1
|
Tóth B, Berek L, Gulácsi L, Péntek M, Zrubka Z. Automation of systematic reviews of biomedical literature: a scoping review of studies indexed in PubMed. Syst Rev 2024; 13:174. [PMID: 38978132 PMCID: PMC11229257 DOI: 10.1186/s13643-024-02592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The demand for high-quality systematic literature reviews (SRs) for evidence-based medical decision-making is growing. SRs are costly and require the scarce resource of highly skilled reviewers. Automation technology has been proposed to save workload and expedite the SR workflow. We aimed to provide a comprehensive overview of SR automation studies indexed in PubMed, focusing on the applicability of these technologies in real world practice. METHODS In November 2022, we extracted, combined, and ran an integrated PubMed search for SRs on SR automation. Full-text English peer-reviewed articles were included if they reported studies on SR automation methods (SSAM), or automated SRs (ASR). Bibliographic analyses and knowledge-discovery studies were excluded. Record screening was performed by single reviewers, and the selection of full text papers was performed in duplicate. We summarized the publication details, automated review stages, automation goals, applied tools, data sources, methods, results, and Google Scholar citations of SR automation studies. RESULTS From 5321 records screened by title and abstract, we included 123 full text articles, of which 108 were SSAM and 15 ASR. Automation was applied for search (19/123, 15.4%), record screening (89/123, 72.4%), full-text selection (6/123, 4.9%), data extraction (13/123, 10.6%), risk of bias assessment (9/123, 7.3%), evidence synthesis (2/123, 1.6%), assessment of evidence quality (2/123, 1.6%), and reporting (2/123, 1.6%). Multiple SR stages were automated by 11 (8.9%) studies. The performance of automated record screening varied largely across SR topics. In published ASR, we found examples of automated search, record screening, full-text selection, and data extraction. In some ASRs, automation fully complemented manual reviews to increase sensitivity rather than to save workload. Reporting of automation details was often incomplete in ASRs. CONCLUSIONS Automation techniques are being developed for all SR stages, but with limited real-world adoption. Most SR automation tools target single SR stages, with modest time savings for the entire SR process and varying sensitivity and specificity across studies. Therefore, the real-world benefits of SR automation remain uncertain. Standardizing the terminology, reporting, and metrics of study reports could enhance the adoption of SR automation techniques in real-world practice.
Collapse
Affiliation(s)
- Barbara Tóth
- Doctoral School of Innovation Management, Óbuda University, Bécsi út 96/B, Budapest, 1034, Hungary
| | - László Berek
- Doctoral School for Safety and Security, Óbuda University, Bécsi út 96/B, Budapest, 1034, Hungary
- University Library, Óbuda University, Bécsi út 96/B, Budapest, 1034, Hungary
| | - László Gulácsi
- HECON Health Economics Research Center, University Research, and Innovation Center, Óbuda University, Bécsi út 96/B, Budapest, 1034, Hungary
| | - Márta Péntek
- HECON Health Economics Research Center, University Research, and Innovation Center, Óbuda University, Bécsi út 96/B, Budapest, 1034, Hungary
| | - Zsombor Zrubka
- HECON Health Economics Research Center, University Research, and Innovation Center, Óbuda University, Bécsi út 96/B, Budapest, 1034, Hungary.
| |
Collapse
|
2
|
Guo Q, Jiang G, Zhao Q, Long Y, Feng K, Gu X, Xu Y, Li Z, Huang J, Du L. Rapid review: A review of methods and recommendations based on current evidence. J Evid Based Med 2024; 17:434-453. [PMID: 38512942 DOI: 10.1111/jebm.12594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Rapid review (RR) could accelerate the traditional systematic review (SR) process by simplifying or omitting steps using various shortcuts. With the increasing popularity of RR, numerous shortcuts had emerged, but there was no consensus on how to choose the most appropriate ones. This study conducted a literature search in PubMed from inception to December 21, 2023, using terms such as "rapid review" "rapid assessment" "rapid systematic review" and "rapid evaluation". We also scanned the reference lists and performed citation tracking of included impact studies to obtain more included studies. We conducted a narrative synthesis of all RR approaches, shortcuts and studies assessing their effectiveness at each stage of RRs. Based on the current evidence, we provided recommendations on utilizing certain shortcuts in RRs. Ultimately, we identified 185 studies focusing on summarizing RR approaches and shortcuts, or evaluating their impact. There was relatively sufficient evidence to support the use of the following shortcuts in RRs: limiting studies to those published in English-language; conducting abbreviated database searches (e.g., only searching PubMed/MEDLINE, Embase, and CENTRAL); omitting retrieval of grey literature; restricting the search timeframe to the recent 20 years for medical intervention and the recent 15 years for reviewing diagnostic test accuracy; conducting a single screening by an experienced screener. To some extent, the above shortcuts were also applicable to SRs. This study provided a reference for future RR researchers in selecting shortcuts, and it also presented a potential research topic for methodologists.
Collapse
Affiliation(s)
- Qiong Guo
- Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, P. R. China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Guiyu Jiang
- West China School of Public Health, Sichuan University, Chengdu, P. R. China
| | - Qingwen Zhao
- West China School of Public Health, Sichuan University, Chengdu, P. R. China
| | - Youlin Long
- Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, P. R. China
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Kun Feng
- Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, P. R. China
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Xianlin Gu
- Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, P. R. China
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yihan Xu
- Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, P. R. China
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
- Center for education of medical humanities, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Zhengchi Li
- Center for education of medical humanities, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Jin Huang
- Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Liang Du
- Innovation Institute for Integration of Medicine and Engineering, West China Hospital, Sichuan University, Chengdu, P. R. China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, P. R. China
- Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
3
|
Oliveira Dos Santos Á, Sergio da Silva E, Machado Couto L, Valadares Labanca Reis G, Silva Belo V. The use of artificial intelligence for automating or semi-automating biomedical literature analyses: a scoping review. J Biomed Inform 2023; 142:104389. [PMID: 37187321 DOI: 10.1016/j.jbi.2023.104389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Evidence-based medicine (EBM) is a decision-making process based on the conscious and judicious use of the best available scientific evidence. However, the exponential increase in the amount of information currently available likely exceeds the capacity of human-only analysis. In this context, artificial intelligence (AI) and its branches such as machine learning (ML) can be used to facilitate human efforts in analyzing the literature to foster EBM. The present scoping review aimed to examine the use of AI in the automation of biomedical literature survey and analysis with a view to establishing the state-of-the-art and identifying knowledge gaps. MATERIALS AND METHODS Comprehensive searches of the main databases were performed for articles published up to June 2022 and studies were selected according to inclusion and exclusion criteria. Data were extracted from the included articles and the findings categorized. RESULTS The total number of records retrieved from the databases was 12,145, of which 273 were included in the review. Classification of the studies according to the use of AI in evaluating the biomedical literature revealed three main application groups, namely assembly of scientific evidence (n=127; 47%), mining the biomedical literature (n=112; 41%) and quality analysis (n=34; 12%). Most studies addressed the preparation of systematic reviews, while articles focusing on the development of guidelines and evidence synthesis were the least frequent. The biggest knowledge gap was identified within the quality analysis group, particularly regarding methods and tools that assess the strength of recommendation and consistency of evidence. CONCLUSION Our review shows that, despite significant progress in the automation of biomedical literature surveys and analyses in recent years, intense research is needed to fill knowledge gaps on more difficult aspects of ML, deep learning and natural language processing, and to consolidate the use of automation by end-users (biomedical researchers and healthcare professionals).
Collapse
Affiliation(s)
| | - Eduardo Sergio da Silva
- Federal University of São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil.
| | - Letícia Machado Couto
- Federal University of São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil.
| | | | - Vinícius Silva Belo
- Federal University of São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Muller AE, Berg RC, Meneses-Echavez JF, Ames HMR, Borge TC, Jardim PSJ, Cooper C, Rose CJ. The effect of machine learning tools for evidence synthesis on resource use and time-to-completion: protocol for a retrospective pilot study. Syst Rev 2023; 12:7. [PMID: 36650579 PMCID: PMC9843684 DOI: 10.1186/s13643-023-02171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Machine learning (ML) tools exist that can reduce or replace human activities in repetitive or complex tasks. Yet, ML is underutilized within evidence synthesis, despite the steadily growing rate of primary study publication and the need to periodically update reviews to reflect new evidence. Underutilization may be partially explained by a paucity of evidence on how ML tools can reduce resource use and time-to-completion of reviews. METHODS This protocol describes how we will answer two research questions using a retrospective study design: Is there a difference in resources used to produce reviews using recommended ML versus not using ML, and is there a difference in time-to-completion? We will also compare recommended ML use to non-recommended ML use that merely adds ML use to existing procedures. We will retrospectively include all reviews conducted at our institute from 1 August 2020, corresponding to the commission of the first review in our institute that used ML. CONCLUSION The results of this study will allow us to quantitatively estimate the effect of ML adoption on resource use and time-to-completion, providing our organization and others with better information to make high-level organizational decisions about ML.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chris Cooper
- Bristol Medical School, University of Bristol, Bristol, UK
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | | |
Collapse
|
5
|
Jardim PSJ, Rose CJ, Ames HM, Echavez JFM, Van de Velde S, Muller AE. Automating risk of bias assessment in systematic reviews: a real-time mixed methods comparison of human researchers to a machine learning system. BMC Med Res Methodol 2022; 22:167. [PMID: 35676632 PMCID: PMC9174024 DOI: 10.1186/s12874-022-01649-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Machine learning and automation are increasingly used to make the evidence synthesis process faster and more responsive to policymakers’ needs. In systematic reviews of randomized controlled trials (RCTs), risk of bias assessment is a resource-intensive task that typically requires two trained reviewers. One function of RobotReviewer, an off-the-shelf machine learning system, is an automated risk of bias assessment. Methods We assessed the feasibility of adopting RobotReviewer within a national public health institute using a randomized, real-time, user-centered study. The study included 26 RCTs and six reviewers from two projects examining health and social interventions. We randomized these studies to one of two RobotReviewer platforms. We operationalized feasibility as accuracy, time use, and reviewer acceptability. We measured accuracy by the number of corrections made by human reviewers (either to automated assessments or another human reviewer’s assessments). We explored acceptability through group discussions and individual email responses after presenting the quantitative results. Results Reviewers were equally likely to accept judgment by RobotReviewer as each other’s judgement during the consensus process when measured dichotomously; risk ratio 1.02 (95% CI 0.92 to 1.13; p = 0.33). We were not able to compare time use. The acceptability of the program by researchers was mixed. Less experienced reviewers were generally more positive, and they saw more benefits and were able to use the tool more flexibly. Reviewers positioned human input and human-to-human interaction as superior to even a semi-automation of this process. Conclusion Despite being presented with evidence of RobotReviewer’s equal performance to humans, participating reviewers were not interested in modifying standard procedures to include automation. If further studies confirm equal accuracy and reduced time compared to manual practices, we suggest that the benefits of RobotReviewer may support its future implementation as one of two assessors, despite reviewer ambivalence. Future research should study barriers to adopting automated tools and how highly educated and experienced researchers can adapt to a job market that is increasingly challenged by new technologies. Supplementary Information The online version contains supplementary material available at 10.1186/s12874-022-01649-y.
Collapse
Affiliation(s)
| | - Christopher James Rose
- Division for Health Services, Norwegian Institute of Public Health, Postboks 222 Skøyen, 0213, Oslo, Norway
| | - Heather Melanie Ames
- Division for Health Services, Norwegian Institute of Public Health, Postboks 222 Skøyen, 0213, Oslo, Norway
| | - Jose Francisco Meneses Echavez
- Division for Health Services, Norwegian Institute of Public Health, Postboks 222 Skøyen, 0213, Oslo, Norway.,Facultad de Cultura Física, Deporte y Recreación, Cra. 9 #51-11, Bogotá, Colombia
| | - Stijn Van de Velde
- Division for Health Services, Norwegian Institute of Public Health, Postboks 222 Skøyen, 0213, Oslo, Norway
| | - Ashley Elizabeth Muller
- Division for Health Services, Norwegian Institute of Public Health, Postboks 222 Skøyen, 0213, Oslo, Norway
| |
Collapse
|