1
|
Jia J, Zhang X, Jia X, Duan J, Wu Z, Deng X, Ge J. Lactic acid fermentation improves rehydration and emulsifying properties of spray-dried egg yolk powder. Food Chem 2024; 463:141352. [PMID: 39316903 DOI: 10.1016/j.foodchem.2024.141352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
In this study, we investigated the protein structures, powder characteristics, as well as rehydration and emulsifying properties of spray-dried egg yolk powder after short-time lactic acid fermentation (3.5 h). Results indicate that fermentation improved the rehydration and emulsifying properties of yolk powder. Limosilactobacillus reuteri-fermented yolk powder exhibited better wettability due to the porous structure of particles and higher hydrophilicity. Lacticaseibacillus rhamnosus-fermented yolk powder had an enhanced coefficient of stability due to its smaller particles and higher surface charge. The higher water solubility of fermented yolk powder samples is mainly attributed to their lower hydrophobicity and higher zeta potential. The enhanced emulsifying activity of fermented yolk powder samples is primarily related to their increased β-turn structure and better solubility. Furthermore, fermentation treatment altered powder moisture content and bulk densities, while not affecting its flow behavior and thermal stability. This study provides an effective approach to improving the quality of yolk powder.
Collapse
Affiliation(s)
- Jie Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xixi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xin Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Jiayi Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Ziyan Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xiaofan Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Junlin Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
2
|
Zhang ZH, Zhang GY, Huang JR, Ge AY, Zhou DY, Tang Y, Xu XB, Song L. Microfluidized hemp protein isolate: an effective stabilizer for high-internal-phase emulsions with improved oxidative stability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1668-1678. [PMID: 37847204 DOI: 10.1002/jsfa.13050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Hemp protein isolates (HPIs), which provide a well-balanced profile of essential amino acids comparable to other high-quality proteins, have recently garnered significant attention. However, the underutilized functional attributes of HPIs have constrained their potential commercial applications within the food and agriculture field. This study advocates the utilization of dynamic-high-pressure-microfluidization (DHPM) for the production of stable high-internal-phase emulsions (HIPEs), offering an efficient approach to fully exploit the potential of HPI resources. RESULTS The findings underscore the effectiveness of DHPM in producing HPI as a stabilizing agent for HIPEs with augmented antioxidant activity. Microfluidized HPI exhibited consistent adsorption and anchoring at the oil-water interface, resulting in the formation of a dense and compact layer. Concurrently, the compression of droplets within HIPEs gave rise to a polyhedral framework, conferring viscoelastic properties and a quasi-solid behavior to the emulsion. Remarkably, HIPEs stabilized by microfluidized HPI demonstrated superior oxidative and storage stability, attributable to the establishment of an antioxidative barrier by microfluidized HPI particles. CONCLUSION This study presents an appealing approach for transforming liquid oils into solid-like fats using HPI particles, all without the need for surfactants. HIPEs stabilized by microfluidized HPI particles hold promise as emerging food ingredients for the development of emulsion-based formulations with enhanced oxidative stability, thereby finding application in the food and agricultural industries. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhi-Hui Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Guang-Yao Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Jia-Rong Huang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ai-Yuan Ge
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Yue Tang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Xian-Bing Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Liang Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
- National Engineering Research Center of Seafood, Dalian, P. R. China
| |
Collapse
|
3
|
Ridella F, Marcet I, Gutiérrez G, Rendueles M, Díaz M. Characterization of Pickering emulsions stabilized by delipidated egg yolk granular protein nanoparticles crosslinked with ultraviolet radiation. Food Chem 2024; 433:137330. [PMID: 37660604 DOI: 10.1016/j.foodchem.2023.137330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/08/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
In this study, delipidated egg yolk proteins were used for the first time to prepare nanoparticles by the self-assembling method at pH 8.0, then treated with UV-C as a crosslinking agent, and their stability tested at pH 7.0, which is a more convenient pH for food applications. According to the results obtained, non-irradiated nanoparticles had a size of 431.8 ± 75.7 nm at pH 7.0, but the 10 min UV-C irradiated nanoparticles had an average size of 139.7 ± 5.9 nm. These nanoparticles also showed a high resistance to destabilization by SDS, urea or DTT and noticeable antioxidant and ferrous chelating activities. Pickering emulsions prepared at the nanoparticle concentration of 1 % (w/w) showed the smallest average droplet size and the lowest Turbiscan stability index value after 80 days of storage. All in all, these results have important implications for the utilisation of these proteins as a conventional Pickering emulsifying agent.
Collapse
Affiliation(s)
- Florencia Ridella
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Ismael Marcet
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| | - Manuel Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
4
|
Microwave and Roasting Impact on Pumpkin Seed Oil and Its Application in Full-Fat Mayonnaise Formula. Foods 2022; 11:foods11182732. [PMID: 36140861 PMCID: PMC9498099 DOI: 10.3390/foods11182732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
In this study, ‘Béjaoui’ Cucurbita maxima seeds variety were exposed to both microwave and roasting prior to oil cold press extraction. In addition, full-fat mayonnaise formula from untreated and treated pumpkin seed oils was prepared and assessed for their physical stabilities and bioactive properties in 28-day storage at 25 ± 1 °C. A mayonnaise sample prepared with unrefined sunflower seed oil served as a control. The results showed that the microwave pretreatment of seeds greatly enhanced the oxidative stability of the pumpkin seed oil, which increased from 3 h 46 min ± 10 min in the untreated sample to 4 h 32 min ± 14 min in the microwave cold press pumpkin seed oil. The sterol content increased from 4735 ± 236.75 mg/kg oil in the untreated cold press pumpkin seed oil to 5989 ± 299.45 mg/kg oil and 7156 ± 357.8 mg/kg in the microwave cold press pumpkin seed oil and the roasted cold press pumpkin seed oil, respectively. The mayonnaise prepared with microwave cold press pumpkin seed oil exhibited the lowest creaming index and was more stable to droplet growth when compared to the other mayonnaise samples. All mayonnaise samples prepared with pumpkin seed oils exhibited higher total phenolic contents and antioxidant activities during storage when compared to the mayonnaise sample prepared with unrefined sunflower seed oil. Among pumpkin seed oil mayonnaise samples, the highest values were, however, observed in the one prepared with microwave cold press pumpkin seed oil. Thanks to its high nutraceuticals, the latter could be confidently regarded as a natural fat substitute for commercial stable vegetable oils mayonnaise type emulsions.
Collapse
|
5
|
Abeyrathne EDNS, Nam KC, Huang X, Ahn DU. Egg yolk lipids: separation, characterization, and utilization. Food Sci Biotechnol 2022; 31:1243-1256. [PMID: 35992319 PMCID: PMC9385935 DOI: 10.1007/s10068-022-01138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Egg yolk contains very high levels of lipids, which comprise 33% of whole egg yolk. Although triglyceride is the main lipid, egg yolk is the richest source of phospholipids and cholesterol in nature. The egg yolk phospholipids have a unique composition with high levels of phosphatidylcholine followed by phosphatidylethanolamine, sphingomyelin, plasmalogen, and phosphatidylinositol. All the egg yolk lipids are embedded inside the HDL and LDL micelles or granular particles. Egg yolk lipids can be easily extracted using solvents or supercritical extraction methods but their commercial applications of egg yolk lipids are limited. Egg yolk lipids have excellent potential as a food ingredient or cosmeceutical, pharmaceutical, and nutraceutical agents because they have excellent functional and biological characteristics. This review summarizes the current knowledge on egg yolk lipids' extraction methods and functions and discusses their current and future use, which will be important to increase the use and value of the egg.
Collapse
Affiliation(s)
- Edirisingha Dewage Nalaka Sandun Abeyrathne
- Department of Animal Science, Uva Wellassa University, Badulla, 90000 Sri Lanka
- Department of Animal Science & Technology, Suncheon National University, Suncheon, 57922 Korea
| | - Ki-Chang Nam
- Department of Animal Science & Technology, Suncheon National University, Suncheon, 57922 Korea
| | - Xi Huang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
6
|
Mayonnaise main ingredients influence on its structure as an emulsion. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2108-2116. [PMID: 35602460 DOI: 10.1007/s13197-021-05133-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/31/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
Mayonnaise has a great potential for research and development. Today, consumers are seeking for healthier and natural food products. Generally, it is a blend of oil, egg, salt, lemon juice or vinegar and texture improvers which make its structure as oil in water emulsion. Each of mentioned ingredients has huge effects on mayonnaise emulsion quality. This paper presents information about how these components can change the mayonnaise rheological, stability and sensory attributes.
Collapse
|
7
|
Mi S, Xia M, Zhang X, Liu J, Cai Z. Formation of Natural Egg Yolk Granule Stabilized Pickering High Internal Phase Emulsions by Means of NaCl Ionic Strength and pH Change. Foods 2022; 11:229. [PMID: 35053961 PMCID: PMC8774576 DOI: 10.3390/foods11020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Pickering high internal phase emulsions (HIPEs) are gel-like concentrated emulsions that have the potential to be an alternative to partially hydrogenated oil (PHO). In this study, egg yolk granules (EYGs), natural complexes of protein and lipid isolated from egg yolk, were used as an emulsifier to prepare Pickering HIPEs. Gel-like HIPEs with an oil phase volume fraction of 85% and with an emulsifier concentration of only 0.5% could be prepared by using EYGs as an emulsifier. The EYGs were able to form stable HIPEs at NaCl ionic strengths over 0.2 M and at pH over 5.0 with NaCl ionic strength of 0.3 M. The EYGs, which could stabilize HIPEs, were easily to adsorb and cover the oil-water interface to form emulsion droplets with small particle size. In addition, interacting EYGs in the aqueous phase formed a continuous network structure, and the oil droplets packed closely, exhibiting high elasticity and shear thinning behavior. Furthermore, the formed HIPEs had suitable storage stability with no significant changes in appearance and microstructure after storage for 60 days. This work can transform traditional oils from liquid-like to solid-like by using EYGs to enrich food processing diversity and improve the storage stability of oils while reducing the intake of PHO and providing a healthier diet for consumers.
Collapse
Affiliation(s)
- Sijie Mi
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (M.X.); (X.Z.)
| | - Minquan Xia
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (M.X.); (X.Z.)
| | - Xinyue Zhang
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (M.X.); (X.Z.)
| | - Jihong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (M.X.); (X.Z.)
| |
Collapse
|
8
|
Marcet I, Sáez-Orviz S, Rendueles M, Díaz M. Egg yolk granules and phosvitin. Recent advances in food technology and applications. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Novel Pickering High Internal Phase Emulsion Stabilized by Food Waste-Hen Egg Chalaza. Foods 2021; 10:foods10030599. [PMID: 33809138 PMCID: PMC7998105 DOI: 10.3390/foods10030599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/29/2022] Open
Abstract
A massive amount of chalaza with nearly 400 metric tons is produced annually as waste in the liquid-egg industry. The present study aimed to look for ways to utilize chalaza as a natural emulsifier for high internal phase emulsions (HIPEs) at the optimal production conditions to expand the utilization of such abundant material. To the author’s knowledge, for the first time, we report the usage of hen egg chalaza particles as particulate emulsifiers for Pickering (HIPEs) development. The chalaza particles with partial wettability were fabricated at different pH or ionic strengths by freeze-drying. The surface electricity of the chalaza particles was neutralized when the pH was adjusted to 4, where the chalaza contained a particle size around 1500 nm and held the best capability to stabilize the emulsions. Similarly, the chalaza reaches proper electrical charging (−6 mv) and size (700 nm) after the ionic strength was modified to 0.6 M. Following the characterization of chalaza particles, we successfully generated stable Pickering HIPEs with up to 86% internal phase at proper particle concentrations (0.5–2%). The emulsion contained significant stability against coalescence and flocculation during long term storage due to the electrical hindrance raised by the chalaza particles which absorbed on the oil–water interfaces. Different rheological models were tested on the formed HIPEs, indicating the outstanding stability of such emulsions. Concomitantly, a percolating 3D-network was formed in the Pickering HIPES stabilized by chalaza which provided the emulsions with viscoelastic and self-standing features. Moreover, the current study provides an attractive strategy to convert liquid oils to viscoelastic soft solids without artificial trans fats.
Collapse
|
10
|
Efficacy of a Glass Membrane Emulsification Device to Form Mixture of Cisplatin Powder with Lipiodol on Transarterial Therapy for Hepatocellular Carcinoma. Cardiovasc Intervent Radiol 2021; 44:766-773. [PMID: 33415417 DOI: 10.1007/s00270-020-02757-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To examine physiochemical characteristics and drug release properties of cisplatin powder and lipiodol mixtures formed by a glass membrane emulsification device compared with a 3-way stopcock. MATERIALS AND METHODS Seven different types of mixtures were evaluated: cisplatin powder and lipiodol directly mixed (suspension), complete cisplatin solution and lipiodol mixed by a 3-way stopcock or the device (emulsion), incomplete cisplatin solution and lipiodol mixed by a 3-way stopcock or the device (solid-in-water emulsion), and contrast material and cisplatin suspension mixed by a 3-way stopcock or the device (solid-in-oil emulsion). RESULT The percentages of water-in-oil were 98.08 ± 0.27% in the emulsion formed by the device, while 70.3 ± 4.63% in the emulsion formed by a 3-way stopcock (P = 0.037). Solid-in-water and solid-in-oil emulsions formed by the device showed 98.09 ± 0.38% and 98.70 ± 0.40% of water-in-oil, respectively, whereas both solid-in-water and solid-in-oil emulsions formed by a 3-way stopcock showed 0.00%. Homogenous droplet sizes were shown by using the device. The half release times of cisplatin in the emulsions formed by the device were 197 ± 19, 244 ± 24 and 478 ± 52 min, respectively, which were significantly longer than the emulsion formed by a 3-way stopcock of 8 ± 8 min (P = 0.046-0.050). Suspension showed the longest release time; however, the viscosity was lowest. CONCLUSION The glass membrane emulsification device formed almost 100% water-in-oil, whereas 3-way stopcock produced 100% oil-in-water when incomplete solution or suspension was mixed. Slower cisplatin release was shown in the emulsions formed by the device.
Collapse
|
11
|
Tian L, Hu S, Jia J, Tan W, Yang L, Zhang Q, Liu X, Duan X. Effects of short-term fermentation with lactic acid bacteria on the characterization, rheological and emulsifying properties of egg yolk. Food Chem 2020; 341:128163. [PMID: 33035853 DOI: 10.1016/j.foodchem.2020.128163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/07/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Lactic acid bacteria fermentation is a safe and green technology that can modify the function of food ingredients (including proteins). In this article, egg yolks were subjected to fermentation with commercial lactic acid bacteria for 0, 3, 6 and 9 h, respectively. After fermentation treatment, the microbial composition has changed obviously (Streptococcus thermophilus increased significantly). The free sulfhydryl group (SH) contents and surface hydrophobicity of egg yolk proteins were significantly reduced. The rheological results indicated that the treated egg yolks possessed a decreased apparent viscosity. Correspondingly, the emulsifying activity of egg yolk was enhanced from 9.07 to 19.55, 23.40 and 24.61 m2/g for 3, 6 and 9 h of fermentation, respectively. And the emulsifying stability reached the maximum after 3 h of fermentation. This study investigated the relationship between structure and properties of yolk proteins, and showed that lactic acid fermentation endued egg yolk with better emulsifying properties.
Collapse
Affiliation(s)
- Liangjie Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Shuting Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Jie Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Wen Tan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Lu Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Qinjun Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|