1
|
Shen J, Huang W, You Y, Zhan J. Controlling strategies of methanol generation in fermented fruit wine: Pathways, advances, and applications. Compr Rev Food Sci Food Saf 2024; 23:e70048. [PMID: 39495577 DOI: 10.1111/1541-4337.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
Methanol is widely existed in fermented fruit wines (FFWs), and the concentration is excessive at times due to inappropriate fermentation conditions. Methanol is neurotoxic, and its metabolites of formaldehyde and formic acid can cause organic lesions and central respiratory system disorders. FFWs with unspecified methanol limits are often produced with reference to grape wine standards (250/400 mg/L). To clarify the causes of methanol production in FFWs and minimize the methanol content, this study summarizes the current process methods commonly applied for methanol reduction in FFWs and proposes novel potential controlling strategies from the perspective of raw materials (pectin, pectinase, and yeast), which are mainly the low esterification modification and removal of pectin, passivation of the pectinase activity, and the gene editing of yeast to target the secretion of pectinases and modulation of the glycine metabolic pathway. The modified raw materials combined with optimized fermentation processes will hopefully be able to improve the current situation of high methanol content in FFWs. Methanol detection technologies have been outlined and combined with machine learning that will potentially guide the production of low-methanol FFWs and the setting of methanol limits for specific FFW.
Collapse
Affiliation(s)
- Ju Shen
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Kim M, Yoon K, Lee S, Shin MS, Kim KG. Development of an Artificial Soft Solid Gel Using Gelatin Material for High-Quality Ultrasound Diagnosis. Diagnostics (Basel) 2024; 14:335. [PMID: 38337851 PMCID: PMC10855452 DOI: 10.3390/diagnostics14030335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
For ultrasound diagnosis, a gel is applied to the skin. Ultrasound gel serves to block air exposure and match impedance between the skin and the probe, enhancing imaging efficiency. However, if use of the ultrasound gel exceeds a certain period of time, it may dry out and be exposed to air, causing impedance mismatch and reducing imaging resolution. In such cases, the use of a soft, solid gel proves advantageous, as it can be employed for an extended period without succumbing to the drying phenomenon and can be reused after disinfection. Its soft consistency ensures excellent skin adhesion. Our soft solid gel demonstrated approximately 1.2 times better performance than water, silicone, and traditional ultrasound gels. When comparing the dimensions of grayscale, dead zone, vertical, and horizontal regions, the measurements for the traditional ultrasound gel were 93.79 mm, 45.32 mm, 103.13 mm, 83.86 mm, and 83.86 mm, respectively. In contrast, the proposed soft solid gel exhibited dimensions of 105.64 mm, 34.48 mm, 141.1 mm, and 102.8 mm.
Collapse
Affiliation(s)
- Minchan Kim
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
| | - Kicheol Yoon
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
- Premedicine Course, College of Medicine, Gachon University, 38-13, 3 Beon-gil, Dokjom-ro 3, Namdong-gu, Incheon 21565, Republic of Korea
| | - Sangyun Lee
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
- Department of Health and Safety Convergence Sciences & Health and Environmental Convergence Sciences, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Mi-Seung Shin
- Division of Cardiology, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, 21 Namdong-daero 774 Beon-gil, Namdong-gu, Incheon 21565, Republic of Korea
| | - Kwang Gi Kim
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 Beon-gil, Namdong-daero, Namdong-gu, Incheon 21565, Republic of Korea; (M.K.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science, Gachon University, 191 Hambak-moero, Yeonsu-gu, Incheon 21936, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 38-13, 3 Beon-gil, Dokjom-ro, Namdong-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
3
|
Kabawa B, Sampers I, Raes K. Effect of ultrasonic treatment on enzymes: Decoupling the relation between the ultrasonic driven conformational change and enzyme activity. ULTRASONICS SONOCHEMISTRY 2023; 101:106720. [PMID: 38086126 PMCID: PMC10733687 DOI: 10.1016/j.ultsonch.2023.106720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
Considering the growing interest in enzyme-based extraction technology as a safe and eco-friendly extraction technique, along with the relatively high cost associated with enzymatic applications, it became necessary to explore novel strategies aimed to improve enzyme activity. In this study, the impact of ultrasonic treatment on commercial cellulase and pectinase was investigated. As this effect may be influenced by various ultrasonic and enzyme-related parameters, changes in enzyme conformation were explored under optimal and non-optimal enzyme conditions. The intrinsic fluorescence spectrum was utilized as a tool for monitoring these changes. Additionally, the enzyme's catalytic potential was also assessed under the same conditions. Results indicated that the impact of ultrasonic treatment on enzyme conformation primarily depends on the total ultrasonic energy delivered to the system, rather than other ultrasonic parameters such as power, sample volume, treatment time, or duty cycle. The maximum relative decrease in intrinsic fluorescence intensity of Pectinex® Ultra Clear (PUC) and Pectinex® Ultra SPL (PUS) after ultrasonic treatment was approximately 51% and 55%, respectively, while the decrease induced by thermal denaturation was 25% and 30% respectively. Furthermore, a blue shift in the fluorescence spectrum of both pectinases was observed upon sonication for all process conditions indicating a change in enzyme conformation. However, ultrasonic treatment did not result in a significant change in enzyme activity, suggesting that these conformational adjustments may occur in regions other than the active sites. Moreover, ultrasonicated pectinases and cellulases did not exhibit any improvement in their catalytic potential under either optimal or non-optimal conditions.
Collapse
Affiliation(s)
- Bashar Kabawa
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| | - Imca Sampers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| |
Collapse
|
4
|
Ma X, Liu D, Hou F. Sono-activation of food enzymes: From principles to practice. Compr Rev Food Sci Food Saf 2023; 22:1184-1225. [PMID: 36710650 DOI: 10.1111/1541-4337.13108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/29/2022] [Accepted: 12/27/2022] [Indexed: 01/31/2023]
Abstract
Over the last decade, sono-activation of enzymes as an emerging research area has received considerable attention from food researchers. This kind of relatively new application of ultrasound has demonstrated promising potential in facilitating the modern food industry by broadening the application of various food enzymes, improving relevant industrial unit operation and productivity, as well as increasing the yield of target products. This review aims to provide insight into the fundamental principles and possible industrialization strategies of the sono-activation of food enzymes to facilitate its commercialization. This review first provides an overview of ultrasound application in the activation of food protease, carbohydrase, and lipase. Then, the recent development on ultrasound activation of food enzymes is discussed on aspects including mechanisms, influencing factors, modification effects, and its applications in real food systems for free and immobilized enzymes. Despite the far fewer studies on sono-activation of immobilized enzymes compared with those on free enzymes, we endeavored to summarize the relevant aspects in three stages: ultrasound pretreatment of free enzyme/carrier, assistance in immobilization process, and modification of the already immobilized enzyme. Lastly, challenges for the scalability of ultrasound in these target areas are discussed and future research prospects are proposed.
Collapse
Affiliation(s)
- Xiaobin Ma
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou, China
- Fuli Institute of Food Science, Zhejiang University, Hangzhou, China
| | - Furong Hou
- Key Laboratory of Novel Food Resources Processing, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Ministry of Agriculture and Rural Affairs, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
5
|
Yin H, Jiang Y, Zhou X, Zhong Y, Wang D, Deng Y, Xue H. Effect of radio frequency, ultrasound, microwave-assisted papain, and alcalase hydrolysis on the structure, antioxidant activity, and peptidomic profile of Rosa roxburghii Tratt. seed protein. J Food Sci 2022; 87:4040-4055. [PMID: 35942684 DOI: 10.1111/1750-3841.16266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/05/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
Traditional enzymatic hydrolysis methods have defects such as low efficiency and poor bioactivity in the production of active peptides. In this study, radio frequency (RF) technology was innovatively used to assist the hydrolysis of Rosa roxburghii Tratt. seed protein (RTSP) by papain and alcalase. RF-assisted hydrolysis was compared with ultrasound-(US) and microwave (MW)-assisted techniques in terms of the degree of hydrolysis, structure, antioxidant properties, and changes in the peptidome of the hydrolysates to clarify the mechanism of functional change of physically-assisted hydrolysate. All three methods improved hydrolysis efficiency. The degree of hydrolysis (DH) of papain group increased from 6.38% to 7.97%, 9.97% and 8.37% after US-, MW- and RF-assisted hydrolysis, respectively, while the DH of alcalase-treated group increased from 21.13% to 25.66%, 26.03%, and 23.01%, respectively. The in vitro antioxidant capacity and intracellular antioxidant capacity of RTSP and its hydrolysates were measured and evaluated by fuzzy statistical evaluation, and MW-assisted alcalase hydrolysis had the highest in vitro and intracellular antioxidant activity scores of 0.713 and 0.820, respectively. Fourier transform infrared and amino acid composition analysis explained the enhanced antioxidant properties of the hydrolysates. Further peptide profiling showed the physical assistance led to an increase in the species and contents of small molecule antioxidant peptides compared to enzyme treatment alone. Pearson's linear correlation analysis showed that AY, LY, IY, PHW, SVL, LHL, YYV, VYY, and NHAV were significantly correlated with the antioxidant properties of hydrolysates. Our data suggested that physical assistance such as US, MW, and RF were effective to improve the efficiency of enzymatic hydrolysis and produce novel antioxidant peptides. PRACTICAL APPLICATION: In this study, it was found that electromagnetic wave-assisted enzymatic hydrolysis could improve the efficiency of hydrolysis and enhance the antioxidant activity of hydrolysates compared to unassisted means. Compared with MW treatment, RF has the comparable hydrolysis effect, but has the advantages of high penetration ability, good uniformity, and low energy consumption and has greater potential for the production of bioactive peptides.
Collapse
Affiliation(s)
- Hao Yin
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yongli Jiang
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuefu Zhou
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhong
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Danfeng Wang
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Deng
- Bor Luh Food Safety Center, Department of Food Science & Technology, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Xue
- Guizhou Xinyang Agricultural Science and Technology Development Co. Ltd, Guizhou, P. R. China
| |
Collapse
|
6
|
Abedi E, Sayadi M, Pourmohammadi K. Effect of freezing-thawing pre-treatment on enzymatic modification of corn and potato starch treated with activated α-amylase: Investigation of functional properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Larsen LR, van der Weem J, Caspers-Weiffenbach R, Schieber A, Weber F. Effects of ultrasound on the enzymatic degradation of pectin. ULTRASONICS SONOCHEMISTRY 2021; 72:105465. [PMID: 33497958 PMCID: PMC7838710 DOI: 10.1016/j.ultsonch.2021.105465] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 05/09/2023]
Abstract
Ultrasound-assisted enzymatic maceration (UAEM) has gained considerable interest in the fruit juice industry, owing to its potential to increase juice yield and content of polyphenols while simultaneously saving time and energy. In this study, the effects of UAEM (ultrasonic probe, 20 kHz, 21 W*cm-2 and 33 W*cm-2) on pectin degradation in a continuous circulation system were investigated over 60 and 90 min. Main pectinolytic enzymes activities of (polygalacturonase, pectin lyase and pectin methylesterase) of a commercial enzyme preparation were examined for individual synergistic effects with US. Pectin hydrolysis by UAEM differed significantly compared to treatment with ultrasound or enzymes alone regarding the profile of degradation products compared to treatment with ultrasound or enzymes alone. Ultrasound fragmented pectin to less branched oligomers of medium molecular weight (Mp approx. 150 kDa), which were further degraded by pectinolytic activities. The low molecular weight fraction (<30 kDa), which is known to be beneficial for juice-quality by adding nutritional value and stabilizing polyphenols, was enriched in small oligomers of homogalacturonan-derived, rhamnogalacturonan I-derived, and rhamnogalacturonan II-derived residues. Synergistic effects of ultrasound application enhanced the effective activities of polygalacturonase and pectin lyase and even prolonged their performance over 90 min, whereas the effective activity of pectin methylesterase was not affected. Final marker concentrations determined by each enzyme assay revealed a considerable higher total process output after UAEM treatment at reduced temperature (30 °C) comparable to the output after conventional batch maceration at 50 °C. The obtained results demonstrate the high potential of UAEM to produce high-quality juice by controlling pectin degradation while reducing process temperature and equally highlight the matrix and enzyme specific effects of a simultaneous US treatment.
Collapse
Affiliation(s)
- Lena Rebecca Larsen
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich Hirzebruch Allee 7, D-53115 Bonn, Germany
| | - Judith van der Weem
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich Hirzebruch Allee 7, D-53115 Bonn, Germany
| | - Rita Caspers-Weiffenbach
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich Hirzebruch Allee 7, D-53115 Bonn, Germany
| | - Andreas Schieber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich Hirzebruch Allee 7, D-53115 Bonn, Germany
| | - Fabian Weber
- Institute of Nutritional and Food Sciences, Molecular Food Technology, University of Bonn, Friedrich Hirzebruch Allee 7, D-53115 Bonn, Germany.
| |
Collapse
|
8
|
Li P, Sun L, Wang J, Wang Y, Zou Y, Yan Z, Zhang M, Wang D, Xu W. Effects of combined ultrasound and low-temperature short-time heating pretreatment on proteases inactivation and textural quality of meat of yellow-feathered chickens. Food Chem 2021; 355:129645. [PMID: 33799244 DOI: 10.1016/j.foodchem.2021.129645] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/25/2022]
Abstract
This study aimed to investigate the effect of combined ultrasound and low-temperature short-time heating (ULTSTH) (40 kHz, 0.2 W/cm2 at 55 °C for 15 min) as pretreatment on proteases inactivation and textural quality of yellow-feathered chicken (YFC). Results showed ultrasound and low-temperature heating synergistically improved the inactivation of the most important meat proteases, calpain, cathepsin B and total proteases, with kinetics following the first order decay(s). Degradation of meat proteins was effectively reduced by ULTSTH compared to the pretreatment of chilling. Importantly, ULTSTH increased the firmness of breast meat and led to improved texture and microstructure. Lipid and protein oxidation of meat pretreated with ULTSTH were reduced during refrigerated storage period. Additionally, microorganisms in meat were inactivated by ULTSTH, which resulted in an obvious increase in the shelf life of meat. These findings suggested that ULTSTH is promising as an alternative pretreatment to obtain a favorable textural quality of YFC.
Collapse
Affiliation(s)
- Pengpeng Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Liangge Sun
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Jiankang Wang
- School of Food and Biological Engineering, Shanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yuanxin Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ye Zou
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Zheng Yan
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Muhan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Daoying Wang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China.
| | - Weimin Xu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| |
Collapse
|