1
|
Wang T, Jiang J, Liu K, Wang S, Xu T, Niu P, Ma J, Yin J, Liu T. Simultaneous bond-selective deuterium-based isotopic labeling sensing with disposable ultra-miniature CARS fiber probe. OPTICS EXPRESS 2023; 31:40717-40729. [PMID: 38041364 DOI: 10.1364/oe.505939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/02/2023] [Indexed: 12/03/2023]
Abstract
Deuterium-based isotopic labeling is an important technique for tracking cellular metabolism with the Raman signals analysis of low-wavenumber (LW) C-D bonds and high-wavenumber (HW) C-H bonds. We propose and demonstrate a disposable ultra-miniature fiber probe to detect LW and HW coherent anti-Stokes Raman scattering (CARS) spectra for deuterated compounds simultaneously and bond-selectively sensing. The 10.78 µm diameter disposable fiber probe, comprised of focusing taper as fiber probe head and time-domain walk-off eliminating fiber section with designed length, realizes wide-frequency-interval dual Stokes pulse delivering and focusing. The fiber probe enables quantitative concentration determination with resolution down to 11 mM. The chemical vibration modes of LW region C-D bonds and HW region C-H bonds of the mixture samples of organic compounds and their deuterated counterparts in a simulated cell are simultaneously excited and characterized. The CARS disposable fiber probe introduces a promising handle for in vivo biochemical detection based on isotopic labeling sensing.
Collapse
|
2
|
Imai R, Kano H. Label-free enzymatic reaction monitoring in water-in-oil microdroplets using ultra-broadband multiplex coherent anti-Stokes Raman scattering spectroscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:1506-1515. [PMID: 35414981 PMCID: PMC8973173 DOI: 10.1364/boe.449914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
We propose a system for monitoring an enzymatic reaction, i.e., dehydrogenation of ethanol catalyzed by alcohol dehydrogenase, in microdroplets using ultra-broadband multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy. The reaction solution was encapsulated in water-in-oil microdroplets with diameters of 50 µm. The reaction was monitored by measuring the concentration of coenzymes from the CARS spectrum obtained in one-second exposure time. The results obtained using our system was consistent with those of the conventional fluorescence measurement system and indicate the potential of CARS spectroscopy for droplet-based high-throughput screening of enzymes.
Collapse
Affiliation(s)
- Ryo Imai
- Center for Technology Innovation - Healthcare, Research & Development Group, Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji, Tokyo 185-8601, Japan
| | - Hideaki Kano
- Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
3
|
Boorman D, Pope I, Masia F, Langbein W, Hood S, Borri P, Watson P. Hyperspectral CARS microscopy and quantitative unsupervised analysis of deuterated and non-deuterated fatty acid storage in human cells. J Chem Phys 2021; 155:224202. [PMID: 34911324 DOI: 10.1063/5.0065950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Coherent anti-Stokes Raman scattering (CARS) implemented as a vibrational micro-spectroscopy modality eradicates the need for potentially perturbative fluorescent labeling while still providing high-resolution, chemically specific images of biological samples. Isotopic substitution of hydrogen atoms with deuterium introduces minimal change to molecular structures and can be coupled with CARS microscopy to increase chemical contrast. Here, we investigate HeLa cells incubated with non-deuterated or deuterium-labeled fatty acids, using an in-house-developed hyperspectral CARS microscope coupled with an unsupervised quantitative data analysis algorithm, to retrieve Raman susceptibility spectra and concentration maps of chemical components in physically meaningful units. We demonstrate that our unsupervised analysis retrieves the susceptibility spectra of the specific fatty acids, both deuterated and non-deuterated, in good agreement with reference Raman spectra measured in pure lipids. Our analysis, using the cell-silent spectral region, achieved excellent chemical specificity despite having no prior knowledge and considering the complex intracellular environment inside cells. The quantitative capabilities of the analysis allowed us to measure the concentration of deuterated and non-deuterated fatty acids stored within cytosolic lipid droplets over a 24 h period. Finally, we explored the potential use of deuterium-labeled lipid droplets for non-invasive cell tracking, demonstrating an effective application of the technique for distinguishing between cells in a mixed population over a 16 h period. These results further demonstrate the chemically specific capabilities of hyperspectral CARS microscopy to characterize and distinguish specific lipid types inside cells using an unbiased quantitative data analysis methodology.
Collapse
Affiliation(s)
- Dale Boorman
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Iestyn Pope
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Francesco Masia
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Wolfgang Langbein
- School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, United Kingdom
| | - Steve Hood
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - Paola Borri
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Peter Watson
- School of Biosciences, Sir Martin Evans Building, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| |
Collapse
|