1
|
Li Y, Li J, Yang H, Luo H, Liu S, Han F, Ruan Z, Xiong Z. Determination of Ibuprofen Enantiomers in Mouse Blood Using Liquid Chromatography-Tandem Mass Spectrometry and Its Application to a Pharmacokinetic Study. Chirality 2024; 36:e23721. [PMID: 39380333 DOI: 10.1002/chir.23721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/21/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024]
Abstract
The aim of this study was to establish a simple, fast, and sensitive method with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneously determining ibuprofen enantiomers using mouse blood in very small volumes. LC-MS/MS equipped with an electrospray ionization (ESI) source was used in negative ion mode and multiple-reaction monitoring mode. Enantiomer chromatographic separation was carried out on a Lux® 5 μm Cellulose-3 (250 × 4.6 mm, 5 μm) column at a flow rate of 0.6 mL/min. Samples were pretreated by extracting only 5 μL of blood with 40 μL of acetonitrile (containing 1.3% formic acid) so that a concentration-time profile could be completed using a single mouse. 2-(4-Propylphenyl) propanoic acid was used as an internal standard. Standard curves for each enantiomer were linear from 0.04 to 80.00 μg/mL, demonstrating a lower limit of quantitation (LLOQ) than all previously reported methods. This method was completely validated and successfully executed to investigate the pharmacokinetics of ibuprofen enantiomers after intravenous administration of racemic ibuprofen, (S)-(+)-ibuprofen, and (R)-(-)-ibuprofen in Kunming mice, respectively. The results showed that the pharmacokinetic profiles of the (R)-(-)-ibuprofen and (S)-(+)-ibuprofen were significantly different, indicating the unidirectional inversion of R-(-)-ibuprofen to (S)-(+)-ibuprofen.
Collapse
Affiliation(s)
- Yuexin Li
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, China
- Department of Bioanalysis, Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Jinglai Li
- Department of Bioanalysis, Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Huanhuan Yang
- Department of Bioanalysis, Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Huan Luo
- Department of Bioanalysis, Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Shiqi Liu
- Department of Bioanalysis, Guollence Pharmaceutical Technology Co., Ltd., Beijing, China
| | - Furong Han
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhipeng Ruan
- School of Pharmacy and Medical Technology, Putian University, Putian, Fujian, China
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University, Putian, Fujian, China
| | - Zhili Xiong
- School of Pharmacy, Shenyang Pharmaceutical University, Benxi, China
| |
Collapse
|
2
|
Watari R, Tamura N, Yoshida S, Kido Y, Matsuzaki T. Minimal Involvement of P-gp and BCRP in Oral Absorption of Ensitrelvir, An Oral SARS-CoV-2 3C-like Protease Inhibitor, in a Non-Clinical Investigation. J Pharm Sci 2024; 113:2871-2878. [PMID: 38885812 DOI: 10.1016/j.xphs.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are important transporters causing drug-drug interaction (DDI). Here, we investigated the involvement of P-gp and BCRP in the oral absorption of ensitrelvir in non-clinical studies and estimated the DDI risk mediated by P-gp and BCRP inhibition in humans. Although ensitrelvir is an in vitro P-gp and BCRP substrate, it demonstrated high bioavailability in rats and monkeys after oral administration. Plasma exposures of ensitrelvir following oral administration were comparable in wild type (WT) and Bcrp (-/-) mice. On the other hand, the area under the plasma concentration-time curve (AUC) ratio of ensitrelvir in the Mdr1a/1b (-/-) mice to the WT mice was 1.92, indicating that P-gp, but not BCRP, was involved in the oral absorption of ensitrelvir. Based on our previous retrospective analyses, such a low AUC ratio (<3) in the Mdr1a/1b (-/-) mice indicates a minimal impact of P-gp on the oral absorption in humans. In conclusion, our studies demonstrate that the involvement of both P-gp and BCRP in the oral absorption of ensitrelvir is minimal, and suggest that ensitrelvir has a low risk for DDIs mediated by P-gp and BCRP inhibition in humans.
Collapse
Affiliation(s)
- Ryosuke Watari
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd..
| | - Naomi Tamura
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd
| | - Shinpei Yoshida
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd
| | - Yasuto Kido
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd
| | | |
Collapse
|
3
|
Kido Y, Nanchi I, Matsuzaki T, Watari R, Kiyohara H, Seki N, Okuda T. Prediction of drug-drug interaction risk of P-glycoprotein substrate in drug discovery. Drug Metab Pharmacokinet 2024; 56:101008. [PMID: 38663183 DOI: 10.1016/j.dmpk.2024.101008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 06/24/2024]
Abstract
We aimed at predicting the drug-drug interaction (DDI) risk of P-glycoprotein (P-gp) substrates by using P-gp expressing LLC-PK1 cells and its knockout mice (KO). The area under the curve (AUC) of 16 marketed drugs and plasma concentration (Cplasma) of 207 screening compounds, with corrected efflux ratio (CER) ≥ 2, were compared between P-gp KO mice and wild type mice (WT). At permeability (Papp) ≥ 10 × 10-6 cm/s in parent LLC-PK1 cells, AUC ratios (KO/WT) and Cplasma ratios (KO/WT) of these compounds were within 3-fold. AUC ratios (KO/WT) of clinical P-gp substrates, with human AUC ratios with and without P-gp inhibitor administration ≥2, were higher than 8.7. These observations led us to establish a work-flow of P-gp substrate assessment with the threshold AUC ratio (KO/WT) ≥ 9 leading to a DDI risk of AUC ratio (human) ≥ 2. A screening compound showing high CER (=57.6) was found, but its AUC ratio (KO/WT) was 3.7, had been presumed to be a weak risk and its AUC ratio (human) was 1.2 in a later clinical DDI study. Our proposed workflow should be useful for predicting the DDI risk of P-gp substrates in drug discovery.
Collapse
Affiliation(s)
- Yasuto Kido
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Isamu Nanchi
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan.
| | - Takanobu Matsuzaki
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Ryosuke Watari
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Hayato Kiyohara
- Laboratory for Drug Discovery and Development, Shionogi & Co., Ltd., Osaka, Japan.
| | - Naomi Seki
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan.
| | - Tomohiko Okuda
- Laboratory for Bio-Drug Discovery, Shionogi & Co., Ltd., Osaka, Japan.
| |
Collapse
|
4
|
Wang CL, Gao MZ, Gao DM, Guo YH, Gao Z, Gao XJ, Wang JQ, Qiao MQ. Tubeimoside-1: A review of its antitumor effects, pharmacokinetics, toxicity, and targeting preparations. Front Pharmacol 2022; 13:941270. [PMID: 35910383 PMCID: PMC9335946 DOI: 10.3389/fphar.2022.941270] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Tubeimoside-1 (TBMS-1), a natural triterpenoid saponin found in traditional Chinese herbal medicine Bolbostemmatis Rhizoma, is present in numerous Chinese medicine preparations. This review aims to comprehensively describe the pharmacology, pharmacokinetics, toxicity and targeting preparations of TBMS-1, as well the therapeutic potential for cancer treatement. Information concerning TBMS-1 was systematically collected from the authoritative internet database of PubMed, Web of Science, and China National Knowledge Infrastructure applying a combination of keywords involving “tumor,” “pharmacokinetics,” “toxicology,” and targeting preparations. New evidence shows that TBMS-1 possesses a remarkable inhibitory effect on the tumors of the respiratory system, digestive system, nervous system, genital system as well as other systems in vivo and in vitro. Pharmacokinetic studies reveal that TBMS-1 is extensively distributed in various tissues and prone to degradation by the gastrointestinal tract after oral administration, causing a decrease in bioavailability. Meanwhile, several lines of evidence have shown that TBMS-1 may cause adverse and toxic effects at high doses. The development of liver-targeting and lung-targeting preparations can reduce the toxic effect of TBMS-1 and increase its efficacy. In summary, TBMS-1 can effectively control tumor treatment. However, additional research is necessary to investigate in vivo antitumor effects and the pharmacokinetics of TBMS-1. In addition, to reduce the toxicity of TBMS-1, future research should aim to modify its structure, formulate targeting preparations or combinations with other drugs.
Collapse
Affiliation(s)
- Chang-Lin Wang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ming-Zhou Gao
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
- Institute of Traditional Chinese Medicine Innovation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dong-Mei Gao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying-Hui Guo
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhan Gao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-Ju Gao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie-Qiong Wang
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Jie-Qiong Wang, ; Ming-Qi Qiao,
| | - Ming-Qi Qiao
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Research and Innovation Team of Emotional Diseases and Syndromes in Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Jie-Qiong Wang, ; Ming-Qi Qiao,
| |
Collapse
|
5
|
Xu Y, Zhang SX, Guo J, Chen LJ, Liou YL, Rao T, Peng JB, Guo Y, Huang WH, Tan ZR, Ou-yang DS, Zhou HH, Zhang W, Chen Y. A Joint Technology Combining the Advantages of Capillary Microsampling with Mass Spectrometry Applied to the Trans-Resveratrol Pharmacokinetic Study in Mice. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5952436. [PMID: 35083093 PMCID: PMC8786553 DOI: 10.1155/2022/5952436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Mice are the most frequently used animals in pharmacokinetic studies; however, collecting series of blood samples from mice is difficult because of their small sizes and tiny vessels. In addition, due to the small sample size, it is problematic to perform high required quantification. Thus, present work aims to find an effective strategy for overcoming these challenges using trans-resveratrol as a tool drug. Based on the idea of a joint technology, the capillary microsampling (CMS) was chosen for blood sample collection from mice after delivery of trans-resveratrol (150 mg/kg) by gavage, and a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed for the determination of trans-resveratrol and its main metabolites. All the mouse blood samples were exactly collected by CMS without obvious deviation. This provided credible samples for subsequent quantitative analysis. The HPLC-MS/MS method was found to be sensitive, accurate, and repeatable, and the pharmacokinetic parameters for all analytes were comparable with those reported in previous studies. However, the present joint technology offers the advantages of less animal damage, easy for sample preparation, and improved reliability. It has overcome some of the major limitations revealed in previous pharmacokinetic studies in mice and therefore provides a more effective option for future studies.
Collapse
Affiliation(s)
- Ying Xu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Song-xia Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Jing Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Li-jie Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Yu-ligh Liou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Jing-bo Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Wei-hua Huang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Zhi-rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Dong-sheng Ou-yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Hong-hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Yao Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| |
Collapse
|
6
|
Li J, Zhou M, Lai X, Wang Y, Zou Y, Li K, Li W, Zheng J. Toxicokinetic and bioavailability studies on retrorsine in mice, and ketoconazole-induced alteration in toxicokinetic properties. Biomed Chromatogr 2021; 36:e5270. [PMID: 34727371 DOI: 10.1002/bmc.5270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 11/11/2022]
Abstract
Retrorsine (RTS) is a toxic retronecine-type pyrrolizidine alkaloid, which is widely distributed. The purpose of this study was to develop a high-performance liquid chromatography-tandem mass spectrometric (LC-MS/MS) method for serum RTS determination in mice. Serum samples were deproteinated by acetonitrile, separated on a C18 -PFP column and delivered at 0.8 ml/min with an eluting system composed of water containing 0.1% (v/v) formic acid and acetonitrile containing 0.1% (v/v) formic acid as mobile phases. RTS and the internal standard S-hexylglutathione (H-GSH) were quantitatively monitored with precursor-to-product transitions of m/z 352.1 → 120.1 and m/z 392.2 → 246.3, respectively. The method showed excellent linearity over the concentration range 0.05-50 μg/ml, with correlation coefficient r2 = 0.9992. The extraction recovery was >86.34%, and the matrix effect was not significant. Inter- and intra-day precisions (RSD) were <4.99%. The validated LC-MS/MS method was successfully applied to study the toxicokinetic profiles of serum RTS in mice after intravenous, oral administration and co-treated with ketoconazole, which showed that RTS displayed a long half-life (~11.05 h) and good bioavailability (81.80%). Co-administration of ketoconazole (KTZ) increased the peak serum concentration and area under the concentration-time curve and decreased the clearance and mean residence time. Summing up, a new standardized method was established for quantitative determination of RTS in sera.
Collapse
Affiliation(s)
- Jing Li
- School of Basic Medical Sciences, School of Pharmacy and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Mengyue Zhou
- School of Basic Medical Sciences, School of Pharmacy and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Xiaoqiong Lai
- School of Basic Medical Sciences, School of Pharmacy and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Yang Wang
- School of Basic Medical Sciences, School of Pharmacy and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Ying Zou
- School of Basic Medical Sciences, School of Pharmacy and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Kunna Li
- School of Basic Medical Sciences, School of Pharmacy and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Weiwei Li
- National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China
| | - Jiang Zheng
- School of Basic Medical Sciences, School of Pharmacy and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,National Engineering Research Center of Miao's Medicines and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education and Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, Guizhou, China.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, P. R. China
| |
Collapse
|
7
|
Raje AA, Mahajan V, Pathade VV, Joshi K, Gavali A, Gaur A, Kandikere V. Capillary microsampling in mice: effective way to move from sparse sampling to serial sampling in pharmacokinetics profiling. Xenobiotica 2019; 50:663-669. [PMID: 31638457 DOI: 10.1080/00498254.2019.1683259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pharmacokinetic studies are an integral part of drug discovery and development. Mice are the commonly used species for pharmacokinetics studies during early discovery studies. Conventionally, composite PK profiles are obtained from mice studies due to the physiological limitations of the total blood volume that can be drawn over a certain period.With advancements in bioanalytical instrumentation and in blood sampling techniques, analysis with small volume (<50 µL) became feasible enabling serial blood sampling from the mouse for PK studies. The objective of the current study was to develop and establish a serial blood sampling technique in mouse and compare it with the conventional sparse sampling method (composite PK) following oral administration of widely used NSAIDs, diclofenac, celecoxib and tenoxicam, into Swiss Albino mice.The pharmacokinetic parameters of all three probe drugs by serial blood sampling were comparable with that of sparse sampling method. There was no significant difference between the whole blood concentration time profiles of all three drugs between serial sampling and sparse sampling suggesting serial blood sampling method can be easily implemented for mice PK studies.Serial blood sampling technique requires use of fewer number of animals, less quantity of test compound and reduces the possible dosing errors as fewer number of animals need to be dosed resulting in quality PK data and enabling comparison of inter-animal differences in PK profile.
Collapse
Affiliation(s)
- Amol A Raje
- Drug Metabolism Pharmacokinetics and Clinical Pharmacology, Eurofins Advinus Ltd., (Formerly known as Advinus Therapeutics Ltd), Bengaluru, India
| | - Vallabh Mahajan
- Drug Metabolism Pharmacokinetics and Clinical Pharmacology, Eurofins Advinus Ltd., (Formerly known as Advinus Therapeutics Ltd), Bengaluru, India
| | - Vishal V Pathade
- Drug Metabolism Pharmacokinetics and Clinical Pharmacology, Eurofins Advinus Ltd., (Formerly known as Advinus Therapeutics Ltd), Bengaluru, India
| | - Kaushal Joshi
- Drug Metabolism Pharmacokinetics and Clinical Pharmacology, Eurofins Advinus Ltd., (Formerly known as Advinus Therapeutics Ltd), Bengaluru, India
| | - Ashutosh Gavali
- Drug Metabolism Pharmacokinetics and Clinical Pharmacology, Eurofins Advinus Ltd., (Formerly known as Advinus Therapeutics Ltd), Bengaluru, India
| | - Ashwani Gaur
- Drug Metabolism Pharmacokinetics and Clinical Pharmacology, Eurofins Advinus Ltd., (Formerly known as Advinus Therapeutics Ltd), Bengaluru, India
| | - Vishwottam Kandikere
- Drug Metabolism Pharmacokinetics and Clinical Pharmacology, Eurofins Advinus Ltd., (Formerly known as Advinus Therapeutics Ltd), Bengaluru, India
| |
Collapse
|
8
|
Thompson JM, Blanton HL, Pietrzak A, Little W, Sherfey C, Guindon J. Front and hind paw differential analgesic effects of amitriptyline, gabapentin, ibuprofen, and URB937 on mechanical and cold sensitivity in cisplatin-induced neuropathy. Mol Pain 2019; 15:1744806919874192. [PMID: 31418316 PMCID: PMC6757502 DOI: 10.1177/1744806919874192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cisplatin is a widely used platinum-derived antineoplastic agent that frequently results in peripheral neuropathy. Therapeutic strategies for neuropathic pain are limited and characterized by variable efficacy and severe adverse effects. Clinical translation of novel analgesics has proven difficult with many agents demonstrating preclinical efficacy failing in clinical trials. Preclinical studies frequently assess pain behaviors in the hind paws; however, the front paws have a greater degree of the fine sensorimotor functions characteristically damaged by chemotherapy-induced neuropathy. This is the first study to assess pain responses in the front paws. Here, we test the hypothesis that mouse front paws exhibit pain-related alterations in mechanical and thermal (cold) sensitivity in a murine model of cisplatin-induced neuropathy and that pharmacological treatment with amitriptyline, gabapentin, ibuprofen, and URB937 normalize pain behaviors in the front and hind paws. Cold (acetone withdrawal latencies) and mechanical (von Frey withdrawal thresholds) sensitivity were significantly increased and decreased respectively in both the front and the hind paws following initiation of weekly systemic (intraperitoneal) cisplatin injections (5 mg/kg). For the hind paws, systemic administration of amitriptyline (30 mg/kg), gabapentin (100 mg/kg), ibuprofen (0–10 mg/kg), or URB937 (0–10 mg/kg) resulted in a decrease in acetone withdrawal latencies and increase in von Frey withdrawal thresholds with return to normal values at the highest doses tested. For the front paws, return to baseline values for the highest doses was found for cold allodynia but not mechanical allodynia, where the highest doses failed to return to baseline values. These results indicate that mouse front paws exhibit pain-related changes in cisplatin-induced neuropathy and that drug effects can vary based on testing stimulus and location. This suggests that front paw responses across multiple modalities provide reliable and accurate information about pain-related drug effects. Future studies should be aimed at elucidating the mechanisms underlying these differential effects.
Collapse
Affiliation(s)
- Jeremy M Thompson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Henry L Blanton
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Agata Pietrzak
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - William Little
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Caitlyn Sherfey
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
9
|
Ramaprasad A, Subudhi AK, Culleton R, Pain A. A fast and cost-effective microsampling protocol incorporating reduced animal usage for time-series transcriptomics in rodent malaria parasites. Malar J 2019; 18:26. [PMID: 30683099 PMCID: PMC6347755 DOI: 10.1186/s12936-019-2659-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/18/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The transcriptional regulation that occurs in malaria parasites during the erythrocytic stages of infection can be studied in vivo with rodent malaria parasites propagated in mice. Time-series transcriptome profiling commonly involves the euthanasia of groups of mice at specific time points followed by the extraction of parasite RNA from whole blood samples. Current methodologies for parasite RNA extraction involve several steps and when multiple time points are profiled, these protocols are laborious, time-consuming, and require the euthanization of large cohorts of mice. RESULTS A simplified protocol has been designed for parasite RNA extraction from blood volumes as low as 20 μL (microsamples), serially bled from mice via tail snips and directly lysed with TRIzol reagent. Gene expression data derived from microsampling using RNA-seq were closely matched to those derived from larger volumes of leucocyte-depleted and saponin-treated blood obtained from euthanized mice with high reproducibility between biological replicates. Transcriptome profiling of microsamples taken at different time points during the intra-erythrocytic developmental cycle of the rodent malaria parasite Plasmodium vinckei revealed the transcriptional cascade commonly observed in malaria parasites. CONCLUSIONS Microsampling is a quick, robust and cost-efficient approach to sample collection for in vivo time-series transcriptomic studies in rodent malaria parasites.
Collapse
Affiliation(s)
- Abhinay Ramaprasad
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia. .,Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Amit Kumar Subudhi
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Richard Culleton
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
10
|
Chen L, Zhang B, Liu J, Fan Z, Weng Z, Geng P, Wang X, Lin G. Pharmacokinetics and Bioavailability Study of Monocrotaline in Mouse Blood by Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1578643. [PMID: 30186850 PMCID: PMC6110008 DOI: 10.1155/2018/1578643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/05/2018] [Accepted: 07/29/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS The present study aimed to develop a simple and sensitive method for quantitative determination of monocrotaline (MCT) in mouse blood employing ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI/MS/MS) using rhynchophylline as an internal standard. METHODS Proteins present in the blood samples were precipitated using acetonitrile. MCT was separated using a 1.7-μm ethylene bridged hybrid (BEH) C18 column (2.1 mm × 50 mm) with a gradient elution program and a constant flow rate of 0.4 mL/min. The LC mobile phase consisted of 10 mmol/L ammonium acetate (containing 0.1% formic acid) and acetonitrile. The total elution time was 4.0 min. The analytes were detected on a UPLC-ESI mass spectrometer in multiple reaction monitoring (MRM) mode and quantified. RESULTS The new method for the determination of MCT has a satisfactory linear detection range of 1-2000 ng/mL and excellent linearity (r = 0.9971). The lower limit of quantification (LLOQ) of MCT is 1.0 ng/mL. Intra- and interassay precisions of MCT were ≤13% with an accuracy from 96.2% to 106.6%. The average recovery of the new method was >75.0%, and matrix effects were between 89.0% and 94.3%. Based on the pharmacokinetics data, the bioavailability of MCT in mice was 88.3% after oral administration. CONCLUSIONS The results suggest that the newly standardized method for quantitative determination of MCT in whole blood is fast, reliable, specific, sensitive, and suitable for pharmacokinetic studies of MCT after intravenous or intragastric administration.
Collapse
Affiliation(s)
- Lianguo Chen
- The Third Clinical Institute Affiliated with Wenzhou Medical University & Wenzhou People's Hospital, Wenzhou 325000, China
| | - Bin Zhang
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinlai Liu
- The Third Clinical Institute Affiliated with Wenzhou Medical University & Wenzhou People's Hospital, Wenzhou 325000, China
| | - Zhehua Fan
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ziwei Weng
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Peiwu Geng
- Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, Lishui 323000, China
| | - Xianqin Wang
- Analytical and Testing Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Guanyang Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
11
|
Chen L, Weng Q, Li F, Liu J, Zhang X, Zhou Y. Pharmacokinetics and Bioavailability Study of Tubeimoside I in ICR Mice by UPLC-MS/MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:9074893. [PMID: 30116651 PMCID: PMC6079592 DOI: 10.1155/2018/9074893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study is to establish and validate a rapid, selective, and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to determine tubeimoside I (TBMS-I) in ICR (Institute of Cancer Research) mouse whole blood and its application in the pharmacokinetics and bioavailability study. The blood samples were precipitated by acetonitrile to extract the analytes. Chromatographic separation was performed on a UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 μm). The mobile phase consisted of water with 0.1% formic acid and methanol (1 : 1, v/v) at a flow rate of 0.4 mL/min. The total eluting time was 4 min. The TBMS-I and ardisiacrispin A (internal standard (IS)) were quantitatively detected by a tandem mass spectrometry equipped with an electrospray ionization (ESI) in a positive mode by multiple reaction monitoring (MRM). A validation of this method was in accordance with the US Food and Drug Administration (FDA) guidelines. The lower limit of quantification (LLOQ) of TBMS-I was 2 ng/mL, and the calibration curve was linearly ranged from 2 to 2000 ng/mL (r2 ≥ 0.995). The relative standard deviation (RSD) of interday precision and intraday precision was both lower than 15%, and the accuracy was between 91.7% and 108.0%. The average recovery was >66.9%, and the matrix effects were from 104.8% to 111.0%. In this assay, a fast, highly sensitive, and reproducible quantitative method was developed and validated in mouse blood for the first time. The absolute availability of TBMS-I in the mouse was only 1%, exhibiting a poor oral absorption.
Collapse
Affiliation(s)
- Lianguo Chen
- Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Qinghua Weng
- Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Feifei Li
- Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Jinlai Liu
- Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Xueliang Zhang
- Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Yunfang Zhou
- Laboratory of Clinical Pharmacy, The People's Hospital of Lishui, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| |
Collapse
|
12
|
de Montellano PRO. 1-Aminobenzotriazole: A Mechanism-Based Cytochrome P450 Inhibitor and Probe of Cytochrome P450 Biology. Med Chem 2018; 8:038. [PMID: 30221034 PMCID: PMC6137267 DOI: 10.4172/2161-0444.1000495] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
1-Aminobenzotriazole (1-ABT) is a pan-specific, mechanism-based inactivator of the xenobiotic metabolizing forms of cytochrome P450 in animals, plants, insects, and microorganisms. It has been widely used to investigate the biological roles of cytochrome P450 enzymes, their participation in the metabolism of both endobiotics and xenobiotics, and their contributions to the metabolism-dependent toxicity of drugs and chemicals. This review is a comprehensive evaluation of the chemistry, discovery, and use of 1-aminobenzotriazole in these contexts from its introduction in 1981 to the present.
Collapse
|
13
|
Quantitative determination of carfilzomib in mouse plasma by liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study. J Pharm Biomed Anal 2017; 146:341-346. [PMID: 28918323 DOI: 10.1016/j.jpba.2017.08.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/21/2022]
Abstract
A highly sensitive and rapid LC-MS/MS method was developed and validated to determine the levels of carfilzomib in mice plasma by using chlorpropamide as an internal standard. Carfilzomib and chlorpropamide were extracted from 5 μL of plasma after protein precipitation with acetonitrile. Chromatographic separation was performed on Phenomenex Luna C18 column (50×2.0mm id, 3μm). The mobile phase consisted of 0.1% formic acid in acetonitrile -0.1% formic acid in water (1:1v/v) and the flow rate was 0.3mL/min. The total chromatographic run time was 2.5min. Detection was performed on a triple quadrupole mass spectrometer equipped with positive-ion electrospray ionization by selected reaction monitoring of the transitions at m/z 720.20>100.15 (for carfilzomib) and m/z 277.05>111.05 (for the internal standard). The lower limit of quantification was 0.075ng/mL and the linear range was 0.075-1250ng/mL (r≥0.9974). All validation data, including selectivity, precision, accuracy, matrix effect, recovery, dilution integrity, stability, and incurred sample reanalysis, were well within acceptance limits. This newly developed bioanalytical method was simple, highly sensitive, required only a small volume of plasma, and was suitable for application in pharmacokinetic studies in mice that used serial blood sampling.
Collapse
|
14
|
Kim J, Min JS, Kim D, Zheng YF, Mailar K, Choi WJ, Lee C, Bae SK. A simple and sensitive liquid chromatography-tandem mass spectrometry method for trans-ε-viniferin quantification in mouse plasma and its application to a pharmacokinetic study in mice. J Pharm Biomed Anal 2016; 134:116-121. [PMID: 27902942 DOI: 10.1016/j.jpba.2016.11.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/12/2023]
Abstract
In this study, a simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the quantification of trans-ε-viniferin in small volumes (10μl) of mouse plasma using chlorpropamide as an internal standard was developed and validated. Plasma samples were precipitated with acetonitrile and separated using an Eclipse Plus C18 column (100×4.6mm, 1.8-μm) with a mobile phase consisting of 0.1% formic acid in acetonitrile and 0.1% formic acid in water (60:40v/v) at a flow rate of 0.5ml/min. A triple quadrupole mass spectrometer operating in positive ion mode with selected reaction-monitoring mode was used to determine trans-ε-viniferin and chlorpropamide transitions of 455.10→215.05 and 277.00→111.00, respectively. The lower limit of quantification was 5ng/ml with a linear range of 5-2500ng/ml (r≥0.9949). All validation data, including the selectivity, precision, accuracy, recovery, dilution integrity, and stability, conformed to the acceptance requirements. No matrix effects were observed. The developed method was successfully applied to pharmacokinetic studies of trans-ε-viniferin following intravenous (2.5mg/kg), intraperitoneal (2.5, 5 and 10mg/kg), and oral (40mg/kg) administration in mice. This is the first report on the pharmacokinetic properties of trans-ε-viniferin. The results provide a meaningful basis for evaluating the pre-clinical or clinical applications of trans-ε-viniferin.
Collapse
Affiliation(s)
- Jiseon Kim
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jee Sun Min
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Doyun Kim
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yu Fen Zheng
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Karabasappa Mailar
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Won Jun Choi
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| |
Collapse
|
15
|
Watanabe A, Mayumi K, Nishimura K, Osaki H. In vivo use of the CYP inhibitor 1-aminobenzotriazole to increase long-term exposure in mice. Biopharm Drug Dispos 2016; 37:373-8. [PMID: 27379984 DOI: 10.1002/bdd.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/21/2016] [Accepted: 06/25/2016] [Indexed: 11/12/2022]
Abstract
1-Aminobenzotriazole (ABT) is a well-known in vivo nonspecific inhibitor of cytochrome P450 (CYP) enzymes. An effective dosing regimen of ABT for a multiple-administration study is needed to conduct pharmacological studies for proof-of-concept, although it has been established for single-administration study, to characterize the pharmacokinetics of drug candidates. This study demonstrated a suitable dosing vehicle of ABT for continuous administration and increased exposure to antipyrine, which is a nonspecific probe of CYP, using ABT for a long period in mice. The dosing vehicle of ABT was 0.5% (w/v) hydroxypropyl methylcellulose and 0.5% (v/v) Tween 80 in N,N-dimethylacetamide/20% hydroxypropyl-β-cyclodextrin aqueous solution (2:8, v/v) based on the duration of apparent solubility. After implantation of an ALZET osmotic pump with ABT, the plasma concentrations of ABT were maintained at more than 4.1 μg/ml over 336 h. Compared with the vehicle group, the CLtot of antipyrine with ABT decreased to approximately one-fourth, and the BA of antipyrine with ABT increased up to 3-fold. In addition, the enhancement of exposure of antipyrine by ABT was maintained over the 336 h. The body weight, food consumption and hematological parameters of mice did not change with ABT administration for 16 days. These findings demonstrated that pretreatment of ABT can increase long-term exposure using continuous administration with the ALZET osmotic pump in mice with no overt toxicity. It is concluded that the in vivo use of 1-aminobenzotriazole can be applied to pharmacological studies for proof-of-concept, thus contributing to the selection of drug candidates at an early drug discovery stage. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ayahisa Watanabe
- Physicochemical & Preformulation, Research Laboratory for Development, Shionogi & Co., Ltd, Japan.
| | - Kei Mayumi
- Drug Metabolism & Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd, Japan
| | - Kyohei Nishimura
- Drug Safely Evaluation, Research Laboratory for Development, Shionogi & Co., Ltd, Japan
| | - Hiromi Osaki
- Physicochemical & Preformulation, Research Laboratory for Development, Shionogi & Co., Ltd, Japan
| |
Collapse
|