1
|
Abbasi M, Heath B. Iontophoresis and electroporation-assisted microneedles: advancements and therapeutic potentials in transdermal drug delivery. Drug Deliv Transl Res 2024:10.1007/s13346-024-01722-7. [PMID: 39433696 DOI: 10.1007/s13346-024-01722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Transdermal drug delivery (TDD) using electrically assisted microneedle (MN) systems has emerged as a promising alternative to traditional drug administration routes. This review explores recent advancements in this technology across various therapeutic applications. Integrating iontophoresis (IP) and electroporation (EP) with MN technology has shown significant potential in improving treatment outcomes for various conditions. Studies demonstrate their effectiveness in enhancing vaccine and DNA delivery, improving diabetes management, and increasing efficacy in dermatological applications. The technology has also exhibited promise in delivering nonsteroidal anti-inflammatory drugs (NSAIDs), treating multiple sclerosis, and advancing obesity and cancer therapy. These systems offer improved drug permeation, targeted delivery, and enhanced therapeutic effects. While challenges remain, including safety concerns and technological limitations, ongoing research focuses on optimizing these systems for broader clinical applications. The future of electrically assisted MN technologies in TDD appears promising, with potential advancements in personalized medicine, smart monitoring systems, and expanded therapeutic applications.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- College of Human Sciences, Department of Nutritional Sciences, Auburn University, Auburn, AL, 36849, USA.
| | - Braeden Heath
- College of Sciences and Mathematics, Department of Biomedical Sciences, Auburn University, Auburn, AL, 36849, USA
| |
Collapse
|
2
|
Lundborg M, Wennberg C, Lindahl E, Norlén L. Simulating the Skin Permeation Process of Ionizable Molecules. J Chem Inf Model 2024; 64:5295-5302. [PMID: 38917349 PMCID: PMC11234375 DOI: 10.1021/acs.jcim.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
It is commonly assumed that ionizable molecules, such as drugs, permeate through the skin barrier in their neutral form. By using molecular dynamics simulations of the charged and neutral states separately, we can study the dynamic protonation behavior during the permeation process. We have studied three weak acids and three weak bases and conclude that the acids are ionized to a larger extent than the bases, when passing through the headgroup region of the lipid barrier structure, at pH values close to their pKa. It can also be observed that even if these dynamic protonation simulations are informative, in the cases studied herein they are not necessary for the calculation of permeability coefficients. It is sufficient to base the calculations only on the neutral form, as is commonly done.
Collapse
Affiliation(s)
- Magnus Lundborg
- SciLifeLab, ERCO Pharma AB, 171 65 Solna, Sweden
- Department of Applied Physics, SciLifeLab, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Christian Wennberg
- SciLifeLab, ERCO Pharma AB, 171 65 Solna, Sweden
- UC AB, 111 64 Stockholm, Sweden
| | - Erik Lindahl
- Department of Biophysics and Biochemistry, SciLifeLab, Stockholm University, 106 91 Stockholm, Sweden
- Department of Applied Physics, Swedish e-Science Research Center, KTH Royal Institute of Technology, 106 91 Stockholm, Sweden
| | - Lars Norlén
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, 171 77 Solna, Sweden
- Dermatology Clinic, Karolinska University Hospital, 171 77 Solna, Sweden
| |
Collapse
|
3
|
Patel M, Patel A, Desai J, Patel S. Cutaneous Pharmacokinetics of Topically Applied Novel Dermatological Formulations. AAPS PharmSciTech 2024; 25:46. [PMID: 38413430 DOI: 10.1208/s12249-024-02763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Novel formulations are developed for dermatological applications to address a wide range of patient needs and therapeutic challenges. By pushing the limits of pharmaceutical technology, these formulations strive to provide safer, more effective, and patient-friendly solutions for dermatological concerns, ultimately improving the overall quality of dermatological care. The article explores the different types of novel dermatological formulations, including nanocarriers, transdermal patches, microsponges, and microneedles, and the techniques involved in the cutaneous pharmacokinetics of these innovative formulations. Furthermore, the significance of knowing cutaneous pharmacokinetics and the difficulties faced during pharmacokinetic assessment have been emphasized. The article examines all the methods employed for the pharmacokinetic evaluation of novel dermatological formulations. In addition to a concise overview of earlier techniques, discussions on novel methodologies, including tape stripping, in vitro permeation testing, cutaneous microdialysis, confocal Raman microscopy, and matrix-assisted laser desorption/ionization mass spectrometry have been conducted. Emerging technologies like the use of microfluidic devices for skin absorption studies and computational models for predicting drug pharmacokinetics have also been discussed. This article serves as a valuable resource for researchers, scientists, and pharmaceutical professionals determined to enhance the development and understanding of novel dermatological drug products and the complex dynamics of cutaneous pharmacokinetics.
Collapse
Affiliation(s)
- Meenakshi Patel
- Department of Pharmaceutics, School of Pharmacy, Faculty of Pharmacy, and Research & Development Cell, Parul University, Waghodia, Vadodara, 391760, Gujarat, India.
| | - Ashwini Patel
- Department of Pharmaceutics, Krishna School of Pharmacy & Research, Drs. Kiran and Pallavi Patel Global University, Vadodara, 391243, Gujarat, India
| | - Jagruti Desai
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388 421, Gujarat, India
| | - Swayamprakash Patel
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388 421, Gujarat, India
| |
Collapse
|
4
|
Tonnis K, Jaworska J, Kasting GB. Modeling the percutaneous absorption of solvent-deposited solids over a wide dose range: II. Weak electrolytes. J Control Release 2024; 365:435-447. [PMID: 37996054 DOI: 10.1016/j.jconrel.2023.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
Dermal absorption of weak electrolytes applied to skin from pharmaceutical and cosmetic compositions is an important consideration for both their efficacy and skin safety. We developed a mechanistic, physics-based framework that simulates this process for leave on applications following solvent deposition. We incorporated this framework into our finite dose computational skin permeation model previously tested with nonelectrolytes to generate quantitative predictions for weak electrolytes. To test the model, we analyzed experimental data from an in vitro human skin permeation study of a weak acid (benzoic acid) and a weak base (propranolol) and their sodium and hydrochloride salts from simple, ethanol/water vehicles as a function of dose and ionization state. Key factors controlling absorption are the pH and buffer capacity of the dose solution, the dissolution rate of precipitated solids into a lipid boundary layer and the rate of conversion of the deposited solid to its conjugate form as the nonionized component permeates and (sometimes) evaporates from the skin surface. The resulting framework not only describes the current test data but has the potential to predict the absorption of other weak electrolytes following topical application.
Collapse
Affiliation(s)
- Kevin Tonnis
- College of Engineering and Applied Science, The University of Cincinnati, Cincinnati, OH 45221, USA
| | - Joanna Jaworska
- The Procter & Gamble Company, Data and Modeling Sciences, Brussels Innovation Center, Belgium
| | - Gerald B Kasting
- The James L. Winkle College of Pharmacy, The University of Cincinnati, Cincinnati, OH 45267-0514, USA.
| |
Collapse
|
5
|
Rahbari R, Francis L, Guy OJ, Sharma S, Von Ruhland C, Xia Z. Microneedle-Assisted Transfersomes as a Transdermal Delivery System for Aspirin. Pharmaceutics 2023; 16:57. [PMID: 38258069 PMCID: PMC10819469 DOI: 10.3390/pharmaceutics16010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Transdermal drug delivery systems offer several advantages over conventional oral or hypodermic administration due to the avoidance of first-pass drug metabolism and gastrointestinal degradation as well as patients' convenience due to a minimally invasive and painless approach. A novel transdermal drug delivery system, comprising a combination of transfersomes with either solid silicon or solid polycarbonate microneedles has been developed for the transdermal delivery of aspirin. Aspirin was encapsulated inside transfersomes using a "thin-film hydration sonication" technique, yielding an encapsulation efficiency of approximately 67.5%. The fabricated transfersomes have been optimised and fully characterised in terms of average size distribution and uniformity, surface charge and stability (shelf-life). Transdermal delivery, enhanced by microneedle penetration, allows the superior permeation of transfersomes into perforated porcine skin and has been extensively characterised using optical coherence tomography (OCT) and transmission electron microscopy (TEM). In vitro permeation studies revealed that transfersomes enhanced the permeability of aspirin by more than four times in comparison to the delivery of unencapsulated "free" aspirin. The microneedle-assisted delivery of transfersomes encapsulating aspirin yielded 13-fold and 10-fold increases in permeation using silicon and polycarbonate microneedles, respectively, in comparison with delivery using only transfersomes. The cytotoxicity of different dose regimens of transfersomes encapsulating aspirin showed that encapsulated aspirin became cytotoxic at concentrations of ≥100 μg/mL. The results presented demonstrate that the transfersomes could resolve the solubility issues of low-water-soluble drugs and enable their slow and controlled release. Microneedles enhance the delivery of transfersomes into deeper skin layers, providing a very effective system for the systemic delivery of drugs. This combined drug delivery system can potentially be utilised for numerous drug treatments.
Collapse
Affiliation(s)
- Raha Rahbari
- Centre for Nanohealth, Institute of Life Science 2, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Lewis Francis
- Centre for Nanohealth, Institute of Life Science 2, Swansea University Medical School, Swansea SA2 8PP, UK
| | - Owen J. Guy
- Department of Chemistry, School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK;
| | - Sanjiv Sharma
- Department of Biomedical Engineering, School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Swansea SA2 8PP, UK
| | - Christopher Von Ruhland
- Electron Microscopy Unit, Central Biotechnology Services, Institute for Translation, Innovation, Methodology and Engagement, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK;
| | - Zhidao Xia
- Centre for Nanohealth, Institute of Life Science 2, Swansea University Medical School, Swansea SA2 8PP, UK
| |
Collapse
|
6
|
Wanasathop A, Zhong C, Nimmansophon P, Murawsky M, Li SK. Characterization of Porcine Gingiva for Drug Absorption. J Pharm Sci 2023; 112:1032-1040. [PMID: 36417948 PMCID: PMC10033335 DOI: 10.1016/j.xphs.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Gingiva or gum is a part of the periodontium that surrounds the tooth. Its main function is to provide an effective barrier to both mechanical trauma and bacterial invasion. Gingiva is the target site for some topical drugs. The most common disease in gingiva is periodontal diseases (gum infections). Understanding the gingiva barrier properties could provide insights into approaches to effective drug delivery for the gingiva. Porcine gingiva was chosen as the model in the present membrane transport study. The permeability coefficients of gingiva were determined using a modified Franz diffusion cell with small diffusional area (0.03 cm2) and 12 model permeants with different physicochemical properties. The influences of edge effect and aqueous boundary layers were not observed in the modified diffusion cell setup for the small pieces of gingiva tissue samples. Lipophilic permeants exhibit higher permeability coefficients than hydrophilic permeants. A correlation was observed between the Log permeability coefficient (Log P) and Log octanol-water distribution coefficient (Log Dow) in the analysis. The permeant molecular weight (MW) was also a factor in the Log P vs. Log Dow relationship. The coefficient of Log Dow in this three-factor relationship (0.42) suggested that the gingiva barrier was less lipophilic than octanol.
Collapse
Affiliation(s)
- Apipa Wanasathop
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Cheng Zhong
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Patcharawan Nimmansophon
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Michael Murawsky
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - S Kevin Li
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
7
|
Cosmeceutical formulations of pro-vitamin E phosphate: In-vitro release testing and dermal penetration into excised human skin. Int J Pharm 2023; 636:122781. [PMID: 36849039 DOI: 10.1016/j.ijpharm.2023.122781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Long-term exposure to solar radiation can lead to skin damage such as photoageing, and photocarcinogenesis. This can be prevented by topically applying α-tocopherol phosphate (α-TP). The major challenge is that a significant amount of α-TP needs to reach viable skin layers for effective photoprotection. This study aims to develop candidate formulations of α-TP (gel-like, solution, lotion, and gel), and investigate formulation characteristics' effect on membrane diffusion and human skin permeation. All the formulations developed in the study had an appealing appearance and no signs of separation. All formulations had low viscosity and high spreadability except the gel. The flux of α-TP through the polyethersulfone membrane was the highest for lotion (6.63 ± 0.86 mg/cm2/h), followed by control gel-like (6.14 ± 1.76 mg/cm2/h), solution (4.65 ± 0.86 mg/cm2/h), and gel (1.02 ± 0.22 mg/cm2/h). The flux of α-TP through the human skin membrane was numerically higher for lotion compared to the gel-like (328.6 vs.175.2 µg/cm2/h). The lotion delivered 3-fold and 5-fold higher α-TP in viable skin layers at 3 h and 24 h, respectively, compared to that of the gel-like. The low skin membrane penetration rate and deposition of α-TP in viable skin layers were observed for the solution and gel. Our study demonstrated that dermal penetration of α-TP was influenced by characteristics of formulation such as formulation type, pH, and viscosity. The α-TP in the lotion scavenged higher DPPH free radicals compared to that of gel-like (almost 73% vs. 46%). The IC50 of α-TP in lotion was significantly lower than that of gel-like (397.2 vs. 626.0 µg/mL). The preservative challenge test specifications were fulfilled by Geogard 221 and suggested that the combination of benzyl alcohol and Dehydroacetic Acid effectively preserved 2% α-TP lotion. This result confirms the suitability of the α-TP cosmeceutical lotion formulation employed in the present work for effective photoprotection.
Collapse
|
8
|
Corredor-Chaparro MY, Vargas-Riveros D, Mora-Huertas CE. Hypromellose – Collagen hydrogels/sesame oil organogel based bigels as controlled drug delivery systems. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Truong TH, Alcantara KP, Bulatao BPI, Sorasitthiyanukarn FN, Muangnoi C, Nalinratana N, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Chitosan-coated nanostructured lipid carriers for transdermal delivery of tetrahydrocurcumin for breast cancer therapy. Carbohydr Polym 2022; 288:119401. [PMID: 35450653 DOI: 10.1016/j.carbpol.2022.119401] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 01/05/2023]
Abstract
Chitosan (Ch)-coated nanostructured lipid carriers (NLCs) have great potential for transdermal delivery with high localization of chemotherapeutics in breast cancer. This study used tetrahydrocurcumin (THC), a primary metabolite of curcumin with enhanced antioxidant and anticancer properties, as a model compound to prepare NLCs. Response surface methodology was employed to optimize THC-loaded Ch-coated NLCs (THC-Ch-NLCs) fabricated by high-shear homogenization. The optimized THC-Ch-NLCs had particle size of 244 ± 18 nm, zeta potential of -17.5 ± 0.5 mV, entrapment efficiency of 76.6 ± 0.2% and drug loading of 0.28 ± 0.01%. In vitro release study of THC-Ch-NLCs showed sustained release following the Korsmeyer-Peppas model with Fickian and non-Fickian diffusion at pH 7.4 and 5.5, respectively. THC-Ch-NLCs demonstrated significantly enhanced in vitro skin permeation, cell uptake, and remarkable cytotoxicity toward MD-MBA-231 breast cancer cells compared to the unencapsulated THC, suggesting Ch-NLCs as potential transdermal nanocarriers of THC for triple-negative breast cancer treatment.
Collapse
Affiliation(s)
- Thien Hoang Truong
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bryan Paul I Bulatao
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Feuangthit Niyamissara Sorasitthiyanukarn
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
10
|
Wanasathop A, Patel PB, Choi HA, Li SK. Permeability of Buccal Mucosa. Pharmaceutics 2021; 13:1814. [PMID: 34834229 PMCID: PMC8624797 DOI: 10.3390/pharmaceutics13111814] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 11/23/2022] Open
Abstract
The buccal mucosa provides an alternative route of drug delivery that can be more beneficial compared to other administration routes. Although numerous studies and reviews have been published on buccal drug delivery, an extensive review of the permeability data is not available. Understanding the buccal mucosa barrier could provide insights into the approaches to effective drug delivery and optimization of dosage forms. This paper provides a review on the permeability of the buccal mucosa. The intrinsic permeability coefficients of porcine buccal mucosa were collected. Large variability was observed among the published permeability data. The permeability coefficients were then analyzed using a model involving parallel lipoidal and polar transport pathways. For the lipoidal pathway, a correlation was observed between the permeability coefficients and permeant octanol/water partition coefficients (Kow) and molecular weight (MW) in a subset of the permeability data under specific conditions. The permeability analysis suggested that the buccal permeation barrier was less lipophilic than octanol. For the polar pathway and macromolecules, a correlation was observed between the permeability coefficients and permeant MW. The hindered transport analysis suggested an effective pore radius of 1.5 to 3 nm for the buccal membrane barrier.
Collapse
Affiliation(s)
| | | | | | - S. Kevin Li
- Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, MSB # 3005, Cincinnati, OH 45267, USA; (A.W.); (P.B.P.); (H.A.C.)
| |
Collapse
|
11
|
Milanowski B, Wosicka-Frąckowiak H, Główka E, Sosnowska M, Woźny S, Stachowiak F, Suchenek A, Wilkowski D. Optimization and Evaluation of the In Vitro Permeation Parameters of Topical Products with Non-Steroidal Anti-Inflammatory Drugs through Strat-M ® Membrane. Pharmaceutics 2021; 13:1305. [PMID: 34452264 PMCID: PMC8398299 DOI: 10.3390/pharmaceutics13081305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Pharmaceutical products containing non-steroidal anti-inflammatory drugs (NSAIDs) are among the most prescribed topical formulations used for analgesic and antirheumatic properties. These drugs must overcome the skin barrier to cause a therapeutic effect. Human skin has been widely used as a model to study in vitro drug diffusion and permeation, however, it suffers from many limitations. Therefore, to perform in vitro permeation test (IVPT), we used a Strat-M® membrane with diffusion characteristics well-correlated to human skin. This study's objective was to optimize the IVPT conditions using Plackett-Burman experimental design for bio-predictive evaluation of the in vitro permeation rates of five non-steroidal anti-inflammatory drugs (diclofenac, etofenamate, ibuprofen, ketoprofen, naproxen) across Strat-M® membrane from commercial topical formulations. The Plackett-Burman factorial design was used to screen the effect of seven factors in eight runs with one additional center point. This tool allowed us to set the sensitive and discriminative IVPT final conditions that can appropriately characterize the NSAIDs formulations. The permeation rate of etofenamate (ETF) across the Strat-M® membrane was 1.7-14.8 times faster than other NSAIDs from selected semisolids but 1.6 times slower than the ETF spray formulation.
Collapse
Affiliation(s)
- Bartłomiej Milanowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland; (H.W.-F.); (E.G.)
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Hanna Wosicka-Frąckowiak
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland; (H.W.-F.); (E.G.)
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Eliza Główka
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland; (H.W.-F.); (E.G.)
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Małgorzata Sosnowska
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Stanisław Woźny
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Filip Stachowiak
- GENERICA Pharmaceutical Lab, Regionalne Centrum Zdrowia Sp. z o. o., ul. Na Kępie 3, 64-360 Zbąszyń, Poland; (M.S.); (S.W.); (F.S.)
| | - Angelika Suchenek
- MYLAN Healthcare Sp. z o. o., ul. Postępu 21B, 02-676 Warszawa, Poland; (A.S.); (D.W.)
| | - Dariusz Wilkowski
- MYLAN Healthcare Sp. z o. o., ul. Postępu 21B, 02-676 Warszawa, Poland; (A.S.); (D.W.)
| |
Collapse
|
12
|
Sousa Filho LF, Barbosa Santos MM, Menezes PDP, Lima BDS, de Souza Araújo AA, de Oliveira ED. A novel quercetin/β-cyclodextrin transdermal gel, combined or not with therapeutic ultrasound, reduces oxidative stress after skeletal muscle injury. RSC Adv 2021; 11:27837-27844. [PMID: 35480723 PMCID: PMC9037813 DOI: 10.1039/d1ra04708f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/31/2021] [Indexed: 11/21/2022] Open
Abstract
A gel containing the inclusion complex of quercetin and β-cyclodextrin was developed in order to verify its effects, isolated or using phonophoresis, on oxidative biomarkers after skeletal muscle injury. 30 male rats were divided into one of five groups: Control (CTRL), Muscle Injury (MI), Therapeutic Pulsed Ultrasound (TPU), Therapeutic Pulsed Ultrasound plus Quercetin (TPU plus gel-QUE) or Quercetin gel (QUE). Quercetin gel was complexed with β-Cyclodextrin (β-CD) using chromatography (HPLC). TPU and quercetin application occurred with 2, 12, 24, 48, 72, 96 hours intervals after injury. Gastrocnemius muscle was injured by mechanical trauma. Lipid peroxidation, superoxide dismutase activity, and catalase activity were assessed. The inclusion complex exhibited adequate entrapment efficiency, relative density and pH. The viscosity of the complex showed a non-Newtonian pseudoplastic behavior. Quercetin/β-cyclodextrin gel reduced lipid peroxidation, superoxide dismutase activity and catalase activity compared to muscle injury group. Similarly, phonophoresis and TPU also reduced the levels of these oxidative biomarkers. In conclusion, quercetin/β-cyclodextrin transdermal gel reduces oxidative stress biomarkers after skeletal muscle injury irrespective of using phonophoresis.
Collapse
Affiliation(s)
- Luis Fernando Sousa Filho
- Department of Physiotherapy, Federal University of Sergipe Av Marechal Rondon s/n 49000-100 São Cristovão Sergipe Brazil +55-79-3194-6642
| | - Marta Maria Barbosa Santos
- Department of Physiotherapy, Federal University of Sergipe Av Marechal Rondon s/n 49000-100 São Cristovão Sergipe Brazil +55-79-3194-6642
| | - Paula Dos Passos Menezes
- Department of Pharmacy, Federal University of Sergipe Av Marechal Rondon s/n 49000-100 São Cristovão Sergipe Brazil
| | - Bruno Dos Santos Lima
- Department of Pharmacy, Federal University of Sergipe Av Marechal Rondon s/n 49000-100 São Cristovão Sergipe Brazil
| | | | - Evaleide Diniz de Oliveira
- Department of Physiotherapy, Federal University of Sergipe Av Marechal Rondon s/n 49000-100 São Cristovão Sergipe Brazil +55-79-3194-6642
| |
Collapse
|
13
|
Park C, Zuo J, Somayaji V, Lee BJ, Löbenberg R. Development of a novel cannabinoid-loaded microemulsion towards an improved stability and transdermal delivery. Int J Pharm 2021; 604:120766. [PMID: 34087415 DOI: 10.1016/j.ijpharm.2021.120766] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/20/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
The aim of this study was to develop a stable microemulsion (ME) for transdermal delivery of tetrahydrocannabinolic acid (THCA) and cannabidiolic acid (CBDA). The lipid-based vehicles were selected by screening cannabinoid solubility and the emulsifying ability of surfactants. Pseudo-ternary phase diagrams were constructed by formulation of cannabinoids with Capryol® 90 as oil phase, Tween® 80, Solutol® HS15, Procetyl® AWS, and Cremophor® RH40 as surfactants, ethanol as cosurfactant, and distilled water as the aqueous phase. A significant improvement in transmembrane flux (Jss), permeability coefficient (Kp), and enhancement ratio (ER) was found in one system compared to other formulations. This ME consisted of 1.0% (w/w) of cannabinoids, 5% (w/w) of Capryol® 90, 44% (w/w) Smix (2:1, Procetyl® AWS and Ethanol) and 50.0% (w/w) of distilled water. Additionally, the effects of pH on the permeation of the cannabinoids were investigated. Based on the pH value THCA and CBDA-loaded ME exhibited the highest permeation at pH 5.17 and pH 5.25. After storing the pH-adjusted P2 ME and the optimized P2 ME for 180 days at 4℃ and 25℃, the content of cannabinoids was over 95%. Consequently, the cannabinoid-loaded ME system is a promising option for solubilizing and stabilizing lipophilic drugs like cannabinoids and utilize them for transdermal delivery.
Collapse
Affiliation(s)
- Chulhun Park
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada; College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Jieyu Zuo
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| | - Vijay Somayaji
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, South Korea; College of Pharmacy and Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Raimar Löbenberg
- Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada.
| |
Collapse
|
14
|
Rodríguez-Luna A, Talero E, Ávila-Román J, Romero AMF, Rabasco AM, Motilva V, González-Rodríguez ML. Preparation and In Vivo Evaluation of Rosmarinic Acid-Loaded Transethosomes After Percutaneous Application on a Psoriasis Animal Model. AAPS PharmSciTech 2021; 22:103. [PMID: 33712964 DOI: 10.1208/s12249-021-01966-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 02/18/2021] [Indexed: 12/14/2022] Open
Abstract
The topical use of rosmarinic acid (RA) in skin inflammatory pathologies is restricted due to its poor water solubility, poor permeability, and chemical instability. In this study, RA-loaded transethosomes-in-Carbopol® formulations have been developed to evaluate its anti-inflammatory activity on imiquimod-induced psoriasis-like skin inflammation in mice. In vitro release profiles demonstrated sustained behavior due to the retentive action of gel and the entrapment of RA into the vesicles. However, the low viscosity of the combined formulation increased the drug release rate. Animal evaluation of anti-inflammatory activity demonstrated that transethosomes-in-gel containing dexamethasone (Dex-TE-Gel), as positive control, showed effect in all the pro-inflammatory parameters evaluated, evidencing that these drug-loaded nanocarriers have been effectively reached the site of action. In addition, transethosomes-in-gel containing RA (RA-TE-Gel) formulations produced a great reduction in the punch edema (P < 0.001) and in TNF-α and IL-6 (P < 0.05). However, non-significant differences were obtained for IL-1β, IL17, and MPO. Despite the protecting effect of Carbopol® and transethosomes on oxidation index and antioxidant activity of RA over the 7 days of treatment, however, a degradation process of this antioxidant to caffeic acid may be the cause of these in vivo results. We have also checked that the pH existing into the intercellular space of damaged cells (pH 6.8) may be affecting. Therefore, our results suggest that RA-TE-Gel could act as an effective RA formulation for skin delivery; further studies will help to understand the loss of activity at the cellular level.
Collapse
Affiliation(s)
| | - Elena Talero
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - Javier Ávila-Román
- Department of Biochemistry and Biotechnology, Faculty of Chemistry, Universitat Rovira i Virgili, Tarragona, Spain
| | - Ana María Fernández Romero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/ Prof. García González, 2, 41012, Seville, Spain
| | - Antonio M Rabasco
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/ Prof. García González, 2, 41012, Seville, Spain
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
| | - María Luisa González-Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, C/ Prof. García González, 2, 41012, Seville, Spain.
| |
Collapse
|
15
|
Rahbari R, Ichim I, Bamsey R, Burridge J, Guy OJ, Bolodeoku J, Graz M. Characterisation of Drug Delivery Efficacy Using Microstructure-Assisted Application of a Range of APIs. Pharmaceutics 2020; 12:E1213. [PMID: 33333795 PMCID: PMC7765163 DOI: 10.3390/pharmaceutics12121213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Polymer-based solid microstructures (MSts) have the potential to significantly increase the quantity and range of drugs that can be administered across the skin. MSt arrays are used to demonstrate their capacity to bypass the skin barrier and enhance permeability by creating microchannels through the stratum corneum, in a minimally invasive manner. This study is designed to demonstrate the ability of MSts to exceed the current boundaries for transdermal delivery of compounds with different molecular weights, partition coefficients, acid dissociation constants, melting points, and water solubilities. In vitro permeation of a range of selected molecules, including acetyl salicylic acid (aspirin), galantamine, selegiline hydrochloride (Sel-HCl), insulin, caffeine, hydrocortisone (HC), hydrocortisone 21-hemisuccinate sodium salt (HC-HS) and bovine serum albumin (BSA) has been studied across excised porcine skin with and without poke and patch application of MSts. Permeation of the molecules was monitored using Franz diffusion cells over 24 h. MSts significantly increased the permeation of all selected molecules up to 40 times, compared to topical applications of the molecules without MSts. The greatest increase in permeation was observed for caffeine with 70 ± 8% permeation and the lowest enhancement was observed for HC with a 2.4 ± 1.3% increase in permeation. The highest obtained flux was BSA (8133 ± 1365 μg/cm2/h) and the lowest flux observed for HC (11 ± 4 μg/cm2/h). BSA and HC also showed the highest (16,275 ± 3078 μg) and the lowest (73 ± 47 μg) permeation amount after 24 h respectively. MSt-treated skin exhibits greatly increased permeation. The molecule parameters (size, acid dissociation constant, partition coefficient and solubility)-traditional hurdles associated with passive diffusion through intact skin-are overcome using MSt skin treatment.
Collapse
Affiliation(s)
- Raha Rahbari
- Singleton Campus, Institute of Life Science 2, Swansea University, Innoture Ltd., Swansea SA2 8PP, UK; (I.I.); (R.B.); (J.B.); (J.B.); (M.G.)
| | - Ionut Ichim
- Singleton Campus, Institute of Life Science 2, Swansea University, Innoture Ltd., Swansea SA2 8PP, UK; (I.I.); (R.B.); (J.B.); (J.B.); (M.G.)
| | - Ryan Bamsey
- Singleton Campus, Institute of Life Science 2, Swansea University, Innoture Ltd., Swansea SA2 8PP, UK; (I.I.); (R.B.); (J.B.); (J.B.); (M.G.)
| | - Jemma Burridge
- Singleton Campus, Institute of Life Science 2, Swansea University, Innoture Ltd., Swansea SA2 8PP, UK; (I.I.); (R.B.); (J.B.); (J.B.); (M.G.)
| | - Owen J. Guy
- Chemistry Department, Swansea University, Swansea SA2 8PP, UK;
| | - John Bolodeoku
- Singleton Campus, Institute of Life Science 2, Swansea University, Innoture Ltd., Swansea SA2 8PP, UK; (I.I.); (R.B.); (J.B.); (J.B.); (M.G.)
| | - Michael Graz
- Singleton Campus, Institute of Life Science 2, Swansea University, Innoture Ltd., Swansea SA2 8PP, UK; (I.I.); (R.B.); (J.B.); (J.B.); (M.G.)
| |
Collapse
|
16
|
Thomas S, Shin SH, Hammell DC, Hassan HE, Stinchcomb AL. Effect of Controlled Heat Application on Topical Diclofenac Formulations Evaluated by In Vitro Permeation Tests (IVPT) Using Porcine and Human Skin. Pharm Res 2020; 37:49. [PMID: 32034502 DOI: 10.1007/s11095-019-2741-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 11/25/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE Heat therapy is widely used for pain relief and may unintentionally be used in conjunction with pain relieving topical formulations. The purpose of this study was to evaluate the influence of heat on the permeation of diclofenac through porcine and human skin, comparing four marketed products. METHODS In vitro permeation tests (IVPT) were performed on porcine skin from a single miniature pig and human skin from three donors. Skin temperature was maintained at either 32 ± 1°C or 42 ± 1°C to mimic normal and elevated skin temperature conditions, respectively. RESULTS IVPT studies on porcine and human skin were able to demonstrate heat-induced enhancement in flux and cumulative amount of drug permeated from the four diclofenac products. The pivotal data showed the most significant heat-induced enhancement for the solution, followed by the patch and two gels in decreasing order of significance based on p values. Diclofenac solution showed the highest flux and cumulative amount permeated at both baseline and elevated skin temperature compared to the patch and gels. CONCLUSIONS The studies demonstrated that exposure to heat can alter drug permeation from topical formulations, but the increased levels are not expected to lead to systemic concentrations that are of concern. Formulation design and excipients can influence drug permeation at elevated skin temperature.
Collapse
Affiliation(s)
- Sherin Thomas
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Soo Hyeon Shin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Dana C Hammell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Hazem E Hassan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA
| | - Audra L Stinchcomb
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
17
|
Chantasart D, Tocanitchart P, Wongrakpanich A, Teeranachaideekul V, Junyaprasert VB. Fabrication and evaluation of Eudragit ® polymeric films for transdermal delivery of piroxicam. Pharm Dev Technol 2017; 23:771-779. [PMID: 28406344 DOI: 10.1080/10837450.2017.1319864] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aims of this work were to develop and characterize the prolonged release piroxicam transdermal patch as a prototype to substitute oral formulations, to reduce side effects and improve patient compliance. The patches were composed of film formers (Eudragit®) as a matrix backbone, with PVC as a backing membrane and PEG200 used as a plasticizer. Results from X-ray diffraction patterns and Fourier transform-infrared spectroscopy indicated that loading piroxicam into films changed the drug crystallinity from needle to an amorphous or dissolved form. Piroxicam films were prepared using Eudragit® RL100 and Eudragit® RS100 as film formers at various ratios from 1:0 to 1:3. Films prepared solely by Eudragit® RL100 showed the toughest and softest film, while other formulations containing Eudragit® RS100 were hard and brittle. Drug release kinetic data from the films fitted with the Higuchi model, and the piroxicam release mechanism was diffusion controlled. Among all formulation tested, Eudragit® RL100 films showed the highest drug release rate and the highest drug permeation flux across human epidermal membrane. Increasing drug loading led to an increase in drug release rate. Eudragit® can be used as a film former for the fabrication of piroxicam films.
Collapse
Affiliation(s)
- Doungdaw Chantasart
- a Department of Pharmacy, Faculty of Pharmacy , Mahidol University , Bangkok , Thailand.,b Center of Excellence in Innovative Drug Delivery and Nanomedicine, Faculty of Pharmacy , Mahidol University , Bangkok , Thailand
| | - Preeda Tocanitchart
- a Department of Pharmacy, Faculty of Pharmacy , Mahidol University , Bangkok , Thailand
| | - Amaraporn Wongrakpanich
- a Department of Pharmacy, Faculty of Pharmacy , Mahidol University , Bangkok , Thailand.,b Center of Excellence in Innovative Drug Delivery and Nanomedicine, Faculty of Pharmacy , Mahidol University , Bangkok , Thailand
| | - Veerawat Teeranachaideekul
- a Department of Pharmacy, Faculty of Pharmacy , Mahidol University , Bangkok , Thailand.,b Center of Excellence in Innovative Drug Delivery and Nanomedicine, Faculty of Pharmacy , Mahidol University , Bangkok , Thailand
| | - Varaporn Buraphacheep Junyaprasert
- a Department of Pharmacy, Faculty of Pharmacy , Mahidol University , Bangkok , Thailand.,b Center of Excellence in Innovative Drug Delivery and Nanomedicine, Faculty of Pharmacy , Mahidol University , Bangkok , Thailand
| |
Collapse
|
18
|
Quantitative prediction of ionization effect on human skin permeability. Int J Pharm 2017; 522:222-233. [DOI: 10.1016/j.ijpharm.2017.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022]
|
19
|
Ciszek A. Variability of skin pH after the use of different collagen gels. J Cosmet Dermatol 2017; 16:531-536. [DOI: 10.1111/jocd.12303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Agnieszka Ciszek
- Department of Physiotherapy and Occupational Therapy; University of Physical Education in Wroclaw; Wroclaw Poland
| |
Collapse
|