Patel MV, Fox JL, Higuchi WI. Effect of acid type on kinetics and mechanism of dental enamel demineralization.
J Dent Res 1987;
66:1425-30. [PMID:
3040833 DOI:
10.1177/00220345870660090301]
[Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The influence of acid type (pKa effects) of weak organic acid buffers on dissolution kinetics of dental enamel was critically examined for rigorous testing of the behavioral validity of the physical model of Patel et al. (1987). Quantitative evaluation of this model indicated that monitoring initial dissolution rates was a viable approach to critical testing of the model. Initial dissolution rates were determined in 0.1 mol/L acetate (pKa = 4.77), benzoate (pKa = 4.20), and salicylate (pKa = 2.98) buffers (pH = 4.50, mu = 0.50), with ground bovine enamel blocks of known surface area mounted in a rotating disk apparatus. The Levich theory was used to study dependence of dissolution rates on stirring rates in these buffers. The experimental data were analyzed by the physical model which includes pKa effects, complexation of the buffer anion with the other ions, surface kinetics, simultaneous diffusion and equilibrium of all species in enamel pores, diffusion layer thickness, and bulk solution composition. The KIAP (formula: see text) governing the dissolution reaction and the surface resistance factor were deduced from the model. Dissolution kinetics was also followed in these buffers in the presence of calcium or phosphate common ions. In effect, by conducting both the stirring rate studies and common ion experiments, we derived the driving force function independently by these two techniques. The results obtained in this study were consistent with the model, indicating that pKa effects on the dissolution of dental enamel can be accounted for quantitatively by the model, and it was found that weak acids do not influence either the apparent solubility or the surface reaction process of bovine dental enamel.
Collapse