradiation of appropriate length and molecular oxygen. The photodynamic effect kills cancer cells through apoptosis, necrosis, or autophagy of tumor cells. PDT is a promising approach for eliminating various cancers but is not yet as widely applied in therapy as conventional chemotherapy. Currently, natural compounds with photosensitizing properties are being discovered and identified. A reduced toxicity to healthy tissues and a lower incidence of side effects inspires scientists to seek natural PS for PDT. In this review, several groups of compounds with photoactive properties are presented. The use of natural products has been shown to be a fruitful approach in the discovery of novel pharmaceuticals. This review focused on the anticancer activity of furanocoumarins, polyacetylenes, thiophenes, tolyporphins, curcumins, alkaloid and anthraquinones in relation to the light-absorbing properties. Attention will be paid to their phototoxic and anti-cancer effects on various types of cancer.
Collapse
|
8
|
Hu T, Qin Z, Shen C, Gong HL, He ZY. Multifunctional Mitochondria-Targeting Nanosystems for Enhanced Anticancer Efficacy. Front Bioeng Biotechnol 2021; 9:786621. [PMID: 34900973 PMCID: PMC8652136 DOI: 10.3389/fbioe.2021.786621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondria, a kind of subcellular organelle, play crucial roles in cancer cells as an energy source and as a generator of reactive substrates, which concern the generation, proliferation, drug resistance, and other functions of cancer. Therefore, precise delivery of anticancer agents to mitochondria can be a novel strategy for enhanced cancer treatment. Mitochondria have a four-layer structure with a high negative potential, which thereby prevents many molecules from reaching the mitochondria. Luckily, the advances in nanosystems have provided enormous hope to overcome this challenge. These nanosystems include liposomes, nanoparticles, and nanomicelles. Here, we summarize the very latest developments in mitochondria-targeting nanomedicines in cancer treatment as well as focus on designing multifunctional mitochondria-targeting nanosystems based on the latest nanotechnology.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhou Qin
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chao Shen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Han-Lin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Yao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Ma HL, Varanda LC, Perussi JR, Carrilho E. Hypericin-loaded oil-in-water nanoemulsion synthesized by ultrasonication process enhances photodynamic therapy efficiency. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112303. [PMID: 34509718 DOI: 10.1016/j.jphotobiol.2021.112303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023]
Abstract
Hypericin (Hy) is a hydrophobic photosensitizer used in photodynamic therapy for cancer therapeutic. In this study, Hy-loaded oil-in-water (O/W) nanoemulsions (NEs) were produced by the ultrasonication method combing different biocompatible oils and surfactants to enhance Hy aqueous solubility and bioavailability. Experimental parameters were optimized by the characterization of droplet size, zeta potential, and physicochemical properties. In vitro studies based on the release profile, cytotoxicity, cell morphology, and Hy intracellular accumulation were assayed. Hy at 100 mg L-1 was incorporated into the low viscosity (~0.005 Pa s) NEs with spherical droplets averaging 20-40 nm in size and polydispersity index <0.02. Hy release from the NE was significantly higher (4-fold) than its suspension (p < 0.001). The NEs demonstrated good physical stability during storage at 5 °C for at least six months. The Hy-loaded NEs exhibited an IC50 value 6-fold lower than Hy suspension during PDT against breast cancer cell lines (MCF-7). Cell microscopy imaging confirmed the increased cytotoxic effects of Hy-loaded NEs, showing damaged and apoptotic cells. Confocal laser scanning microscopy evidenced greater Hy delivery through NE into MCF-7 cells followed by improved intracellular ROS generation. Our results suggest that the Hy-loaded NEs can improve hypericin efficacy and assist Hy-PDT's preclinical development as a cancer treatment.
Collapse
Affiliation(s)
- Hui Ling Ma
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio, 13083-970 Campinas, SP, Brazil
| | - Laudemir Carlos Varanda
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | | | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica - INCTBio, 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
10
|
High purity separation of hypericin from Hypericum perforatum L. extract with macroporous resin column coupling preparative liquid chromatography. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Li Y, Wang S, Jiang X, Wang X, Zhou X, Wan L, Zhao H, Zhou Z, Gao L, Huang G, Ni Y, He X. Preparation and validation of cyclodextrin-based excipients for radioiodinated hypericin applied in a targeted cancer radiotherapy. Int J Pharm 2021; 599:120393. [PMID: 33639227 DOI: 10.1016/j.ijpharm.2021.120393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Iodine-131 labeled hypericin (131I-Hyp) has been utilized as a necrosis-avid theragnostic tracer in a dual targeting pan-anticancer strategy called OncoCiDia. Widespread use of previously-tested solvent dimethyl sulfoxide (DMSO) is limited by safety concerns. To tackle this, the present study was designed to explore a clinically feasible excipient for the formulation of the hydrophobic 131I-Hyp for intravenous administration. METHOD Solubility of Hyp in serial solutions of already-approved hydroxypropyl-β-cyclodextrin (HP-β-CD) was evaluated by UVspectrophotometry and 50% HP-β-CD was chosen for further experiments. Two novel HP-β-CD-based formulations of 131I-Hyp were compared with previous DMSO-based formulation, with regards to necrosis-targetability and biodistribution, by magnetic resonance imaging, single-photon emission computed tomography (SPECT), gamma counting, autoradiography, fluorescence microscopy and histopathology. RESULTS Hyp solubility was enhanced with increasing HP-β-CD concentrations. The radiochemical purity of 131I-Hyp was higher than 90% in all formulations. The necrosis-targetability of 131I-Hyp in the novel formulations was confirmed in vivo by SPECT and in vitro by autoradiography, fluorescence microscopy and histopathology. The plasma clearance of radioactivity was faster in the novel formulations. CONCLUSION The novel 131I-Hyp formulations with HP-β-CD could be a suitable pharmaceutical excipient for 131I-Hyp for intravenous administration.
Collapse
Affiliation(s)
- Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Shuncong Wang
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Xiao Jiang
- PET/CT Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, China; China Institute of Atomic Energy, Beijing 102413, China
| | - Xiaoxiong Wang
- PET/CT Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, China; China Institute of Atomic Energy, Beijing 102413, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Liangrong Wan
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Haitao Zhao
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200000, China
| | - Zhaoli Zhou
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - LingJie Gao
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| | - Yicheng Ni
- KU Leuven, Biomedical Group, Campus Gasthuisberg, Leuven 3000, Belgium.
| | - Xiaoyan He
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| |
Collapse
|
12
|
Han X, Taratula O, St Lorenz A, Moses AS, Albarqi HA, Jahangiri Y, Wu Q, Xu K, Taratula O, Farsad K. A novel multimodal nanoplatform for targeting tumor necrosis. RSC Adv 2021; 11:29486-29497. [PMID: 35479549 PMCID: PMC9040648 DOI: 10.1039/d1ra05658a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022] Open
Abstract
Peri-necrotic tumor regions have been found to be a source of cancer stem cells (CSC), important in tumor recurrence. Necrotic and peri-necrotic tumor zones have poor vascular supply, limiting effective exposure to systemically administered therapeutics. Therefore, there is a critical need to develop agents that can effectively target these relatively protected tumor areas. We have developed a multi-property nanoplatform with necrosis avidity, fluorescence imaging and X-ray tracking capabilities to evaluate its feasibility for therapeutic drug delivery. The developed nanoparticle consists of three elements: poly(ethylene glycol)-block-poly(ε-caprolactone) as the biodegradable carrier; hypericin as a natural compound with fluorescence and necrosis avidity; and gold nanoparticles for X-ray tracking. This reproducible nanoparticle has a hydrodynamic size of 103.9 ± 1.7 nm with a uniform spherical morphology (polydispersity index = 0.12). The nanoparticle shows safety with systemic administration and a stable 30 day profile. Intravenous nanoparticle injection into a subcutaneous tumor-bearing mouse and intra-arterial nanoparticle injection into rabbits bearing VX2 orthotopic liver tumors resulted in fluorescence and X-ray attenuation within the tumors. In addition, ex vivo and histological analysis confirmed the accumulation of hypericin and gold in areas of necrosis and peri-necrosis. This nanoplatform, therefore, has the potential to enhance putative therapeutic drug delivery to necrotic and peri-necrotic areas, and may also have an application for monitoring early response to anti-tumor therapies. Au-Hyp-NP developed by encapsulation of gold and hypericin into PEG-PCL nanoplatform for fluorescence and X-ray tracking with tumor necrosis targeting.![]()
Collapse
Affiliation(s)
- Xiangjun Han
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, USA
| | - Anna St Lorenz
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, USA
| | - Abraham S. Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, USA
| | - Hassan A. Albarqi
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, USA
| | - Younes Jahangiri
- Dotter Department of Interventional Radiology, Oregon Health and Science University, Portland, Oregon 97239-3011, USA
| | - Qirun Wu
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Ke Xu
- Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Olena Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, Oregon 97201, USA
| | - Khashayar Farsad
- Dotter Department of Interventional Radiology, Oregon Health and Science University, Portland, Oregon 97239-3011, USA
| |
Collapse
|
13
|
Simões JCS, Sarpaki S, Papadimitroulas P, Therrien B, Loudos G. Conjugated Photosensitizers for Imaging and PDT in Cancer Research. J Med Chem 2020; 63:14119-14150. [PMID: 32990442 DOI: 10.1021/acs.jmedchem.0c00047] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Early cancer detection and perfect understanding of the disease are imperative toward efficient treatments. It is straightforward that, for choosing a specific cancer treatment methodology, diagnostic agents undertake a critical role. Imaging is an extremely intriguing tool since it assumes a follow up to treatments to survey the accomplishment of the treatment and to recognize any conceivable repeating injuries. It also permits analysis of the disease, as well as to pursue treatment and monitor the possible changes that happen on the tumor. Likewise, it allows screening the adequacy of treatment and visualizing the state of the tumor. Additionally, when the treatment is finished, observing the patient is imperative to evaluate the treatment methodology and adjust the treatment if necessary. The goal of this review is to present an overview of conjugated photosensitizers for imaging and therapy.
Collapse
Affiliation(s)
- João C S Simões
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland.,BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| | - Sophia Sarpaki
- BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| | | | - Bruno Therrien
- Institute of Chemistry, University of Neuchatel, Avenue de Bellevaux 51, CH-2000 Neuchatel, Switzerland
| | - George Loudos
- BioEmission Technology Solutions, Alexandras Avenue 116, 11472 Athens, Greece
| |
Collapse
|
14
|
Gonçalves RS, de Oliveira ACV, Hioka N, Caetano W. Elucidation the binding interaction of hypericin-loaded P84 copolymeric micelles by using 1D and 2D NMR techniques. Nat Prod Res 2020; 36:1904-1908. [PMID: 32911984 DOI: 10.1080/14786419.2020.1817923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hypericin (HYP) is an active compound of Hypericum perforatum. Associated with photodynamic therapy (PDT), HYP has shown a broad therapeutic potential against microorganisms and cancer cells. Due to the low water solubility of HYP, its application in the biological medium becomes limited. To solve this limitation, our research group has been used copolymeric micelles to carrier HYP with high efficiency. However, there is no elucidated mechanism for HYP delivery mediated by copolymeric micelles. In this sense, we believed that the study of binding-sites of copolymeric micelles and HYP is the first step to its understanding. For this purpose, in this work, we employed 1D and 2D NMR techniques to investigate the behaviour of HYP-loaded P84 micelles in different concentrations . 1D and 2D NMR analysis revealed that HYP molecules were arrangement in a π-stacked aggregation form with a specific location on the core of P84 micelles.
Collapse
Affiliation(s)
| | | | - Noboru Hioka
- Department of Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Wilker Caetano
- Department of Chemistry, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
15
|
Wu J, Sha J, Zhang C, Liu W, Zheng X, Wang P. Recent advances in theranostic agents based on natural products for photodynamic and sonodynamic therapy. VIEW 2020; 1. [DOI: 10.1002/viw.20200090] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2025] Open
Abstract
AbstractThe integration of diagnosis and therapy based on natural products has been receiving considerable attention in recent years because nature can contribute many fantastic functional molecules with good biocompatibility and low toxicity. Diagnostic and therapeutic agents combined with the technique of photodynamic therapy (PDT) and sonodynamic therapy (SDT) have been extensively developed thanks to the advantages of PDT and SDT, such as good selectivity, low toxicity, and noninvasive treatment for cancers and other diseases compared with traditional treatments. In this review, we summarize the recent advances in theranostic agents for natural products categorized as porphyrins, perylenequinone, curcumin, and others. Some representative examples of disease diagnosis in fluorescence/photoacoustic imaging and disease treatment in PDT/SDT were introduced. Potential limitations and future perspectives of these natural products for theranostic agents were also discussed.
Collapse
Affiliation(s)
- Jiasheng Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
| | - Jie Sha
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
| | - Chuangli Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
| | - Weimin Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing P.R. China
| | - Xiuli Zheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
| | - Pengfei Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials and CityU‐CAS Joint Laboratory of Functional Materials and Devices Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P.R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing P.R. China
| |
Collapse
|
16
|
Marker SC, King AP, Granja S, Vaughn B, Woods JJ, Boros E, Wilson JJ. Exploring the In Vivo and In Vitro Anticancer Activity of Rhenium Isonitrile Complexes. Inorg Chem 2020; 59:10285-10303. [PMID: 32633531 PMCID: PMC8114230 DOI: 10.1021/acs.inorgchem.0c01442] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The established platinum-based drugs form covalent DNA adducts to elicit their cytotoxic response. Although they are widely employed, these agents cause toxic side-effects and are susceptible to cancer-resistance mechanisms. To overcome these limitations, alternative metal complexes containing the rhenium(I) tricarbonyl core have been explored as anticancer agents. Based on a previous study ( Chem. Eur. J. 2019, 25, 9206), a series of highly active tricarbonyl rhenium isonitrile polypyridyl (TRIP) complexes of the general formula fac-[Re(CO)3(NN)(ICN)]+, where NN is a chelating diimine and ICN is an isonitrile ligand, that induce endoplasmic reticulum (ER) stress via activation of the unfolded protein response (UPR) pathway are investigated. A total of 11 of these TRIP complexes were synthesized, modifying both the equatorial polypyridyl and axial isonitrile ligands. Complexes with more electron-donating equatorial ligands were found to have greater anticancer activity, whereas the axial ICN ligands had a smaller effect on their overall potency. All 11 TRIP derivatives trigger a similar phenotype that is characterized by their abilities to induce ER stress and activate the UPR. Lastly, we explored the in vivo efficacy of one of the most potent complexes, fac-[Re(CO)3(dmphen)(ptolICN)]+ (TRIP-1a), where dmphen = 2,9-dimethyl-1,10-phenanthroline and ptolICN = para-tolyl isonitrile, in mice. The 99mTc congener of TRIP-1a was synthesized, and its biodistribution in BALB/c mice was investigated in comparison to the parent Re complex. The results illustrate that both complexes have similar biodistribution patterns, suggesting that 99mTc analogues of these TRIP complexes can be used as diagnostic partner agents. The in vivo antitumor activity of TRIP-1a was then investigated in NSG mice bearing A2780 ovarian cancer xenografts. When administered at a dose of 20 mg/kg twice weekly, this complex was able to inhibit tumor growth and prolong mouse survival by 150% compared to the vehicle control cohort.
Collapse
Affiliation(s)
- Sierra C. Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - A. Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha Granja
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brett Vaughn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Joshua J. Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell, University, Ithaca, New York 14853, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Hypericin-mediated photoinactivation of polymeric nanoparticles against Staphylococcus aureus. Photodiagnosis Photodyn Ther 2020; 30:101737. [DOI: 10.1016/j.pdpdt.2020.101737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
|
18
|
Su C, Xu Y. The evolving roles of radiolabeled quinones as small molecular probes in necrotic imaging. Br J Radiol 2020; 93:20200034. [PMID: 32374626 DOI: 10.1259/bjr.20200034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Necrosis plays vital roles in living organisms which is related closely with various diseases. Non-invasively necrotic imaging can be of great values in clinical decision-making, evaluation of individualized treatment responses, and prediction of patient prognosis. This narrative review will demonstrate how the evolution of quinones for necrotic imaging has been promoted by searching for their active centers. In this review, we summarized the recent developments of various quinones with the continuous simplified π-conjugated cores in necrotic imaging and speculated their possible molecular mechanisms might be attributed to their intercalations with exposed DNA in necrotic tissues. We discussed their clinical challenges of necrotic imaging with quinones and their future translation studies deserved to be explored in personalized patient treatment.
Collapse
Affiliation(s)
- Chang Su
- Office of Good Clinical Practice, The Affiliated Sir Run Run Hospital of Nanjing Medical University (the Third Affiliated Hospital of Nanjing Medical University), Nanjing 211166, Jiangsu Province, P.R.China
| | - Yan Xu
- Office of Good Clinical Practice, The Affiliated Sir Run Run Hospital of Nanjing Medical University (the Third Affiliated Hospital of Nanjing Medical University), Nanjing 211166, Jiangsu Province, P.R.China
| |
Collapse
|
19
|
Zhang D, Jin Q, Ni Y, Zhang J. Discovery of necrosis avidity of rhein and its applications in necrosis imaging. J Drug Target 2020; 28:904-912. [PMID: 32314601 DOI: 10.1080/1061186x.2020.1759079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Necrosis-avid agents possess exploitable theragnostic utilities including evaluation of tissue viability, monitoring of therapeutic efficacy as well as diagnosis and treatment of necrosis-related disorders. Rhein (4,5-dihydroxyl-2-carboxylic-9,10-dihydrodiketoanthracene), a naturally occurring monomeric anthraquinone compound extensively found in medicinal herbs, was recently demonstrated to have a newly discovered necrosis-avid trait and to show promising application in necrosis imaging. In this overview, we present the discovering process of rhein as a new necrosis-avid agent as well as its potential imaging applications in visualisation of myocardial necrosis and early evaluation of tumour response to therapy. Moreover, the molecular mechanism exploration of necrosis avidity behind rhein are also presented. The discovery of necrosis avidity with rhein and the development of rhein-based molecular probes may further expand the scope of necrosis-avid compounds and highlight the potential utility of necrosis-avid molecular probes in necrosis imaging.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, KU Leuven, Leuven, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
20
|
Zhang D, Jin Q, Jiang C, Gao M, Ni Y, Zhang J. Imaging Cell Death: Focus on Early Evaluation of Tumor Response to Therapy. Bioconjug Chem 2020; 31:1025-1051. [PMID: 32150392 DOI: 10.1021/acs.bioconjchem.0c00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cell death plays a prominent role in the treatment of cancer, because most anticancer therapies act by the induction of cell death including apoptosis, necrosis, and other pathways of cell death. Imaging cell death helps to identify treatment responders from nonresponders and thus enables patient-tailored therapy, which will increase the likelihood of treatment response and ultimately lead to improved patient survival. By taking advantage of molecular probes that specifically target the biomarkers/biochemical processes of cell death, cell death imaging can be successfully achieved. In recent years, with the increased understanding of the molecular mechanism of cell death, a variety of well-defined biomarkers/biochemical processes of cell death have been identified. By targeting these established cell death biomarkers/biochemical processes, a set of molecular imaging probes have been developed and evaluated for early monitoring treatment response in tumors. In this review, we mainly present the recent advances in identifying useful biomarkers/biochemical processes for both apoptosis and necrosis imaging and in developing molecular imaging probes targeting these biomarkers/biochemical processes, with a focus on their application in early evaluation of tumor response to therapy.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, P.R. China
| |
Collapse
|
21
|
A Model In Vitro Study Using Hypericin: Tumor-Versus Necrosis-Targeting Property and Possible Mechanisms. BIOLOGY 2020; 9:biology9010013. [PMID: 31936002 PMCID: PMC7168897 DOI: 10.3390/biology9010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 01/28/2023]
Abstract
Hypericin (Hyp) had been explored as a tumor-seeking agent for years; however, more recent studies showed its necrosis-avidity rather than cancer-seeking property. To further look into this discrepancy, we conducted an in vitro study on Hyp retention in vital and dead cancerous HepG2 and normal LO2 cell lines by measuring the fluorescence intensity and concentration of Hyp in cells. To question the DNA binding theory for its necrosis-avidity, the subcellular distribution of Hyp was also investigated to explore the possible mechanisms of the necrosis avidity. The fluorescence intensity and concentration are significantly higher in dead cells than those in vital cells, and this difference did not differ between HepG2 and LO2 cell lines. Hyp was taken up in vital cells in the early phase and excreted within hours, whereas it was retained in dead cells for more than two days. Confocal microscopy showed that Hyp selectively accumulated in lysosomes rather than cell membrane or nuclei. Hyp showed a necrosis-avid property rather than cancer-targetability. The long-lasting retention of Hyp in dead cells may be associated with halted energy metabolism and/or binding with certain degraded cellular substrates. Necrosis-avidity of Hyp was confirmed, which may be associated with halted energy metabolism in dead LO2 or HepG2 cells.
Collapse
|
22
|
R Mokoena D, P George B, Abrahamse H. Enhancing Breast Cancer Treatment Using a Combination of Cannabidiol and Gold Nanoparticles for Photodynamic Therapy. Int J Mol Sci 2019; 20:E4771. [PMID: 31561450 PMCID: PMC6801525 DOI: 10.3390/ijms20194771] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
Indisputably, cancer is a global crisis that requires immediate intervention. Despite the use of conventional treatments over the past decades, it is acceptable to admit that these are expensive, invasive, associated with many side effects and, therefore, a reduced quality of life. One of the most possible solutions to this could be the use of gold nanoparticle (AuNP) conjugated photodynamic therapy (PDT) in combination with cannabidiol (CBD), a Cannabis derivative from the Cannabis sativa. Since the use of Cannabis has always been associated with recreation and psychoactive qualities, the positive effects of Cannabis or its derivatives on cancer treatment have been misunderstood and hence misinterpreted. On the other hand, AuNP-PDT is the most favoured form of treatment for cancer, due to its augmented specificity and minimal risk of side effects compared to conventional treatments. However, its use requires the consideration of several physical, biologic, pharmacologic and immunological factors, which may hinder its effectiveness if not taken into consideration. In this review, the role of gold nanoparticle mediated PDT combined with CBD treatment on breast cancer cells will be deliberated.
Collapse
Affiliation(s)
- Dimakatso R Mokoena
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box: 17011, Johannesburg 2028, South Africa.
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box: 17011, Johannesburg 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box: 17011, Johannesburg 2028, South Africa.
| |
Collapse
|
23
|
Synthesis and Evaluation of Ga-68-Labeled Rhein for Early Assessment of Treatment-Induced Tumor Necrosis. Mol Imaging Biol 2019; 22:515-525. [DOI: 10.1007/s11307-019-01365-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Zhang D, Gao M, Jin Q, Ni Y, Zhang J. Updated developments on molecular imaging and therapeutic strategies directed against necrosis. Acta Pharm Sin B 2019; 9:455-468. [PMID: 31193829 PMCID: PMC6543088 DOI: 10.1016/j.apsb.2019.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 12/15/2022] Open
Abstract
Cell death plays important roles in living organisms and is a hallmark of numerous disorders such as cardiovascular diseases, sepsis and acute pancreatitis. Moreover, cell death also plays a pivotal role in the treatment of certain diseases, for example, cancer. Noninvasive visualization of cell death contributes to gained insight into diseases, development of individualized treatment plans, evaluation of treatment responses, and prediction of patient prognosis. On the other hand, cell death can also be targeted for the treatment of diseases. Although there are many ways for a cell to die, only apoptosis and necrosis have been extensively studied in terms of cell death related theranostics. This review mainly focuses on molecular imaging and therapeutic strategies directed against necrosis. Necrosis shares common morphological characteristics including the rupture of cell membrane integrity and release of cellular contents, which provide potential biomarkers for visualization of necrosis and necrosis targeted therapy. In the present review, we summarize the updated joint efforts to develop molecular imaging probes and therapeutic strategies targeting the biomarkers exposed by necrotic cells. Moreover, we also discuss the challenges in developing necrosis imaging probes and propose several biomarkers of necrosis that deserve to be explored in future imaging and therapy research.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yicheng Ni
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
25
|
Jin Q, Zhao J, Gao M, Feng Y, Liu W, Yin Z, Li T, Song S, Ni Y, Zhang J, Huang D, Zhang D. Evaluation of Necrosis Avidity and Potential for Rapid Imaging of Necrotic Myocardium of Radioiodinated Hypocrellins. Mol Imaging Biol 2019; 20:551-561. [PMID: 29305726 DOI: 10.1007/s11307-017-1157-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Rapid noninvasive delineation of necrotic myocardium in ischemic regions is very critical for risk stratification and clinical decision-making but still challenging. This study aimed to evaluate the necrosis avidity of radioiodinated hypocrellins and its potential for rapidly imaging necrotic myocardium. PROCEDURES The aggregation constants of four natural hypocrellins were analyzed by UV/vis spectroscopy. Then, they were radiolabeled with iodine-131 by iodogen oxidation method. Necrosis avidity of iodine-131-labeled hypocrellins was evaluated in rat models with reperfused liver infarction and muscular necrosis by gamma counting, autoradiography, and histopathology. Their pharmacokinetic properties were examined in normal rats. The potential of iodine-131-labeled hypomycin A ([131I]HD) for early imaging of necrotic myocardium was explored in rat models with reperfused myocardial infarction. Finally, the possible mechanism of necrosis avidity was investigated by in vitro DNA binding and in vivo blocking experiments. RESULTS The aggregation constants of four hypocrellins were all much smaller than that of hypericin, a most studied necrosis avid agent. The radiochemical purities of the four radiotracers after purification were all greater than 95 %, and more than 90 % of tracers remained intact after incubation in rat serum for 24 h. Among the four tracers, [131I]HD exhibited the highest necrotic to viable tissue uptake ratio and the fastest blood clearance. The necrotic myocardium could be clearly visualized 4 h after injection of [131I]HD by single-photon emission computed tomography/X-ray computed tomography (SPECT/CT). DNA binding studies suggested that HD could bind to DNA through intercalation. Blocking studies demonstrated that uptake of [131I]HD in necrotic muscle could be significantly blocked by excess unlabeled HD and ethidium bromide with 67 and 60 % decline at 6 h after coinjection, respectively. CONCLUSIONS [131I]HD can be used to rapidly visualize necrotic myocardium. The necrosis avidity mechanism of [131I]HD may be attributed to its binding to the exposed DNA in necrotic tissues.
Collapse
Affiliation(s)
- Qiaomei Jin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Juanzhi Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, People's Republic of China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Yuanbo Feng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Wei Liu
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Tiannv Li
- Departments of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Shaoli Song
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200127, People's Republic of China
| | - Yicheng Ni
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Theragnostic Laboratory, KU Leuven, Campus Gasthuisberg, 3000, Leuven, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Dejian Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China. .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| | - Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China. .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Han C, Zhang C, Ma T, Zhang C, Luo J, Xu X, Zhao H, Chen Y, Kong L. Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect. Acta Biomater 2018; 77:268-281. [PMID: 30006311 DOI: 10.1016/j.actbio.2018.07.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
Effective targeting of mitochondria has emerged as a beneficial strategy in cancer therapy. However, the development of mitochondria-targeting ligands is difficult because of the low permeability of the mitochondrial double membrane. We found that hypericin (HY), a natural product isolated from Hypericum perforatum L., is an effective mitochondria-targeting ligand. HY-functionalized graphene oxide (GO) loaded with doxorubicin (GO-PEG-SS-HY/DOX) increased the synergistic anticancer efficacy of phototherapy and chemotherapy in the absence of apparent adverse side effects. In vitro and in vivo assays suggested GO-PEG-SS-HY/DOX induced the expression of the key proteins of the mitochondria-mediated apoptosis pathway and caused apoptosis of breast carcinoma cells. In addition, GO vehicle exhibited low toxicity toward normal cells, indicating high safety of functionalized GO preparations in antitumor therapy. Therefore, HY-functionalized GO can be successfully used as a platform technology to target mitochondria in cancer cells and improve the therapeutic efficacy of chemotherapeutic drugs. STATEMENT OF SIGNIFICANCE Induction of mitochondria-mediated apoptosis is a promising approach in cancer therapy. However, mitochondria are difficult to access and permeate because of their negative membrane potential and highly dense double membrane. Mitochondria-targeting ligands can be conjugated to nanoparticles or small-molecule drugs to enhance their antitumor effect. Here, we showed that the natural photosensitizer hypericin is a novel mitochondria-targeting ligand and that graphene oxide particles co-loaded with hypericin and the chemotherapeutic agent doxorubicin exhibited a synergistic antitumor effect mediated by the mitochondrial-mediated apoptosis. Treatment with such particles in combination with laser irradiation led to apoptosis of the tumor MDA-MB-231 and MCF-7 cells in vitro and in vivo. Furthermore, treatment with hypericin/doxorubicin-functionalized graphene oxide had low cellular toxicity.
Collapse
Affiliation(s)
- Chao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery and Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Ting Ma
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Jianguang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Xiao Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Huijun Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yan Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
27
|
Blascakova L, Horvath D, Belej D, Wagnieres G, Miskovsky P, Jancura D, Huntosova V. Hypericin can cross barriers in the chicken’s chorioallantoic membrane model when delivered in low-density lipoproteins. Photodiagnosis Photodyn Ther 2018; 23:306-313. [DOI: 10.1016/j.pdpdt.2018.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/06/2018] [Accepted: 07/16/2018] [Indexed: 02/04/2023]
|
28
|
Jin Q, Shan X, Luo Q, Zhang D, Zhao Y, Yao N, Peng F, Huang D, Yin Z, Liu W, Zhang J. 131I-Evans blue: evaluation of necrosis targeting property and preliminary assessment of the mechanism in animal models. Acta Pharm Sin B 2018; 8:390-400. [PMID: 29881678 PMCID: PMC5989829 DOI: 10.1016/j.apsb.2017.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/18/2017] [Accepted: 08/05/2017] [Indexed: 01/28/2023] Open
Abstract
Necrosis is a form of cell death, which is related to various serious diseases such as cardiovascular disease, cancer, and neurodegeneration. Necrosis-avid agents (NAAs) selectively accumulated in the necrotic tissues can be used for imaging and/or therapy of related diseases. The aim of this study was to preliminarily investigate necrosis avidity of 131I-evans blue (131I-EB) and its mechanism. The biodistribution of 131I-EB at 24 h after intravenous administration showed that the radioactivity ratio of necrotic to viable tissue was 3.41 in the liver and 11.82 in the muscle as determined by γ counting in model rats. Autoradiography and histological staining displayed preferential uptake of 131I-EB in necrotic tissues. In vitro nuclear extracts from necrotic cells exhibited 82.3% of the uptake in nuclei at 15 min, as well as 79.2% of the uptake at 2 h after 131I-EB incubation. The DNA binding study demonstrated that evans blue (EB) has strong binding affinity with calf-thymus DNA (CT-DNA) (Ksv=5.08×105 L/(mol/L)). Furthermore, the accumulation of 131I-EB in necrotic muscle was efficiently blocked by an excess amount of unlabeled EB. In conclusion, 131I-EB can not only detect necrosis by binding the DNA released from necrotic cells, but also image necrotic tissues generated from the disease clinically.
Collapse
Key Words
- % ID/g, percentage of the injected dose per gram of tissue
- 131I-EB, 131I-evans blue
- 131I-Evans blue
- CE-T1WI, contrast-enhanced T1WI
- CT-DNA, calf-thymus DNA
- DMSO, dimethylsulfoxide
- DNA binding
- DWI, diffusion-weighted imaging
- EB, evans blue
- H&E, haematoxylin-eosin
- Hyp, hypericin
- MPS, mononuclear phagocyte system
- MRI, magnetic resonance imaging
- NAAs, necrosis-avid agents
- Necrosis avidity
- Necrosis imaging
- PI, propidium iodide
- RCP, radiochemical purity
- RFA, radiofrequency ablation
- RPLI, reperfused liver infarction
- Radioactivity
- SD rats, Sprague–Dawley rats
- T1WI, T1-weighted imaging
- T2WI, T2-weighted imaging
- TLC, thin layer chromatography
Collapse
|
29
|
Rybczynska AA, Boersma HH, de Jong S, Gietema JA, Noordzij W, Dierckx RAJO, Elsinga PH, van Waarde A. Avenues to molecular imaging of dying cells: Focus on cancer. Med Res Rev 2018. [PMID: 29528513 PMCID: PMC6220832 DOI: 10.1002/med.21495] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Successful treatment of cancer patients requires balancing of the dose, timing, and type of therapeutic regimen. Detection of increased cell death may serve as a predictor of the eventual therapeutic success. Imaging of cell death may thus lead to early identification of treatment responders and nonresponders, and to “patient‐tailored therapy.” Cell death in organs and tissues of the human body can be visualized, using positron emission tomography or single‐photon emission computed tomography, although unsolved problems remain concerning target selection, tracer pharmacokinetics, target‐to‐nontarget ratio, and spatial and temporal resolution of the scans. Phosphatidylserine exposure by dying cells has been the most extensively studied imaging target. However, visualization of this process with radiolabeled Annexin A5 has not become routine in the clinical setting. Classification of death modes is no longer based only on cell morphology but also on biochemistry, and apoptosis is no longer found to be the preponderant mechanism of cell death after antitumor therapy, as was earlier believed. These conceptual changes have affected radiochemical efforts. Novel probes targeting changes in membrane permeability, cytoplasmic pH, mitochondrial membrane potential, or caspase activation have recently been explored. In this review, we discuss molecular changes in tumors which can be targeted to visualize cell death and we propose promising biomarkers for future exploration.
Collapse
Affiliation(s)
- Anna A Rybczynska
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Genetics, University of Groningen, Groningen, the Netherlands
| | - Hendrikus H Boersma
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Clinical Pharmacy & Pharmacology, University of Groningen, Groningen, the Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Jourik A Gietema
- Department of Medical Oncology, University of Groningen, Groningen, the Netherlands
| | - Walter Noordzij
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Nuclear Medicine, Ghent University, Ghent, Belgium
| | - Philip H Elsinga
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Molecular Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
30
|
Li L, Zhang D, Yang S, Song S, Li J, Wang Q, Wang C, Feng Y, Ni Y, Zhang J, Liu W, Yin Z. Effects of Glycosylation on Biodistribution and Imaging Quality of Necrotic Myocardium of Iodine-131-Labeled Sennidins. Mol Imaging Biol 2017; 18:877-886. [PMID: 27172937 DOI: 10.1007/s11307-016-0961-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Sennidins are necrosis-avid agents for noninvasive assessment of myocardial viability which is important for patients with myocardial infarction (MI). However, high accumulation of radioactivity in the liver interferes with the assessment of myocardial viability. In this study, we compared sennidins with sennosides to investigate the effects of glycosylation on biodistribution and imaging quality of sennidins. PROCEDURES Sennidin A (SA), sennidin B (SB), sennoside A (SSA), and sennoside B (SSB) were labeled with I-131. In vitro binding to necrotic cells and hepatic cells and in vivo biodistribution in rats with muscular necrosis were evaluated by gamma counting, autoradiography, and histopathology. Single photon emission computed tomography/computed tomography (SPECT/CT) images were acquired in rats with acute MI. RESULTS The uptake of [131I]SA, [131I]SSA, [131I]SB, and [131I]SSB in necrotic cells was significantly higher than that in viable cells (p < 0.05). Hepatic cells uptake of [131I]SSA and [131I]SSB were 7-fold and 10-fold lower than that of corresponding [131I]SA and [131I]SB, respectively. The biodistribution data showed that the radioactivities in the liver and feces were significantly lower with [131I]sennosides than those with [131I]sennidins (p < 0.01). Autoradiography showed preferential accumulation of these four radiotracers in necrotic areas of muscle, confirmed by histopathology. SPECT/CT imaging studies showed better image quality with [131I]SSB than with [131I]SB due to less liver interference. CONCLUSIONS Glycosylation significantly decreased the liver uptake and improved the quality of cardiac imaging. [131I]SSB may serve as a promising necrosis-avid agent for noninvasive assessment of myocardial viability.
Collapse
Affiliation(s)
- Ling Li
- Department of Natural Medicinal Chemistry & Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Gulou District, Nanjing, 210009, Jiangsu Province, People's Republic of China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Shengwei Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Shaoli Song
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200127, People's Republic of China
| | - Jindian Li
- Department of Natural Medicinal Chemistry & Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Gulou District, Nanjing, 210009, Jiangsu Province, People's Republic of China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Qin Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Cong Wang
- Department of Natural Medicinal Chemistry & Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Gulou District, Nanjing, 210009, Jiangsu Province, People's Republic of China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Nanjing, 210028, Jiangsu Province, People's Republic of China
| | - Yuanbo Feng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, 3000, Leuven, Belgium
| | - Yicheng Ni
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Nanjing, 210028, Jiangsu Province, People's Republic of China.,Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, 3000, Leuven, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu Province, People's Republic of China. .,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, No.100, Shizi Street, Hongshan Road, Nanjing, 210028, Jiangsu Province, People's Republic of China.
| | - Wei Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry & Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, No.24, Tongjiaxiang, Gulou District, Nanjing, 210009, Jiangsu Province, People's Republic of China.
| |
Collapse
|
31
|
Montanha MC, Silva LL, Pangoni FBB, Cesar GB, Gonçalves RS, Caetano W, Hioka N, Tominaga TT, Consolaro MEL, Diniz A, Kimura E. Response surface method optimization of a novel Hypericin formulation in P123 micelles for colorectal cancer and antimicrobial photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:247-255. [DOI: 10.1016/j.jphotobiol.2017.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/10/2017] [Indexed: 01/23/2023]
|
32
|
Abstract
Photodynamic therapy (PDT) was discovered more than 100 years ago, and has since become a well-studied therapy for cancer and various non-malignant diseases including infections. PDT uses photosensitizers (PSs, non-toxic dyes) that are activated by absorption of visible light to initially form the excited singlet state, followed by transition to the long-lived excited triplet state. This triplet state can undergo photochemical reactions in the presence of oxygen to form reactive oxygen species (including singlet oxygen) that can destroy cancer cells, pathogenic microbes and unwanted tissue. The dual-specificity of PDT relies on accumulation of the PS in diseased tissue and also on localized light delivery. Tetrapyrrole structures such as porphyrins, chlorins, bacteriochlorins and phthalocyanines with appropriate functionalization have been widely investigated in PDT, and several compounds have received clinical approval. Other molecular structures including the synthetic dyes classes as phenothiazinium, squaraine and BODIPY (boron-dipyrromethene), transition metal complexes, and natural products such as hypericin, riboflavin and curcumin have been investigated. Targeted PDT uses PSs conjugated to antibodies, peptides, proteins and other ligands with specific cellular receptors. Nanotechnology has made a significant contribution to PDT, giving rise to approaches such as nanoparticle delivery, fullerene-based PSs, titania photocatalysis, and the use of upconverting nanoparticles to increase light penetration into tissue. Future directions include photochemical internalization, genetically encoded protein PSs, theranostics, two-photon absorption PDT, and sonodynamic therapy using ultrasound.
Collapse
|
33
|
Wang C, Jin Q, Yang S, Zhang D, Wang Q, Li J, Song S, Sun Z, Ni Y, Zhang J, Yin Z. Synthesis and Evaluation of 131I-Skyrin as a Necrosis Avid Agent for Potential Targeted Radionuclide Therapy of Solid Tumors. Mol Pharm 2015; 13:180-189. [PMID: 26647005 DOI: 10.1021/acs.molpharmaceut.5b00630] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An innovative anticancer approach targeted to necrotic tissues, which serves as a noncancerous and generic anchor, may present a breakthrough. Necrosis avid agents with a flat conjugate aromatic structure selectively accumulate in necrotic tissues, but they easily form aggregates that undesirably distribute to normal tissues. In this study, skyrin, a dianthraquinone compound with smaller and distorted π-cores and thus decreased aggregates as compared with hypericin (Hyp), was designed to target necrosis for tumor therapy. Aggregation studies of skyrin by UV/vis spectroscopy showed a smaller self-association constant with skyrin than with Hyp. Skyrin was labeled by iodine-131 with a radiochemical purity of 98% and exhibited good stability in rat serum for 72 h. In vitro cell uptake studies showed significant difference in the uptake of 131I-skyrin by necrotic cells compared to normal cells (P < 0.05). Compared in rats with liver and muscle necrosis, radiobiodistribution, whole-body autoradiography, and SPECT/CT studies revealed higher accumulation of 131I-skyrin in necrotic liver and muscle (p < 0.05), but lower uptake in normal organs, relative to that of 131I-Hyp. In mice bearing H22 tumor xenografts treated with combretastatin A4 disodium phosphate, the highest uptake of 131I-skyrin was found in necrotic tumor. In conclusion, 131I-skyrin appears a promising agent with reduced accumulation in nontarget organs for targeted radionuclide therapy of solid tumors.
Collapse
Affiliation(s)
- Cong Wang
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, Jiangsu Province, P. R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Qiaomei Jin
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Shengwei Yang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Dongjian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Qin Wang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China.,College of Pharmacy, Nanjing University of Chinese Medicine , Nanjing 210023, Jiangsu Province, P. R. China
| | - Jindian Li
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, Jiangsu Province, P. R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Shaoli Song
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University, School of Medicine , Shanghai 200127, P. R. China
| | - Ziping Sun
- Radiation Medical Institute, Shandong Academy of Medical Sciences , Jinan 250062, Shandong Province, P. R. China
| | - Yicheng Ni
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven , 3000 Leuven, Belgium
| | - Jian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, Jiangsu Province, P. R. China
| |
Collapse
|
34
|
Li J, Zhang J, Yang S, Jiang C, Zhang D, Jin Q, Wang Q, Wang C, Ni Y, Yin Z, Song S. Synthesis and Preclinical Evaluation of Radioiodinated Hypericin Dicarboxylic Acid as a Necrosis Avid Agent in Rat Models of Induced Hepatic, Muscular, and Myocardial Necroses. Mol Pharm 2015; 13:232-40. [PMID: 26568406 DOI: 10.1021/acs.molpharmaceut.5b00686] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myocardial infarction (MI) leads to substantial morbidity and mortality around the world. Accurate assessment of myocardial viability is essential to assist therapies and improve patient outcomes. (131)I-hypericin dicarboxylic acid ((131)I-HDA) was synthesized and evaluated as a potential diagnostic agent for earlier assessment of myocardium viability compared to its preceding counterpart (131)I-hypericin ((131)I-Hyp) with strong hydrophobic property, long plasma half-life, and high uptake in mononuclear phagocyte system (MPS). Herein, HDA was synthesized and characterized, and self-aggregation constant Kα was analyzed by spectrophotometry. Plasma half-life was determined in healthy rats by γ-counting. (131)I-HDA and (131)I-Hyp were prepared with iodogen as oxidant. In vitro necrosis avidity of (131)I-HDA and (131)I-Hyp was evaluated in necrotic cells induced by hyperthermia. Biodistribution was determined in rat models of induced necrosis using γ-counting, autoradiography, and histopathology. Earlier imaging of necrotic myocardium to assess myocardial viability was performed in rat models of reperfused myocardium infarction using single photon emission computed tomography/computed tomography (SPECT/CT). As a result, the self-aggregation constant Kα of HDA was lower than that of Hyp (105602 vs 194644, p < 0.01). (131)I-HDA displayed a shorter blood half-life compared with (131)I-Hyp (9.21 vs 31.20 h, p < 0.01). The necrotic-viable ratio in cells was higher with (131)I-HDA relative to that with (131)I-Hyp (5.48 vs 4.63, p < 0.05). (131)I-HDA showed a higher necrotic-viable myocardium ratio (7.32 vs 3.20, p < 0.01), necrotic myocardium-blood ratio (3.34 vs 1.74, p < 0.05), and necrotic myocardium-lung ratio (3.09 vs 0.61, p < 0.01) compared with (131)I-Hyp. (131)I-HDA achieved imaging of necrotic myocardium at 6 h postinjection (p.i.) with SPECT/CT, earlier than what (131)I-Hyp did. Therefore, (131)I-HDA may serve as a promising necrosis-avid diagnostic agent for earlier imaging of necrotic myocardium compared with (131)I-Hyp. This may support further development of radiopharmaceuticals ((123)I and (99m)Tc) based on HDA for SPECT/CT of necrotic myocardium.
Collapse
Affiliation(s)
- Jindian Li
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, Jiangsu Province, P. R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Jian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Shengwei Yang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Cuihua Jiang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - DongJian Zhang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Qiaomei Jin
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Qin Wang
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China.,College of Pharmacy, Nanjing University of Chinese Medicine , Nanjing 210023, Jiangsu Province, P. R. China
| | - Cong Wang
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, Jiangsu Province, P. R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China
| | - Yicheng Ni
- Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing 210028, Jiangsu Province, P. R. China.,Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven , 3000 Leuven, Belgium
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing 210009, Jiangsu Province, P. R. China
| | - Shaoli Song
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University, School of Medicine , Shanghai 200127, P. R. China
| |
Collapse
|
35
|
Zhang D, Jiang C, Yang S, Gao M, Huang D, Wang X, Shao H, Feng Y, Sun Z, Ni Y, Zhang J, Yin Z. Effects of skeleton structure on necrosis targeting and clearance properties of radioiodinated dianthrones. J Drug Target 2015; 24:566-77. [DOI: 10.3109/1061186x.2015.1113541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dongjian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, P.R. China,
| | - Cuihua Jiang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
| | - Shengwei Yang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
| | - Meng Gao
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
| | - Dejian Huang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
| | - Xiaoning Wang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
| | - Haibo Shao
- Department of Radiology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, P.R. China,
| | - Yuanbo Feng
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Ziping Sun
- Radiation Medical Institute, Shandong Academy of Medical Sciences, Jinan, Shandong Province, P.R. China, and
| | - Yicheng Ni
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
- Radiation Medical Institute, Shandong Academy of Medical Sciences, Jinan, Shandong Province, P.R. China, and
- Theragnostic Laboratory, Campus Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu Province, P.R. China,
| | - Zhiqi Yin
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, P.R. China,
| |
Collapse
|