1
|
Tanino T, Ueda Y, Nagai N, Ishihara Y, Saijo M, Funakami Y. In vivo upstream factors of mouse hepatotoxic mechanism with sustained hepatic glutathione depletion: Acetaminophen metabolite-erythrocyte adducts and splenic macrophage-generated reactive oxygen species. Chem Biol Interact 2024; 398:111091. [PMID: 38825056 DOI: 10.1016/j.cbi.2024.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Investigation of acetaminophen (APAP)-induced liver damage recently indicated the significance of phagocytic NADPH oxidase (NOX)-derived reactive oxygen species (ROS) and ferroptosis in the liver. Here, we focused on phagocytosis by iron-containing erythrocyte-devouring splenic macrophages and explored upstream factors of known APAP hepatotoxic mechanisms in vivo. Splenectomy did not alter hepatic cytochrome P450 (CYP) 2E1 activity or hepatic glutathione (GSH) content. APAP injection into splenectomized mice almost completely suppressed increases in plasma alanine aminotransferase levels and centrilobular hepatic necrosis showing the spleen to be a critical tissue in APAP-induced liver damage. Hepatic GSH was recovered to approximately 50 % content at 8 h. In non-splenectomized mice, liver damage was dramatically suppressed by a sensitive redox probe (DCFH-DA), macrophage-depleting clodronate (CL), and a NOX2 inhibitor. APAP treatment resulted in markedly stronger fluorescence intensity from DCFH-DA due to excessive ROS around splenic macrophages, which was lost upon co-treatment with a CYP inhibitor and CL. Deformed erythrocytes disappeared in mice co-treated with DCFH-DA, CL, the NOX2 inhibitor, and the CYP inhibitor. Simultaneously, these four compounds significantly improved APAP-depleted GSH levels. The CYP inhibitor also prevented the formation of APAP-cell adducts in the blood and spleen. In the spleen, CL co-treatment markedly reduced the number of adducts. Splenic ferrous iron levels were significantly elevated by APAP. Therefore, we demonstrated that splenic macrophages devoured APAP metabolite-erythrocyte adducts and subsequently splenic macrophage-related ROS caused sustained hepatic GSH depletion and excessive erythrocyte deformation around 7 h. Our data indicate in vivo upstream factors of known APAP hepatotoxic mechanisms.
Collapse
Affiliation(s)
- Tadatoshi Tanino
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Bouji Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan.
| | - Yukari Ueda
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Bouji Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan.
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan.
| | - Yuka Ishihara
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Bouji Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan.
| | - Minori Saijo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Bouji Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan.
| | - Yoshinori Funakami
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
2
|
Alkhawaja B, Al-Akayleh F, Nasereddin J, Kamran M, Woodman T, Al-Rubaye Z, Qinna N, Al-Remawi M, Olaimat AR. Structural insights into novel therapeutic deep eutectic systems with capric acid using 1D, 2D NMR and DSC techniques with superior gut permeability. RSC Adv 2024; 14:14793-14806. [PMID: 38716106 PMCID: PMC11075621 DOI: 10.1039/d4ra01469c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/29/2024] [Indexed: 01/06/2025] Open
Abstract
Therapeutic deep eutectic solvents (THEDSs) are the best exemplification of green alternative formulations of active pharmaceutical ingredients (APIs) that offer superlative properties of APIs. Previously, THEDESs of risperidone, fentanyl and levofloxacin with capric acid (CA) were developed by our group. These APIs share cyclic tertiary amine nuclei. Herein, DESs of two drugs bearing cyclic tertiary amine nucleus, namely, droperidol and aripiprazole, in the presence of CA, were investigated as model drugs. Comprehensive analyses were conducted using liquid-state 1D and 2D NMR and differential scanning calorimetry (DSC) to elucidate the regiochemistry and thermodynamic mechanisms bringing about those THEDESs. Everted gut sac technique was used to study the flux of the developed THEDESs. 1D and 2D NMR techniques analyses revealed the importance of cyclic tertiary amine nuclei in forming interactions with CA. This was confirmed by the downfield shift of the protons proximal to the tertiary amine groups compared to the individual drugs. Diffusion NMR analysis (DOSY) showed a significant reduction in the diffusion coefficient of CA in the mixed system compared with CA in isolation. Thermal analysis of the two drugs revealed that the drugs have a low tendency to recrystallise upon melting but rather vitrify from a melt to form an amorphous solid. Interestingly, the superior absorption and flux of the THEDES formulation of droperidol was demonstrated using the ERIS. Collectively, this work provides a green method to attain liquid formulations of APIs with enhanced pharmacokinetic features.
Collapse
Affiliation(s)
- Bayan Alkhawaja
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman Jordan
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman Jordan
| | - Jehad Nasereddin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Zarqa University Zarqa 13110 Jordan
| | - Muhammad Kamran
- Department of Chemistry, University of Bath Claverton Down BA2 7AY Bath UK
| | - Tim Woodman
- Department of Life Sciences, University of Bath Claverton Down BA2 7AY Bath UK
| | - Zaid Al-Rubaye
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman Jordan
| | - Nidal Qinna
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman Jordan
| | - Ali R Olaimat
- Drug Directorate, Jordan Food and Drug Administration Shafa Badran Amman 11181 Jordan
| |
Collapse
|
3
|
Kim SM, Jo SY, Park HY, Lee YR, Yu JS, Yoo HH. Investigation of Drug-Interaction Potential for Arthritis Dietary Supplements: Chondroitin Sulfate, Glucosamine, and Methylsulfonylmethane. Molecules 2023; 28:8068. [PMID: 38138558 PMCID: PMC10745882 DOI: 10.3390/molecules28248068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Osteoarthritis is one of the leading conditions that promote the consumption of these dietary supplements. Chondroitin sulfate, glucosamine, and methylsulfonylmethane are among the prominent alternative treatments for osteoarthritis. In this study, these dietary supplements were incubated with cytochrome P450 isozyme-specific substrates in human liver microsomes, and the formation of marker metabolites was measured to investigate their inhibitory potential on cytochrome P450 enzyme activities. The results revealed no significant inhibitory effects on seven CYPs, consistent with established related research data. Therefore, these substances are anticipated to have a low potential for cytochrome P450-mediated drug interactions with osteoarthritis medications that are likely to be co-administered. However, given the previous reports of interaction cases involving glucosamine, caution is advised regarding dietary supplement-drug interactions.
Collapse
Affiliation(s)
- Su Min Kim
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea; (S.M.K.); (S.Y.J.)
| | - So Young Jo
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea; (S.M.K.); (S.Y.J.)
| | - Ho-Young Park
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (H.-Y.P.); (Y.R.L.)
| | - Yu Ra Lee
- Food Functionality Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (H.-Y.P.); (Y.R.L.)
| | - Jun Sang Yu
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea; (S.M.K.); (S.Y.J.)
| | - Hye Hyun Yoo
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, Ansan 15588, Republic of Korea; (S.M.K.); (S.Y.J.)
| |
Collapse
|
4
|
Spahr A, Divnic‐Resnik T. Impact of health and lifestyle food supplements on periodontal tissues and health. Periodontol 2000 2022; 90:146-175. [PMID: 35916868 PMCID: PMC9804634 DOI: 10.1111/prd.12455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
According to the new classification, periodontitis is defined as a chronic multifactorial inflammatory disease associated with dysbiotic biofilms and characterized by progressive destruction of the tooth-supporting apparatus. This definition, based on the current scientific evidence, clearly indicates and emphasizes, beside the microbial component dental biofilm, the importance of the inflammatory reaction in the progressive destruction of periodontal tissues. The idea to modulate this inflammatory reaction in order to decrease or even cease the progressive destruction was, therefore, a logical consequence. Attempts to achieve this goal involve various kinds of anti-inflammatory drugs or medications. However, there is also an increasing effort in using food supplements or so-called natural food ingredients to modulate patients' immune responses and maybe even improve the healing of periodontal tissues. The aim of this chapter of Periodontology 2000 is to review the evidence of various food supplements and ingredients regarding their possible effects on periodontal inflammation and wound healing. This review may help researchers and clinicians to evaluate the current evidence and to stimulate further research in this area.
Collapse
Affiliation(s)
- Axel Spahr
- Discipline of Periodontics, School of Dentistry, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Tihana Divnic‐Resnik
- Discipline of Periodontics, School of Dentistry, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
5
|
Torshin IY, Lila AM, Gromova OA. Hepatoprotective effects of chondroitin sulfate and glucosamine sulfate. FARMAKOEKONOMIKA. MODERN PHARMACOECONOMICS AND PHARMACOEPIDEMIOLOGY 2022; 14:537-547. [DOI: 10.17749/2070-4909/farmakoekonomika.2021.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Background. Long-term use of chondroprotective agents – chondroitin sulfate (CS) and glucosamine sulfate (GS) in the treatment of osteoarthritis puts forward increased requirements for the safety of drugs, primarily in terms of effects on the liver and kidneys.Objective: systematization of data on the effect of chondroprotectors on liver structure and functions.Material and methods. Using the methods of the theory of topological text analysis, an intellectual analysis of 2319 publications on fundamental and clinical studies of the relationship of CS and GS with liver function was carried out. The search was performed by a key query “(chondroitine OR glucosamine) AND (liver OR hepatic OR hepatocy*)” in the PubMed/MEDLINE database.Results. The systematic analysis indicated a pronounced hepatoprotective effect of CS and GS pharmaceutical substances with a high degree of purification from inorganic and organic impurities. By regulating inflammation processes, lymphocyte function, fat and carbohydrate metabolism in the liver, standardized forms of CS and GS have a beneficial effect on fat metabolism, reduce chronic inflammation in the liver, exhibit antitumor and pronounced hepatoprotective effects on various models of liver intoxication.Conclusion. The results of this analysis allow us to assert the high safety of drugs based on pharmaceutical standardized forms of CS and GS in terms of liver function.
Collapse
Affiliation(s)
- I. Yu. Torshin
- Federal Research Center “Informatics and Management”, Russian Academy of Sciences
| | - A. M. Lila
- Nasonov Research Institute of Rheumatology
| | - O. A. Gromova
- Federal Research Center “Informatics and Management”, Russian Academy of Sciences
| |
Collapse
|
6
|
Jaccob AA, Ahmed ZH, Aljasani BM. Vitamin C, omega-3 and paracetamol pharmacokinetic interactions using saliva specimens as determiners. J Basic Clin Physiol Pharmacol 2019; 30:jbcpp-2019-0011. [PMID: 31393833 DOI: 10.1515/jbcpp-2019-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022]
Abstract
Background With its low side effects profile and availability as an over-the-counter drug, paracetamol has been utilized extensively worldwide as an antipyretic and analgesic agent for decades. This is associated with the increasing concern over its ease of access and/or unawareness of the consumers to this issue of paracetamol-induced hepatotoxicity. Paracetamol-induced liver injury today is a big problem where most of the researchers are interested in the possible role of the naturally available antioxidants to ameliorate hepatotoxicity through kinetic interference. So the present study was designed to evaluate the effect of vitamin C and omega-3 on the pharmacokinetic property of paracetamol. Methods Six young (average age 29) healthy volunteers participated in the study. The study included three consecutive periods, each of which preceded by overnight fasting and separated by 6 day washout periods. The first period involved the ingestion of a single paracetamol dose. The second one included the ingestion of paracetamol and vitamin C concomitantly, and the final period included paracetamol plus omega-3. Saliva samples were collected and prepared for High-performance liquid chromatography analysis. Results There was a significant increase in saliva paracetamol level after 30 min of administration when given concomitantly with vitamin C compared with the remaining groups. No significant differences in the paracetamol concentration profile between the subjects for each group were observed at 60, 90, 120 and 150 min in all treated groups. Conclusion Concurrent administration of vitamin C with paracetamol increases significantly the Cmax level (maximum measured concentration) in saliva and increases the extent of absorption and the possibility of drug-drug interaction and risk of side effects.
Collapse
Affiliation(s)
- Ausama Ayob Jaccob
- Department of Pharmacology and Toxicology, College of Pharmacy, Basrah University, Basrah City, Iraq
| | - Zainab Haroon Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Basrah University, Basrah City, Iraq
| | - Baan Majid Aljasani
- Department of Pharmacology and Toxicology, College of Pharmacy, Basrah University, Basrah City, Iraq
| |
Collapse
|
7
|
Abdulrazzaq AM, Badr M, Gammoh O, Abu Khalil AA, Ghanim BY, Alhussainy TM, Qinna NA. Hepatoprotective Actions of Ascorbic Acid, Alpha Lipoic Acid and Silymarin or Their Combination Against Acetaminophen-Induced Hepatotoxicity in Rats. ACTA ACUST UNITED AC 2019; 55:medicina55050181. [PMID: 31117289 PMCID: PMC6571961 DOI: 10.3390/medicina55050181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/31/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
Background and objectives: Ascorbic acid, alpha lipoic acid (ALA) and silymarin are well-known antioxidants that have hepatoprotective effects. This study aims to investigate the effects of these three compounds combined with attenuating drug-induced oxidative stress and cellular damage, taking acetaminophen (APAP)-induced toxicity in rats as a model both in vivo and in vitro. Materials and Methods: Freshly cultured primary rat hepatocytes were treated with ascorbic acid, ALA, silymarin and their combination, both with and without the addition of APAP to evaluate their in vitro impact on cell proliferation and mitochondrial activity. In vivo study was performed on rats supplemented with the test compounds or their combination for one week followed by two toxic doses of APAP. Results: Selected liver function tests and oxidative stress markers including superoxide dismutase (SOD), malondialdehyde (MDA) and oxidized glutathione (GSSG) were detected. The in vivo results showed that all three pretreatment compounds and their combination prevented elevation of SOD and GSSG serum levels indicating a diminished burden of oxidative stress. Moreover, ascorbic acid, ALA and silymarin in combination reduced serum levels of liver enzymes; however, silymarin markedly maintained levels of all parameters to normal ranges. Silymarin either alone or combined with ascorbic acid and ALA protected cultured rat hepatocytes and increased cellular metabolic activity. The subjected agents were capable of significantly inhibiting the presence of oxidative stress induced by APAP toxicity and the best result for protection was seen with the use of silymarin. Conclusions: The measured liver function tests may suggest an augmented hepatoprotection of the combination preparation than when compared individually.
Collapse
Affiliation(s)
- Anmar M Abdulrazzaq
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan.
| | - Mujtaba Badr
- University of Petra Pharmaceutical Center (UPPC), University of Petra, P.O. Box 961343, Amman 11196, Jordan.
| | - Omar Gammoh
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, P.O. Box 2882, Madaba 11821, Jordan.
| | - Asad A Abu Khalil
- University of Petra Pharmaceutical Center (UPPC), University of Petra, P.O. Box 961343, Amman 11196, Jordan.
| | - Bayan Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), University of Petra, P.O. Box 961343, Amman 11196, Jordan.
| | - Tawfiq M Alhussainy
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan.
| | - Nidal A Qinna
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, P.O. Box 961343, Amman 11196, Jordan.
- University of Petra Pharmaceutical Center (UPPC), University of Petra, P.O. Box 961343, Amman 11196, Jordan.
| |
Collapse
|
8
|
Abdulkhaleq FM, Alhussainy TM, Badr MM, Khalil AAA, Gammoh O, Ghanim BY, Qinna NA. Antioxidative stress effects of vitamins C, E, and B 12, and their combination can protect the liver against acetaminophen-induced hepatotoxicity in rats. Drug Des Devel Ther 2018; 12:3525-3533. [PMID: 30425454 PMCID: PMC6201998 DOI: 10.2147/dddt.s172487] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Several vitamins, including C, E, and B12, have been recognized as antioxidants and have shown hepatoprotective effects against the hepatotoxicity caused by acetaminophen (APAP) overdose. The current investigation aims to study the effect of these vitamins and their combination in protecting the liver from APAP hepatotoxicity in rats. MATERIALS AND METHODS An in vitro model of freshly isolated rat hepatocytes was utilized for assessing hepatocyte mitochondrial activity conducted by cell proliferation assay (MTT). The isolated hepatocytes were treated with vitamin C, vitamin E, vitamin B12 and their combination, with and without further addition of toxic concentrations of APAP. In addition, an in vivo experiment was carried out on Sprague Dawley rats treated intraperitoneally for 8 days with emulsions of the vitamins or their combination prior to injecting them with APAP. RESULTS In vitro results showed that vitamins C and B and the combination preparation significantly increased the percentage of hepatocyte mitochondrial activity, both with and without the addition of APAP (P<0.01). The mitochondrial activity in the isolated cultured hepatocytes was further enhanced with APAP addition. In vivo, the vitamins and their combination effectively reduced APAP-induced serum liver enzymes levels, namely ALT, AST, and ALP, and also attenuated oxidative stress and lipids peroxidation confirmed by the results of glutathione, superoxide dismutase, and maloondialdehyde. CONCLUSION Pretreatment with vitamins C, E, B12, or their combination was found to be beneficial in preventing in vivo hepatic oxidative stress induced by APAP overdose. Vitamin C on its own showed superior protection against APAP-induced liver injury in rats compared to the other vitamins. The proliferation of APAP-intoxicated liver cells in vitro was highest when protected with the vitamins' combination.
Collapse
Affiliation(s)
- Farah M Abdulkhaleq
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan,
| | - Tawfiq M Alhussainy
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan,
| | - Mujtaba M Badr
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan,
| | - Asad A Abu Khalil
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan,
| | - Omar Gammoh
- Department of Pharmacy, Faculty of Health Sciences, American University of Madaba, Madaba, Jordan
| | - Bayan Y Ghanim
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan,
| | - Nidal A Qinna
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan,
- University of Petra Pharmaceutical Center (UPPC), University of Petra, Amman, Jordan,
| |
Collapse
|
9
|
Ali AMA, Khames A, Alrobaian MM, Hamaidi M, Abourehab MA. Glucosamine-paracetamol spray-dried solid dispersions with maximized intrinsic dissolution rate, bioavailability and decreased levels of in vivo toxic metabolites. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3071-3084. [PMID: 30275684 PMCID: PMC6157577 DOI: 10.2147/dddt.s176099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Purpose This study is aimed at preparing and testing physicochemical, pharmacokinetic and levels of toxic metabolites of paracetamol and glucosamine solid dispersions intended for multiple deliveries via the parenteral or per oral route. Methods Solid dispersions were prepared using the spray drying technique at different molar ratios of paracetamol and glucosamine. Characterization of the solid dispersions was carried out using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), equilibrium solubility and intrinsic dissolution rate. In vivo pharmacokinetics and toxic metabolites of the prepared dispersions were evaluated and compared to those of pure drugs and physical mixtures. Results Instant water solubility and more than 7-fold increase in dissolution rate led to significantly high plasma drug concentration (>6.5-fold) compared to paracetamol alone. More than 2-fold increase in area under the curve from 0 to 24 h from the dispersions was noticed on the third day of oral dosing to animals. Lower number and concentration followed by the complete disappearance of toxic pathway metabolites were observed on second and third days of dosing with solid dispersions and physical mixtures, respectively. Conclusions The spray-dried dispersions support safer and more effective delivery of multiple doses of paracetamol, leading to an acceleration of its analgesic actions. Synergism between the analgesic actions of paracetamol and joint protective actions of glucosamine in this combination is expected to facilitate effective treatment of persistent pain-related illnesses such as osteoarthritis.
Collapse
Affiliation(s)
- Ahmed Mahmoud Abdelhaleem Ali
- Department of Pharmaceutics, Faculty of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia, .,Department of Pharmaceutics, Beni-Suef University, Beni-Suef, Egypt,
| | - Ahmed Khames
- Department of Pharmaceutics, Faculty of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia, .,Department of Pharmaceutics, Beni-Suef University, Beni-Suef, Egypt,
| | - Majed Mansour Alrobaian
- Department of Pharmaceutics, Faculty of Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia,
| | - Mohammad Hamaidi
- Department of Clinical Pharmacy, Taif University, Taif, Kingdom of Saudi Arabia
| | - Mohammed As Abourehab
- Department of Pharmaceutics, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia.,Department of Pharmaceutics, Minia University, Minia, Egypt
| |
Collapse
|
10
|
Al Shaker HA, Qinna NA, Badr M, Al Omari MM, Idkaidek N, Matalka KZ, Badwan AA. Glucosamine modulates propranolol pharmacokinetics via intestinal permeability in rats. Eur J Pharm Sci 2017; 105:137-143. [DOI: 10.1016/j.ejps.2017.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 04/07/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
|