1
|
Puris E, Fricker G, Gynther M. The Role of Solute Carrier Transporters in Efficient Anticancer Drug Delivery and Therapy. Pharmaceutics 2023; 15:pharmaceutics15020364. [PMID: 36839686 PMCID: PMC9966068 DOI: 10.3390/pharmaceutics15020364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Transporter-mediated drug resistance is a major obstacle in anticancer drug delivery and a key reason for cancer drug therapy failure. Membrane solute carrier (SLC) transporters play a crucial role in the cellular uptake of drugs. The expression and function of the SLC transporters can be down-regulated in cancer cells, which limits the uptake of drugs into the tumor cells, resulting in the inefficiency of the drug therapy. In this review, we summarize the current understanding of low-SLC-transporter-expression-mediated drug resistance in different types of cancers. Recent advances in SLC-transporter-targeting strategies include the development of transporter-utilizing prodrugs and nanocarriers and the modulation of SLC transporter expression in cancer cells. These strategies will play an important role in the future development of anticancer drug therapies by enabling the efficient delivery of drugs into cancer cells.
Collapse
|
2
|
Torres-Vergara P, Rivera R, Escudero C, Penny J. Maternal and Fetal Expression of ATP-Binding Cassette and Solute Carrier Transporters Involved in the Brain Disposition of Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:149-177. [PMID: 37466773 DOI: 10.1007/978-3-031-32554-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Evidence from preclinical and clinical studies demonstrate that pregnancy is a physiological state capable of modifying drug disposition. Factors including increased hepatic metabolism and renal excretion are responsible for impacting disposition, and the role of membrane transporters expressed in biological barriers, including the placental- and blood-brain barriers, has received considerable attention. In this regard, the brain disposition of drugs in the mother and fetus has been the subject of studies attempting to characterize the mechanisms by which pregnancy could alter the expression of ATP-binding cassette (ABC) and solute carrier (SLC) transporters. This chapter will summarize findings of the influence of pregnancy on the maternal and fetal expression of ABC and SLC transporters in the brain and the consequences of such changes on the disposition of therapeutic drugs.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.
- Grupo de Investigación Vascular (GRIVAS), Universidad del Bio-Bio, Chillán, Chile.
| | - Robin Rivera
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Grupo de Investigación Vascular (GRIVAS), Universidad del Bio-Bio, Chillán, Chile
- Laboratorio de Fisiología Vascular, Facultad de Ciencias Básicas, Universidad del Bio Bio, Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Matsumoto T, Masuo Y, Tanaka A, Kimura T, Ioroi T, Yamakawa T, Kitahara H, Kato Y. A physiologically based pharmacokinetic and pharmacodynamic model for disposition of FF-10832. Int J Pharm 2022; 627:122250. [DOI: 10.1016/j.ijpharm.2022.122250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/29/2022] [Accepted: 09/24/2022] [Indexed: 10/31/2022]
|
4
|
Miller SR, Lane TR, Zorn KM, Ekins S, Wright SH, Cherrington NJ. Multiple Computational Approaches for Predicting Drug Interactions with Human Equilibrative Nucleoside Transporter 1. DRUG METABOLISM AND DISPOSITION: THE BIOLOGICAL FATE OF CHEMICALS 2021; 49:479-489. [PMID: 33980604 DOI: 10.1124/dmd.121.000423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/05/2021] [Indexed: 12/17/2022]
Abstract
Equilibrativenucleoside transporters (ENTs) participate in the pharmacokinetics and disposition of nucleoside analog drugs. Understanding drug interactions with the ENTs may inform and facilitate the development of new drugs, including chemotherapeutics and antivirals that require access to sanctuary sites such as the male genital tract. This study created three-dimensional pharmacophores for ENT1 and ENT2 substrates and inhibitors using Kt and IC50 data curated from the literature. Substrate pharmacophores for ENT1 and ENT2 are distinct, with partial overlap of hydrogen bond donors, whereas the inhibitor pharmacophores predominantly feature hydrogen bond acceptors. Mizoribine and ribavirin mapped to the ENT1 substrate pharmacophore and proved to be substrates of the ENTs. The presence of the ENT-specific inhibitor 6-S-[(4-nitrophenyl)methyl]-6-thioinosine (NBMPR) decreased mizoribine accumulation in ENT1 and ENT2 cells (ENT1, ∼70% decrease, P = 0.0046; ENT2, ∼50% decrease, P = 0.0012). NBMPR also decreased ribavirin accumulation in ENT1 and ENT2 cells (ENT1: ∼50% decrease, P = 0.0498; ENT2: ∼30% decrease, P = 0.0125). Darunavir mapped to the ENT1 inhibitor pharmacophore and NBMPR did not significantly influence darunavir accumulation in either ENT1 or ENT2 cells (ENT1: P = 0.28; ENT2: P = 0.53), indicating that darunavir's interaction with the ENTs is limited to inhibition. These computational and in vitro models can inform compound selection in the drug discovery and development process, thereby reducing time and expense of identification and optimization of ENT-interacting compounds. SIGNIFICANCE STATEMENT: This study developed computational models of human equilibrative nucleoside transporters (ENTs) to predict drug interactions and validated these models with two compounds in vitro. Identification and prediction of ENT1 and ENT2 substrates allows for the determination of drugs that can penetrate tissues expressing these transporters.
Collapse
Affiliation(s)
- Siennah R Miller
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Thomas R Lane
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Kimberley M Zorn
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Sean Ekins
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology (S.R.M., N.J.C.), and College of Medicine, Department of Physiology (S.H.W.), University of Arizona, Tucson, Arizona; and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (T.R.L., K.M.Z., S.E.)
| |
Collapse
|
5
|
Miller SR, Zhang X, Hau RK, Jilek JL, Jennings EQ, Galligan JJ, Foil DH, Zorn KM, Ekins S, Wright SH, Cherrington NJ. Predicting Drug Interactions with Human Equilibrative Nucleoside Transporters 1 and 2 Using Functional Knockout Cell Lines and Bayesian Modeling. Mol Pharmacol 2020; 99:147-162. [PMID: 33262250 DOI: 10.1124/molpharm.120.000169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) 1 and 2 facilitate nucleoside transport across the blood-testis barrier (BTB). Improving drug entry into the testes with drugs that use endogenous transport pathways may lead to more effective treatments for diseases within the reproductive tract. In this study, CRISPR/CRISPR-associated protein 9 was used to generate HeLa cell lines in which ENT expression was limited to ENT1 or ENT2. We characterized uridine transport in these cell lines and generated Bayesian models to predict interactions with the ENTs. Quantification of [3H]uridine uptake in the presence of the ENT-specific inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBMPR) demonstrated functional loss of each transporter. Nine nucleoside reverse-transcriptase inhibitors and 37 nucleoside/heterocycle analogs were evaluated to identify ENT interactions. Twenty-one compounds inhibited uridine uptake and abacavir, nevirapine, ticagrelor, and uridine triacetate had different IC50 values for ENT1 and ENT2. Total accumulation of four identified inhibitors was measured with and without NBMPR to determine whether there was ENT-mediated transport. Clofarabine and cladribine were ENT1 and ENT2 substrates, whereas nevirapine and lexibulin were ENT1 and ENT2 nontransported inhibitors. Bayesian models generated using Assay Central machine learning software yielded reasonably high internal validation performance (receiver operator characteristic > 0.7). ENT1 IC50-based models were generated from ChEMBL; subvalidations using this training data set correctly predicted 58% of inhibitors when analyzing activity by percent uptake and 63% when using estimated-IC50 values. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can thereby circumvent the BTB through this transepithelial transport pathway in Sertoli cells. SIGNIFICANCE STATEMENT: This study is the first to predict drug interactions with equilibrative nucleoside transporter (ENT) 1 and ENT2 using Bayesian modeling. Novel CRISPR/CRISPR-associated protein 9 functional knockouts of ENT1 and ENT2 in HeLa S3 cells were generated and characterized. Determining drug interactions with these transporters can be useful in identifying and predicting compounds that are ENT1 and ENT2 substrates and can circumvent the blood-testis barrier through this transepithelial transport pathway in Sertoli cells.
Collapse
Affiliation(s)
- Siennah R Miller
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Xiaohong Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Raymond K Hau
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Joseph L Jilek
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Erin Q Jennings
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Daniel H Foil
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Kimberley M Zorn
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Sean Ekins
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Stephen H Wright
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, College of Pharmacy (S.R.M., R.K.H., J.L.J., E.Q.J., J.J.G., N.J.C.), and Department of Physiology, College of Medicine (X.Z., S.H.W.), University of Arizona, Tucson, Arizona and Collaborations Pharmaceuticals, Inc., Raleigh, North Carolina (D.H.F., K.M.Z., S.E.)
| |
Collapse
|
6
|
Van Nuland M, Rosing H, Thijssen B, Burgers JA, Huitema ADR, Marchetti S, Schellens JHM, Beijnen JH. Pilot Study to Predict Pharmacokinetics of a Therapeutic Gemcitabine Dose From a Microdose. Clin Pharmacol Drug Dev 2020; 9:929-937. [PMID: 31970932 DOI: 10.1002/cpdd.774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
Microdose studies are exploratory trials to determine early drug pharmacokinetics in humans. In this trial we examined whether the pharmacokinetics of gemcitabine at a therapeutic dose could be predicted from the pharmacokinetics of a microdose. In this prospective, open-label microdosing study, a gemcitabine microdose (100 µg) was given intravenously to participants on day 1, followed by a therapeutic dose (1250 mg/m2 ) on day 2. Gemcitabine and its metabolite 2',2'-difluorodeoxyuracil (dFdU) were quantified in plasma and intracellularly by using liquid chromatography-mass spectrometry). Noncompartmental pharmacokinetic analysis was performed. Ten patients participated in this study. The mean area under the plasma concentration-time curve (AUC0-8 ) of gemcitabine after microdosing was 0.00074 h·mg/L and after therapeutic dosing was 16 h·mg/L. The mean AUC0-8 of dFdU following the microdose and therapeutic dose were 0.022 h·mg/L and 169 h·mg/L, respectively. Exposure to gemcitabine after the therapeutic dose was within 2-fold of the exposure following a microdose, when linearly extrapolated to 1250 mg/m2 . However, the shape of the concentration-time curve was different, as reflected by poor scalability in volume of distribution (939 L versus 222 L). Furthermore, intracellularly phosphorylated gemcitabine and phosphorylated dFdU levels could not be predicted from the microdose. The AUC0-8 of gemcitabine at therapeutic dose was accurately predicted by the pharmacokinetics of a microdose, when linearly extrapolated to 1250 mg/m2 . Volume of distribution, elimination rate constant, and intracellular pharmacokinetics of the therapeutic dose could not be predicted from the microdose, which demonstrates limitations of the microdose approach in this case.
Collapse
Affiliation(s)
- M Van Nuland
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - H Rosing
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - B Thijssen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - J A Burgers
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Department of Clinical Pharmacy University Medical Center Utrecht, Utrecht University, the Netherlands
| | - S Marchetti
- Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - J H M Schellens
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - J H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Division of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, the Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
7
|
Ueda K, Nakamura T, Tanaka S, Hosokawa M, Iwakawa S, Ogawara KI. Numerical analysis of apparent decitabine uptake in HCT116 cells: Incorporation of a bidirectional first-order kinetic parameter for ENT1 transport and Michaelis-Menten parameters for subsequent phosphorylation. Drug Metab Pharmacokinet 2019; 35:124-130. [PMID: 31964620 DOI: 10.1016/j.dmpk.2019.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
Abstract
Decitabine (DAC), a DNA methylation inhibitor, is transported into cancer cells mainly via equilibrative nucleoside transporter 1 (ENT1) and subsequently phosphorylated by deoxycytidine kinase (dCK). We previously reported that apparent DAC uptake into cells may be described using a simple compartment model with clearance for facilitated diffusion (PS) and subsequent phosphorylation (CLmet). In the present study, time course of apparent intracellular [3H]-DAC uptake was analyzed numerically, and PS and CLmet values were calculated using the compartment model in human colon cancer HCT116 cells. PS at 0.1 μM [3H]-DAC was markedly decreased in the presence of 100 μM irinotecan or etoposide, while CLmet was markedly decreased in the presence of 100 μM cytarabine or gemcitabine. CLmet at 0.1-10 μM [3H]-DAC varied in a concentration-dependent manner and was described by Michaelis-Menten parameters Km,met and Vmax,met. In conclusion, DAC uptake mainly via ENT1 may be described by a bidirectional first-order kinetic parameter, while phosphorylation by dCK may be described by Michaelis-Menten parameters.
Collapse
Affiliation(s)
- Kumiko Ueda
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| | - Touko Nakamura
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| | - Shota Tanaka
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| | - Mika Hosokawa
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| | - Seigo Iwakawa
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| | - Ken-Ichi Ogawara
- Laboratory of Pharmaceutics, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| |
Collapse
|
8
|
Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C, Yang H. Chemoresistance in Pancreatic Cancer. Int J Mol Sci 2019; 20:ijms20184504. [PMID: 31514451 PMCID: PMC6770382 DOI: 10.3390/ijms20184504] [Citation(s) in RCA: 362] [Impact Index Per Article: 72.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), generally known as pancreatic cancer (PC), ranks the fourth leading cause of cancer-related deaths in the western world. While the incidence of pancreatic cancer is displaying a rising tendency every year, the mortality rate has not decreased significantly because of late diagnosis, early metastasis, and limited reaction to chemotherapy or radiotherapy. Adjuvant chemotherapy after surgical resection is typically the preferred option to treat early pancreatic cancer. Although 5-fluorouracil/leucovorin with irinotecan and oxaliplatin (FOLFIRINOX) and gemcitabine/nab-paclitaxel can profoundly improve the prognosis of advanced pancreatic cancer, the development of chemoresistance still leads to poor clinical outcomes. Chemoresistance is multifactorial as a result of the interaction among pancreatic cancer cells, cancer stem cells, and the tumor microenvironment. Nevertheless, more pancreatic cancer patients will benefit from precision treatment and targeted drugs. Therefore, we outline new perspectives for enhancing the efficacy of gemcitabine after reviewing the related factors of gemcitabine metabolism, mechanism of action, and chemoresistance.
Collapse
Affiliation(s)
- Siyuan Zeng
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Marina Pöttler
- Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsklinikum Erlangen, Glückstraße 10a, 91054 Erlangen, Germany.
| | - Bin Lan
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| | - Hai Yang
- Department of Surgery, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054 Erlangen, Germany.
| |
Collapse
|
9
|
Mayati A, Moreau A, Jouan E, Febvre-James M, Denizot C, Parmentier Y, Fardel O. mRNA Expression and Activity of Nucleoside Transporters in Human Hepatoma HepaRG Cells. Pharmaceutics 2018; 10:pharmaceutics10040246. [PMID: 30469356 PMCID: PMC6320972 DOI: 10.3390/pharmaceutics10040246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
The HepaRG cell line is a highly differentiated human hepatoma cell line, displaying the expression of various drug transporters. However, functional expression of nucleoside transporters remains poorly characterized in HepaRG cells, although these transporters play a key role in hepatic uptake of antiviral and anticancer drugs. The present study was, therefore, designed to characterize the expression, activity and regulation of equilibrative (ENT) and concentrative (CNT) nucleoside transporter isoforms in differentiated HepaRG cells. These cells were found to exhibit a profile of nucleoside transporter mRNAs similar to that found in human hepatocytes, i.e., notable expression of ENT1, ENT2 and CNT1, with very low or no expression of CNT2 and CNT3. ENT1 activity was, next, demonstrated to be the main uridine transport activity present in HepaRG cells, like in cultured human hepatocytes. Various physiological factors, such as protein kinase C (PKC) activation or treatment by inflammatory cytokines or hepatocyte growth factor (HGF), were additionally found to regulate expression of ENT1, ENT2 and CNT1; PKC activation and HGF notably concomitantly induced mRNA expression and activity of ENT1 in HepaRG cells. Overall, these data suggest that HepaRG cells may be useful for analyzing cellular pharmacokinetics of nucleoside-like drugs in human hepatic cells, especially of those handled by ENT1.
Collapse
Affiliation(s)
- Abdullah Mayati
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Amélie Moreau
- Centre de Pharmacocinétique, Technologie Servier, F-45000 Orléans, France.
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Marie Febvre-James
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Claire Denizot
- Centre de Pharmacocinétique, Technologie Servier, F-45000 Orléans, France.
| | - Yannick Parmentier
- Centre de Pharmacocinétique, Technologie Servier, F-45000 Orléans, France.
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
- Pôle Biologie, Centre Hospitalier Universitaire, F-35033 Rennes, France.
| |
Collapse
|
10
|
Hioki M, Shimada T, Yuan T, Nakanishi T, Tajima H, Yamazaki M, Yokono R, Takabayashi M, Sawamoto K, Akashita G, Miyamoto KI, Ohta T, Tamai I, Shimada T, Sai Y. Contribution of equilibrative nucleoside transporters 1 and 2 to gemcitabine uptake in pancreatic cancer cells. Biopharm Drug Dispos 2018; 39:256-264. [PMID: 29682747 DOI: 10.1002/bdd.2131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/17/2022]
Abstract
Hepatic arterial infusion (HAI) chemotherapy is expected to be a more effective and safer method to treat the hepatic metastasis of pancreatic cancer than intravenous (iv) administration because of higher tumor exposure and lower systemic exposure. To clarify the uptake mechanism of nucleoside anticancer drugs, including gemcitabine (GEM), in pancreatic cancer, we investigated the uptakes of radiolabeled uridine (a general substrate of nucleoside transporters) and GEM in pancreatic cancer cell lines MIA-PaCa2 and As-PC1. Uridine uptake was inhibited by non-labeled GEM and also by S-(4-nitrobenzyl)-6-thioinosine (NBMPR; an inhibitor of equilibrative nucleoside transporters, ENTs) in a concentration-dependent manner, suggesting that ENTs contribute to uridine uptake in pancreatic cancer cells. As for GEM, saturable uptake was mediated by high- and low-affinity components with Km values of micromolar and millimolar orders, respectively. Uptake was inhibited in a concentration-dependent manner by NBMPR and was sodium ion-independent. Moreover, the concentration dependence of uptake in the presence of 0.1 μM NBMPR showed a single low-affinity site. These results indicated that the high- and low-affinity sites correspond to hENT1 and hENT2, respectively. The results indicated that at clinically relevant hepatic concentrations of GEM in GEM-HAI therapy, the metastatic tumor exposure of GEM is predominantly determined by hENT2 under unsaturated conditions, suggesting that hENT2 expression in metastatic tumor would be a candidate biomarker for indicating anticancer therapy with GEM-HAI.
Collapse
Affiliation(s)
- Masato Hioki
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.,Department of Pharmacy, Local Independent Administrative Institution Mie Prefectural General Medical Center, 5450-132 Hinaga, Yokkaichi City, Mie, 510-8561, Japan
| | - Takuya Shimada
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Tian Yuan
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Department of Membrane Transport and Biopharmaceutics, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hidehiro Tajima
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Maiko Yamazaki
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Rina Yokono
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Makiko Takabayashi
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Kazuki Sawamoto
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Gaku Akashita
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Ken-Ichi Miyamoto
- Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Department of Membrane Transport and Biopharmaceutics, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tsutomu Shimada
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.,Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| | - Yoshimichi Sai
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.,Department of Hospital Pharmacy, University Hospital, Kanazawa University, Takara-machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
11
|
Guo Z, Wang F, Di Y, Yao L, Yu X, Fu D, Li J, Jin C. Antitumor effect of gemcitabine-loaded albumin nanoparticle on gemcitabine-resistant pancreatic cancer induced by low hENT1 expression. Int J Nanomedicine 2018; 13:4869-4880. [PMID: 30214194 PMCID: PMC6122898 DOI: 10.2147/ijn.s166769] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose Gemcitabine is currently the standard first-line chemotherapeutic drug for treating pancreatic cancer. However, many factors can contribute to gemcitabine resistance. One of the most important reasons is the low hENT1 expression. In this study, we tested the antitumor effect of gemcitabine-loaded human serum albumin nanoparticle (GEM-HSA-NP) on gemcitabine-resistant pancreatic cancer induced by low hENT1 expression. Materials and methods S-(4-nitrobenzyl)-6-thioinosine was utilized to inhibit the activity of hENT1 and simulate low hENT1 expression. Growth inhibition assays and cell cycle and apoptosis analyses were performed on human pancreatic cancer cell lines such as BxPC-3 and SW1990. The in vivo antitumor effect was studied by using patient-derived xenograft (PDX) models. The in vivo toxicity assessment was performed on healthy Kunming mice. Results In in vitro studies, GEM-HSA-NP showed its ability to inhibit cell proliferation, arrest cell cycle and induce apoptosis when tumor cells were resistant to gemcitabine. In in vivo studies, GEM-HSA-NP was more effective than gemcitabine on inhibiting tumor growth whether the expression levels of hENT1 were high or low in PDX models. The in vivo toxicity assessment showed that the biotoxicity of GEM-HSA-NP did not increase compared with gemcitabine. Conclusion GEM-HSA-NP can overcome gemcitabine resistance induced by low hENT1 expression, which suggests its potential role for the clinical application.
Collapse
Affiliation(s)
- Zhongyi Guo
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China,
| | - Feng Wang
- School of Pharmacy & Key Laboratory of Smart Drug Delivery, Fudan University, Shanghai, China
| | - Yang Di
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China,
| | - Lie Yao
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China,
| | - Xinzhe Yu
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China,
| | - Deliang Fu
- Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China,
| | - Ji Li
- Pancreatic Disease Institute, Huashan Hospital, Fudan University, Shanghai, China,
| | - Chen Jin
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China,
| |
Collapse
|
12
|
Miura T, Tachikawa M, Ohtsuka H, Fukase K, Nakayama S, Sakata N, Motoi F, Naitoh T, Katayose Y, Uchida Y, Ohtsuki S, Terasaki T, Unno M. Application of Quantitative Targeted Absolute Proteomics to Profile Protein Expression Changes of Hepatic Transporters and Metabolizing Enzymes During Cholic Acid-Promoted Liver Regeneration. J Pharm Sci 2017; 106:2499-2508. [DOI: 10.1016/j.xphs.2017.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 01/16/2023]
|
13
|
Shen H, Chen W, Drexler DM, Mandlekar S, Holenarsipur VK, Shields EE, Langish R, Sidik K, Gan J, Humphreys WG, Marathe P, Lai Y. Comparative Evaluation of Plasma Bile Acids, Dehydroepiandrosterone Sulfate, Hexadecanedioate, and Tetradecanedioate with Coproporphyrins I and III as Markers of OATP Inhibition in Healthy Subjects. Drug Metab Dispos 2017; 45:908-919. [PMID: 28576766 DOI: 10.1124/dmd.117.075531] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/31/2017] [Indexed: 12/20/2022] Open
Abstract
Multiple endogenous compounds have been proposed as candidate biomarkers to monitor organic anion transporting polypeptide (OATP) function in preclinical species or humans. Previously, we demonstrated that coproporphyrins (CPs) I and III are appropriate clinical markers to evaluate OATP inhibition and recapitulate clinical drug-drug interactions (DDIs). In the present study, we investigated bile acids (BAs) dehydroepiandrosterone sulfate (DHEAS), hexadecanedioate (HDA), and tetradecanedioate (TDA) in plasma as endogenous probes for OATP inhibition and compared these candidate probes to CPs. All probes were determined in samples from a single study that examined their behavior and their association with rosuvastatin (RSV) pharmacokinetics after administration of an OATP inhibitor rifampin (RIF) in healthy subjects. Among endogenous probes examined, RIF significantly increased maximum plasma concentration (Cmax) and area under the concentration-time curve (AUC)(0-24h) of fatty acids HDA and TDA by 2.2- to 3.2-fold. For the 13 bile acids in plasma examined, no statistically significant changes were detected between treatments. Changes in plasma DHEAS did not correlate with OATP1B inhibition by RIF. On the basis of the magnitude of effects for the endogenous compounds that demonstrated significant changes from baseline over interindividual variations, the overall rank order for the AUC change was found to be CP I > CP III > HDA ≈ TDA ≈ RSV > > BAs. Collectively, these results reconfirmed that CPs are novel biomarkers suitable for clinical use. In addition, HDA and TDA are useful for OATP functional assessment. Since these endogenous markers can be monitored in conjunction with pharmacokinetics analysis, the CPs and fatty acid dicarboxylates, either alone or in combination, offer promise of earlier diagnosis and risk stratification for OATP-mediated DDIs.
Collapse
Affiliation(s)
- Hong Shen
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Weiqi Chen
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Dieter M Drexler
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Sandhya Mandlekar
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Vinay K Holenarsipur
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Eric E Shields
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Robert Langish
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Kurex Sidik
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Jinping Gan
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - W Griffith Humphreys
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Punit Marathe
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| | - Yurong Lai
- Pharmaceutical Candidate Optimization (H.S., W.C., R.L., J.G., W.G.H., P.M., Y.L.) and Global Biometrics Sciences (K.S.), Bristol-Myers Squibb Company, Princeton, New Jersey; Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Wallingford, Connecticut (D.M.D., E.E.S.); Bristol-Myers Squibb India Pvt. Ltd. (S.M.) and Syngene International Ltd. (V.K.H.), Biocon BMS R&D Center, Bangalore, India
| |
Collapse
|