1
|
Moll F, Bechtold-Peters K, Friess W. Impact of Autoclavation on Baked-on Siliconized Containers for Biologics. Eur J Pharm Biopharm 2023; 187:184-195. [PMID: 37142129 DOI: 10.1016/j.ejpb.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023]
Abstract
Many pharmaceutical manufacturing units utilize pre-sterilized ready-to fill primary containers for parenterals. The containers may have been sterilized by the supplier via autoclavation. This process can change the physicochemical properties of the material and the subsequent product stability. We studied the impact of autoclavation on baked on siliconized glass containers for biopharmaceuticals. We characterized the container layers of different thickness before and after autoclavation for 15 min at 121 °C and 130 °C. Furthermore, we analyzed the adsorption of a mAb to the silicone layer and subjected filled containers to 12 weeks storage at 40 °C monitoring functionality and subvisible particle formation of the product. Autoclavation turned the initially homogenous silicone coating into an incoherent surface with uneven microstructure, changed surface roughness and energy, and increased protein adsorption. The effect was more pronounced at higher sterilization temperatures. We did not observe an effect of autoclavation on stability. Our results did not indicate any concerns for autoclavation at 121 °C for safety and stability of drug/device combination products using baked-on siliconized glass containers.
Collapse
Affiliation(s)
- Fabian Moll
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | | | - Wolfgang Friess
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany.
| |
Collapse
|
2
|
Herczeg CK, Song J. Sterilization of Polymeric Implants: Challenges and Opportunities. ACS APPLIED BIO MATERIALS 2022; 5:5077-5088. [PMID: 36318175 PMCID: PMC9691608 DOI: 10.1021/acsabm.2c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Degradable and environmentally responsive polymers have been actively developed for drug delivery and regenerative medicine applications, yet inadequate consideration of their compatibility with terminal sterilization presents notable barriers to clinical translation. This Review discusses industry-established terminal sterilization methods and aseptic processing and contrasts them with innovative approaches aimed at preserving the integrity of polymeric implants. Regulatory guidelines, fiscal considerations, and potential pitfalls are discussed to encourage early integration of sterility regulatory considerations in material designs.
Collapse
Affiliation(s)
- Chloe K Herczeg
- Department of Orthopedics and Physical Rehabilitation, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, United States
| |
Collapse
|
3
|
Oezipek S, Hoelterhoff S, Breuer S, Bell C, Bathke A. mD-UPLC-MS/MS: Next Generation of mAb Characterization by Multidimensional Ultraperformance Liquid Chromatography-Mass Spectrometry and Parallel On-Column LysC and Trypsin Digestion. Anal Chem 2022; 94:8136-8145. [PMID: 35545869 PMCID: PMC9201819 DOI: 10.1021/acs.analchem.1c04450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/05/2022] [Indexed: 11/29/2022]
Abstract
For the past few years, multidimensional liquid chromatography-mass spectrometry (LC-MS) systems have been commonly used to characterize post-translational modifications (PTMs) of therapeutic antibodies (mAbs). In most cases, this is performed by fractionation of charge variants by ion-exchange chromatography and subsequent online LC-MS peptide mapping analysis. In this study, we developed a multidimensional ultra-performance-liquid-chromatography-mass spectrometry system (mD-UPLC-MS/MS) for PTM characterization and quantification, allowing both rapid analysis and decreased risk of artificial modifications during sample preparation. We implemented UPLC columns for peptide mapping analysis, facilitating the linkage between mD-LC and routine LC-MS workflows. Furthermore, the introduced system incorporates a novel in-parallel trypsin and LysC on-column digestion setup, followed by a combined peptide mapping analysis. This parallel digestion with different enzymes enhances characterization by generating two distinct peptides. Using this approach, a low retentive ethylene oxide adduct of a bispecific antibody was successfully characterized within this study. In summary, our approach allows versatile and rapid analysis of PTMs, enabling efficient characterization of therapeutic molecules.
Collapse
Affiliation(s)
- Saban Oezipek
- Pharma Technical
Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sina Hoelterhoff
- Pharma Technical
Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Simon Breuer
- Pharma Technical
Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christian Bell
- Pharma Technical
Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Anja Bathke
- Pharma Technical
Development, F. Hoffmann-La Roche, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
4
|
Narhi LO, Chou DK, Christian TR, Gibson S, Jagannathan B, Jiskoot W, Jordan S, Sreedhara A, Waxman L, Das TK. Stress Factors in Primary Packaging, Transportation and Handling of Protein Drug Products and Their Impact on Product Quality. J Pharm Sci 2022; 111:887-902. [DOI: 10.1016/j.xphs.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/15/2022]
|
5
|
Apostol I, Bondarenko PV, Ren D, Semin DJ, Wu CH, Zhang Z, Goudar CT. Enabling development, manufacturing, and regulatory approval of biotherapeutics through advances in mass spectrometry. Curr Opin Biotechnol 2021; 71:206-215. [PMID: 34508981 DOI: 10.1016/j.copbio.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Rapid technological advances have significantly improved the capability, versatility, and robustness of mass spectrometers which has led to them playing a central role in the development, characterization, and regulatory filings of biopharmaceuticals. Their application spans the entire continuum of drug development, starting with discovery research through product development, characterization, and marketing authorization and continues well into product life cycle management. The scope of application extends beyond traditional protein characterization and includes elements like clone selection, cell culture physiology and bioprocess optimization, investigation support, and process analytical technology. More recently, advances in the MS-based multi-attribute method are enabling the introduction of MS in a cGMP environment for routine release and stability testing. While most applications of MS to date have been for monoclonal antibodies, the successes and learnings should translate to the characterization of next-gen biotherapeutics where modalities like multispecifics could be more prevalent. In this review, we describe the most significant advances in MS and correlate them to the broad spectrum of applications to biotherapeutic development. We anticipate rapid technological improvements to continue that will further accelerate widespread deployment of MS, thereby elevating our overall understanding of product quality and enabling attribute-focused product development.
Collapse
Affiliation(s)
- Izydor Apostol
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Da Ren
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - David J Semin
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chao-Hsiang Wu
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Zhongqi Zhang
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chetan T Goudar
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States.
| |
Collapse
|
6
|
Chemical-gas Sterilization of External Surface of Polymer-based Prefilled Syringes and Its Effect on Stability of Model Therapeutic Protein. J Pharm Sci 2021; 111:41-50. [PMID: 34499900 DOI: 10.1016/j.xphs.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022]
Abstract
To reduce the risk of infection during intravitreal injections, the external surface of prefilled syringes (PFSs) must be sterilized. Usually, ethylene oxide (EO) gas or vaporized hydrogen peroxide (VHP) is used for sterilization. More recently, nitrogen dioxide (NO2) gas sterilization has been developed. It is known that gas permeability is approximately zero into glass-PFSs. However, polymer-PFSs (P-PFSs) have relatively high gas permeability. Therefore, there are concerns about the potential impact of external surface sterilization on drug solutions in P-PFSs. In this study, P-PFSs [filled with water for injection (WFI) or human serum albumin (HSA) solution] were externally sterilized using EO, VHP, and NO2 gases. For the WFI-filled syringes, the concentration of each gas that ingressed into the WFI was measured. For the HSA solution-filled syringes, the physical and chemical degradation of HSA molecules by each sterilant gas was quantified. For the EO- or VHP-sterilized syringes, the ingressed EO or hydrogen peroxide (H2O2) molecules were detected in the filled WFI. Additionally, EO-adducted or oxidized HSA molecules were observed in the HSA-filled syringes. In contrast, the NO2-sterilized WFI-filled syringes exhibited essentially immeasurable ingressed NO2, and protein degradation was not detected in HSA-filled syringes.
Collapse
|
7
|
Parenky AC, Wadhwa S, Chen HH, Bhalla AS, Graham KS, Shameem M. Container Closure and Delivery Considerations for Intravitreal Drug Administration. AAPS PharmSciTech 2021; 22:100. [PMID: 33709236 PMCID: PMC7952281 DOI: 10.1208/s12249-021-01949-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/30/2021] [Indexed: 11/30/2022] Open
Abstract
Intravitreal (IVT) administration of therapeutics is the standard of care for treatment of back-of-eye disorders. Although a common procedure performed by retinal specialists, IVT administration is associated with unique challenges related to drug product, device and the procedure, which may result in adverse events. Container closure configuration plays a crucial role in maintaining product stability, safety, and efficacy for the intended shelf-life. Careful design of primary container configuration is also important to accurately deliver small volumes (10-100 μL). Over- or under-dosing may lead to undesired adverse events or lack of efficacy resulting in unpredictable and variable clinical responses. IVT drug products have been traditionally presented in glass vials. However, pre-filled syringes offer a more convenient administration option by reducing the number of steps required for dose preparation there by potentially reducing the time demand on the healthcare providers. In addition to primary container selection, product development studies should focus on, among other things, primary container component characterization, material compatibility with the formulation, formulation stability, fill volume determination, extractables/leachables, and terminal sterilization. Ancillary components such as disposable syringes and needles must be carefully selected, and a detailed administration procedure that includes dosing instructions is required to ensure successful administration of the product. Despite significant efforts in improving the drug product and administration procedures, ocular safety concerns such as endophthalmitis, increased intraocular pressure, and presence of silicone floaters have been reported. A systematic review of available literature on container closure and devices for IVT administration can help guide successful product development.
Collapse
|
8
|
Rickert CA, Lutz TM, Marczynski M, Lieleg O. Several Sterilization Strategies Maintain the Functionality of Mucin Glycoproteins. Macromol Biosci 2020; 20:e2000090. [DOI: 10.1002/mabi.202000090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/24/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Carolin Alexandra Rickert
- Department of Mechanical Engineering and Munich School of BioengineeringTechnical University of Munich Boltzmannstr. 11, Garching b. München 85748 Germany
| | - Theresa Monika Lutz
- Department of Mechanical Engineering and Munich School of BioengineeringTechnical University of Munich Boltzmannstr. 11, Garching b. München 85748 Germany
| | - Matthias Marczynski
- Department of Mechanical Engineering and Munich School of BioengineeringTechnical University of Munich Boltzmannstr. 11, Garching b. München 85748 Germany
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of BioengineeringTechnical University of Munich Boltzmannstr. 11, Garching b. München 85748 Germany
| |
Collapse
|
9
|
Wang W, Ohtake S. Science and art of protein formulation development. Int J Pharm 2019; 568:118505. [PMID: 31306712 DOI: 10.1016/j.ijpharm.2019.118505] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
Protein pharmaceuticals have become a significant class of marketed drug products and are expected to grow steadily over the next decade. Development of a commercial protein product is, however, a rather complex process. A critical step in this process is formulation development, enabling the final product configuration. A number of challenges still exist in the formulation development process. This review is intended to discuss these challenges, to illustrate the basic formulation development processes, and to compare the options and strategies in practical formulation development.
Collapse
Affiliation(s)
- Wei Wang
- Biological Development, Bayer USA, LLC, 800 Dwight Way, Berkeley, CA 94710, United States.
| | - Satoshi Ohtake
- Pharmaceutical Research and Development, Pfizer Biotherapeutics Pharmaceutical Sciences, Chesterfield, MO 63017, United States
| |
Collapse
|
10
|
Dempsey SG, Miller CH, Hill RC, Hansen KC, May BCH. Functional Insights from the Proteomic Inventory of Ovine Forestomach Matrix. J Proteome Res 2019; 18:1657-1668. [DOI: 10.1021/acs.jproteome.8b00908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sandi G. Dempsey
- Aroa Biosurgery Limited, Airport Oaks, Auckland 2022, New Zealand
| | | | - Ryan C. Hill
- Omix Technologies LLC, Bioscience 1, 12635 E. Montview Blvd. Suite 100, Aurora, Colorado 80045, United States
| | - Kirk C. Hansen
- Omix Technologies LLC, Bioscience 1, 12635 E. Montview Blvd. Suite 100, Aurora, Colorado 80045, United States
| | | |
Collapse
|
11
|
Funatsu K, Kiminami H, Abe Y, Carpenter JF. Impact of Ethylene Oxide Sterilization of Polymer-Based Prefilled Syringes on Chemical Degradation of a Model Therapeutic Protein During Storage. J Pharm Sci 2019; 108:770-774. [DOI: 10.1016/j.xphs.2018.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/15/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
|
12
|
Hamad A, Iweala OI, Henderson C, Madan S, Stouffer GA, Commins SP, Kim EH. Recurrent anaphylaxis during cardiac catheterization due to ethylene oxide. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2018; 6:2148-2150. [PMID: 29715563 PMCID: PMC6207486 DOI: 10.1016/j.jaip.2018.04.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022]
Affiliation(s)
- Ahmad Hamad
- Department of Medicine, Division of Rheumatology, Allergy, Immunology, University of North Carolina School of Medicine, Chapel Hill, NC.
| | - Onyinye I Iweala
- Department of Medicine, Division of Rheumatology, Allergy, Immunology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Cory Henderson
- Department of Medicine, Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Shivanshu Madan
- Department of Medicine, Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - George A Stouffer
- Department of Medicine, Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Scott P Commins
- Department of Medicine, Division of Rheumatology, Allergy, Immunology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Edwin H Kim
- Department of Medicine, Division of Rheumatology, Allergy, Immunology, University of North Carolina School of Medicine, Chapel Hill, NC
| |
Collapse
|
13
|
Abstract
Sequence variant analysis (SVA) is critical in therapeutic protein development because it ensures the absence of genetic mutations of a production clone or high-level misincorporations during cell culture. While software for searching sequence variants from mass spectrometry data are available, effectively distinguishing true positives from a large number of false positives in the reported hits or identifications found in the error tolerant search mode is a challenge. This verification process must be done manually and can take several days or even weeks to accomplish. We report here the use of a Perl-based script to evaluate every identified hit to remove the false positives from the search results of PepFinder™ (also known as MassAnalyzer) based on orthogonal criteria. Our data show that the false positives from PepFinder™ output were reduced ∼4-fold without loss of accuracy in the detection of true identifications, representing a more than 70% reduction in time compared with the manual data verification process.
Collapse
Affiliation(s)
- Wenzhou Li
- a Attribute Sciences, Amgen Inc. , Thousand Oaks , CA , USA
| | - Jette Wypych
- a Attribute Sciences, Amgen Inc. , Thousand Oaks , CA , USA
| | - Robert J Duff
- a Attribute Sciences, Amgen Inc. , Thousand Oaks , CA , USA
| |
Collapse
|
14
|
Bayramov DF, Neff JA. Beyond conventional antibiotics - New directions for combination products to combat biofilm. Adv Drug Deliv Rev 2017; 112:48-60. [PMID: 27496704 DOI: 10.1016/j.addr.2016.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/10/2016] [Accepted: 07/26/2016] [Indexed: 12/17/2022]
Abstract
Medical device related infections are a significant and growing source of morbidity and mortality. Biofilm formation is a common feature of medical device infections that is not effectively prevented or treated by systemic antibiotics. Antimicrobial medical device combination products provide a pathway for local delivery of antimicrobial therapeutics with the ability to achieve high local concentrations while minimizing systemic side effects. In this review, we present considerations for the design of local antimicrobial delivery systems, which can be facilitated by modeling local pharmacokinetics in the context of the target device application. In addition to the need for local delivery, a critical barrier to progress in the field is the need to incorporate agents effective against biofilm. This article aims to review key properties of antimicrobial peptides that make them well suited to meet the demands of the next generation of antimicrobial medical devices, including broad spectrum activity, rapid and biocidal mechanisms of action, and efficacy against biofilm.
Collapse
|
15
|
Yeo GC, Kondyurin A, Kosobrodova E, Weiss AS, Bilek MMM. A sterilizable, biocompatible, tropoelastin surface coating immobilized by energetic ion activation. J R Soc Interface 2017; 14:20160837. [PMID: 28179545 PMCID: PMC5332567 DOI: 10.1098/rsif.2016.0837] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/10/2017] [Indexed: 02/05/2023] Open
Abstract
Biomimetic materials which integrate with surrounding tissues and regulate new tissue formation are attractive for tissue engineering and regenerative medicine. Plasma immersion ion-implanted (PIII) polyethersulfone (PES) provides an excellent platform for the irreversible immobilization of bioactive proteins and peptides. PIII treatment significantly improves PES wettability and results in the formation of acidic groups on the PES surface, with the highest concentration observed at 40-80 s of PIII treatment. The elastomeric protein tropoelastin can be stably adhered to PIII-treated PES in a cell-interactive conformation by tailoring the pH and salt levels of the protein-surface association conditions. Tropoelastin-coated PIII-treated PES surfaces are resistant to molecular fouling, and actively promote high levels of fibroblast adhesion and proliferation while maintaining cell morphology. Tropoelastin, unlike other extracellular matrix proteins such as fibronectin, uniquely retains full bioactivity even after medical-grade ethylene oxide sterilization. This dual approach of PIII treatment and tropoelastin cloaking allows for the stable, robust functionalization of clinically used polymer materials for directed cellular interactions.
Collapse
Affiliation(s)
- Giselle C Yeo
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Alexey Kondyurin
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Elena Kosobrodova
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anthony S Weiss
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales 2006, Australia
- Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marcela M M Bilek
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
16
|
Antimicrobial peptide melimine coating for titanium and its in vivo antibacterial activity in rodent subcutaneous infection models. Biomaterials 2016; 85:142-51. [PMID: 26871890 DOI: 10.1016/j.biomaterials.2016.01.063] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 01/24/2023]
Abstract
Implant-associated infections represent a significant health problem and financial burden on healthcare systems. Current strategies for the treatment or prevention of such infections are still inadequate and new strategies are needed in this era of antibiotic resistance. Melimine, a synthetic antimicrobial peptide with broad spectrum activity against bacteria, fungi and protozoa, has been shown to be a promising candidate for development as antimicrobial coating for biomedical devices and implants. In this study, the in vitro and in vivo antimicrobial activity of melimine-coated titanium was tested. The titanium surface was amine-functionalised with 3-aminopropyltriethoxysilane (APTES) followed by reaction with a bifunctional linker 4-(N-maleimidomethyl)cyclohexane-1-carboxylic 3-sulfo-n-hydroxysuccinimide ester (Sulfo-SMCC) to yield a maleimide functionalised surface. Melimine was then tethered to the surface via a thioether linkage through a Michael addition reaction of the cysteine at its N-terminus with the maleimide moiety. Melimine coating significantly reduced in vitro adhesion and biofilm formation of Pseudomonas aeruginosa by up to 62% and Staphylococcus aureus by up to 84% on the titanium substrates compared to the blank (p < 0.05). The activity was maintained after ethylene oxide gas sterilisation. The coating was also challenged in both mouse and rat subcutaneous infection models and was able to reduce the bacterial load by up to 2 log10 compared to the uncoated surface (p < 0.05). Melimine coating is a promising candidate for development as a surface antimicrobial that can withstand industrial sterilisation while showing good biocompatibility.
Collapse
|
17
|
Proffen BL, Perrone GS, Fleming BC, Sieker JT, Kramer J, Hawes ML, Murray MM. Effect of low-temperature ethylene oxide and electron beam sterilization on the in vitro and in vivo function of reconstituted extracellular matrix-derived scaffolds. J Biomater Appl 2015; 30:435-49. [PMID: 26088294 DOI: 10.1177/0885328215590967] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Reconstituted extracellular matrix (ECM)-derived scaffolds are commonly utilized in preclinical tissue engineering studies as delivery vehicles for cells and growth factors. Translation into clinical use requires identifying a sterilization method that effectively removes bacteria but does not harm scaffold function. To determine effectiveness of sterilization and impact on ECM scaffold integrity and function, low-temperature ethylene oxide and 15 kGy electron beam irradiation techniques were evaluated. Scaffold sterility was assessed in accordance to United States Pharmacopeia Chapter 71. Scaffold matrix degradation was determined in vitro using enzymatic resistance tests and gel electrophoresis. Scaffold mechanics including elastic modulus, yield stress and collapse modulus were tested. Lastly, 14 Yorkshire pigs underwent ACL transection and bio-enhanced ACL repair using sterilized scaffolds. Histologic response of ligament, synovium, and lymph nodes was compared at 4, 6, and 8 weeks. Ethylene oxide as well as electron beam irradiation yielded sterile scaffolds. Scaffold resistance to enzymatic digestion and protein integrity slightly decreased after electron beam irradiation while ethylene oxide altered scaffold matrix. Scaffold elastic modulus and yield stress were increased after electron beam treatment, while collapse modulus was increased after ethylene oxide treatment. No significant changes in ACL dimensions, in vivo scaffold resorption rate, or histologic response of synovium, ligament, and lymph nodes with either terminal sterilization technique were detectable. In conclusion, this study identifies two methods to terminally sterilize an ECM scaffold. In vitro scaffold properties were slightly changed without significantly influencing the biologic responses of the surrounding tissues in vivo. This is a critical step toward translating new tissue engineering strategies to clinical trials.
Collapse
Affiliation(s)
- Benedikt L Proffen
- Department of Orthopaedic Surgery, Sports Medicine Research Laboratory, Children's Hospital Boston/Harvard Medical School, Boston, MA, USA
| | - Gabriel S Perrone
- Department of Orthopaedic Surgery, Sports Medicine Research Laboratory, Children's Hospital Boston/Harvard Medical School, Boston, MA, USA
| | - Braden C Fleming
- Department of Orthopaedics, Bioengineering Labs, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, RI, USA
| | - Jakob T Sieker
- Department of Orthopaedic Surgery, Sports Medicine Research Laboratory, Children's Hospital Boston/Harvard Medical School, Boston, MA, USA
| | - Joshua Kramer
- Charter Preclinical Services, 21 Main St., Suite 3A, Hudson, MA, USA
| | - Michael L Hawes
- Charter Preclinical Services, 21 Main St., Suite 3A, Hudson, MA, USA
| | - Martha M Murray
- Department of Orthopaedic Surgery, Sports Medicine Research Laboratory, Children's Hospital Boston/Harvard Medical School, Boston, MA, USA
| |
Collapse
|