1
|
Coria-Hinojosa LM, Velásquez-Reyes D, Alcázar-Valle M, Kirchmayr MR, Calva-Estrada S, Gschaedler A, Mojica L, Lugo E. Exploring volatile compounds and microbial dynamics: Kluyveromyces marxianus and Hanseniaspora opuntiae reduce Forastero cocoa fermentation time. Food Res Int 2024; 193:114821. [PMID: 39160038 DOI: 10.1016/j.foodres.2024.114821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 08/21/2024]
Abstract
Traditional cocoa bean fermentation is a spontaneous process and can result in heterogeneous sensory quality. For this reason, yeast-integrated starter cultures may be an option for creating consistent organoleptic profiles. This study proposes the mixture of Hanseniaspora opuntiae and Kluyveromyces marxianus (from non-cocoa fermentation) as starter culture candidates. The microorganisms and volatile compounds were analyzed during the cocoa fermentation process, and the most abundant were correlated with predominant microorganisms. Results showed that Kluyveromyces marxianus, isolated from mezcal fermentation, was identified as the dominant yeast by high-throughput DNA sequencing. A total of 63 volatile compounds identified by HS-SPME-GC-MS were correlated with the more abundant bacteria and yeast using Principal Component Analysis and Agglomerative Hierarchical Clustering. This study demonstrates that yeasts from other fermentative processes can be used as starter cultures in cocoa fermentation and lead to the formation of more aromatic esters, decrease the acetic acid content.
Collapse
Affiliation(s)
- Lizbeth M Coria-Hinojosa
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Dulce Velásquez-Reyes
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Montserrat Alcázar-Valle
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Manuel R Kirchmayr
- Industrial Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Sergio Calva-Estrada
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Anne Gschaedler
- Industrial Biotechnology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Luis Mojica
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico
| | - Eugenia Lugo
- Food Technology Department, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), A.C., Camino Arenero 1227, 45019 El Bajío, Zapopan, Jalisco, Mexico.
| |
Collapse
|
2
|
Llano S, Vaillant F, Santander M, Zorro-González A, González-Orozco CE, Maraval I, Boulanger R, Escobar S. Exploring the Impact of Fermentation Time and Climate on Quality of Cocoa Bean-Derived Chocolate: Sensorial Profile and Volatilome Analysis. Foods 2024; 13:2614. [PMID: 39200541 PMCID: PMC11353615 DOI: 10.3390/foods13162614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The market for fine-flavor cocoa provides significant benefits to farmers. However, identifying the sensory qualities of chocolate under specific environmental conditions and measuring how its chemical compounds may be affected by climate differences and postharvesting practices remain a challenge. This study investigates how fermentation time and agroclimatic conditions in Colombia's fine cocoa-producing region of Arauca influence the sensory profile and volatile compound composition (volatilome) of chocolate derived from cocoa beans. Sensory evaluation was conducted on chocolates fermented for 48, 72, 96, and 120 h, revealing that fermentation time critically affects the development of fine-flavor attributes, particularly fruitiness and nuttiness. The optimal fermentation period to enhance these attributes was identified at 96 h, a duration consistently associated with peak fruitiness under all studied climatic conditions. Analysis of 44 volatile compounds identified several key aroma markers, such as acetoin, 1-methoxy-2-propyl acetate, and various pyrazines, which correlate with desirable sensory attributes. These compounds exhibited varying amounts depending on fermentation time and specific agroclimatic conditions, with a 96 h fermentation yielding chocolates with a higher quantity of volatile compounds associated with preferred attributes. Our findings highlight the complex interaction between fermentation processes and agroclimatic factors in determining cocoa quality, providing new insights into optimizing the flavor profiles of chocolate.
Collapse
Affiliation(s)
- Sandra Llano
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira and La Libertad—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.); (F.V.); (M.S.); (A.Z.-G.); (C.E.G.-O.)
| | - Fabrice Vaillant
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira and La Libertad—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.); (F.V.); (M.S.); (A.Z.-G.); (C.E.G.-O.)
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement—CIRAD, UMR QualiSud, 1, F-34398 Montpellier, France; (I.M.); (R.B.)
- UMR Qualisud, Univ Montpellier, CIRAD, Université d’Avignon, Université de la Réunion, Montpellier SupAgro, F-34000 Montpellier, France
| | - Margareth Santander
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira and La Libertad—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.); (F.V.); (M.S.); (A.Z.-G.); (C.E.G.-O.)
| | - Andrés Zorro-González
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira and La Libertad—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.); (F.V.); (M.S.); (A.Z.-G.); (C.E.G.-O.)
| | - Carlos E. González-Orozco
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira and La Libertad—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.); (F.V.); (M.S.); (A.Z.-G.); (C.E.G.-O.)
| | - Isabelle Maraval
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement—CIRAD, UMR QualiSud, 1, F-34398 Montpellier, France; (I.M.); (R.B.)
- UMR Qualisud, Univ Montpellier, CIRAD, Université d’Avignon, Université de la Réunion, Montpellier SupAgro, F-34000 Montpellier, France
| | - Renaud Boulanger
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement—CIRAD, UMR QualiSud, 1, F-34398 Montpellier, France; (I.M.); (R.B.)
- UMR Qualisud, Univ Montpellier, CIRAD, Université d’Avignon, Université de la Réunion, Montpellier SupAgro, F-34000 Montpellier, France
| | - Sebastián Escobar
- Corporación Colombiana de Investigación Agropecuaria (Agrosavia), Process & Quality Cocoa Laboratory, Centros de Investigación La Selva, Palmira and La Libertad—Km 14 Mosquera-Bogotá, Mosquera 250047, Colombia; (S.L.); (F.V.); (M.S.); (A.Z.-G.); (C.E.G.-O.)
| |
Collapse
|
3
|
Almeida OGG, Pereira MG, Bighetti-Trevisan RL, Santos ES, De Campos EG, Felis GE, Guimarães LHS, Polizeli MLTM, De Martinis BS, De Martinis ECP. Investigating luxS gene expression in lactobacilli along lab-scale cocoa fermentations. Food Microbiol 2024; 119:104429. [PMID: 38225038 DOI: 10.1016/j.fm.2023.104429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 01/17/2024]
Abstract
Previous metagenomic analyses have suggested that lactobacilli present potential for Quorum Sensing (QS) in cocoa fermentation, and in the present research, laboratory scale fermentations were carried out to monitor the expression of luxS, a universal marker of QS. For that, 96 h-fermentations were studied, as follows: F0 (non inoculated control), F1 (inoculated with yeasts, lactic acid bacteria, and acetic acid bacteria), F2 (inoculated with yeasts and acetic acid bacteria), F3 (inoculated with yeasts only). The parameters evaluated were: plate counting, quantification of key enzymes and analysis of volatile organic compounds associated with key sensory descriptors, using headspace gas chromatography-mass spectrometry (GC-MS). Furthermore, QS was estimated by the quantification of the expression of luxS genes by Reverse Transcriptase Real-Time PCR. The results demonstrated that microbial succession occurred in pilot scale fermentations, but no statistical differences for microbial enumeration and α-diversity index were observed among experiments and control. Moreover, it was not possible to make conclusive correlations of enzymatic profile and fermenting microbiota, likely due to the intrinsic activity of plant hydrolases. Regarding to the expression of luxS genes, in Lactiplantibacillus plantarum they were active along the fermentation, but for Limosilactobacillus fermentum, luxS was expressed only at early and middle phases. Correlation analysis of luxS expression and production of volatile metabolites evidenced a possible negative association of Lp. Plantarum with fermentation quality. In conclusion, these data corroborate former shotgun metagenomic analysis by demonstrating the expression of luxS by lactobacilli in pilot scale cocoa fermentation and evidence Lp. Plantarum is the main lactic acid bacteria related to its expression.
Collapse
Affiliation(s)
- O G G Almeida
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Brazil
| | - M G Pereira
- Universidade Do Estado de Minas Gerais, Unidade Passos, Brazil
| | - R L Bighetti-Trevisan
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Biologia Básica e Oral, Brazil
| | - E S Santos
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Brazil
| | - E G De Campos
- Appalachian State University, Department of Chemistry and Fermentation Sciences, Boone, NC, United States; Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Química, Brazil
| | - G E Felis
- University of Verona, Department of Biotechnology, Verona, Italy
| | - L H S Guimarães
- Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Brazil
| | - M L T M Polizeli
- Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Brazil
| | - B S De Martinis
- Universidade de São Paulo, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Departamento de Química, Brazil
| | - E C P De Martinis
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Brazil.
| |
Collapse
|
4
|
Criollo Nuñez J, Ramirez-Toro C, Bolivar G, Sandoval A AP, Lozano Tovar MD. Effect of microencapsulated inoculum of Pichia kudriavzevii on the fermentation and sensory quality of cacao CCN51 genotype. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2425-2435. [PMID: 36606570 DOI: 10.1002/jsfa.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Microencapsulated yeasts are a novel alternative as a delivery matrix for microbiological starters. This technology aims to protect the active compounds from adverse environmental conditions and prolong their useful life and could also improve the conditions of the starters for cocoa fermentation. The present study established the effective dose to apply the microencapsulated yeast Pichia kudriavzevii as a microbiological starter of fermentation and biotechnological strategy for promoting the biochemical dynamics and sensory expression of the cocoa variety CCN-51. For this, 0.5%, 1%, 2%, and 3% of microencapsulated P. kudriavzevii yeast insolated from the artisanal fermentation process of cocoa was added to the cocoa mass to be fermented and studied on a laboratory scale. RESULTS The partial least squares regression of fermentation was related in four quartiles, comprising the hedonic judgments of the sensory evaluation with the biochemical traits of the cocoa liquor, finding a high correlation between the physicochemical variables total phenols, percentage of insufficiently fermented grains, and percentage of total acidity, with a level of bitterness and defects found in liquors with the addition of 0.5% of microencapsulated starter. The treatments with the addition of 2% and 3% of the inoculum showed a high correlation between the variables pH, total anthocyanins, cocoa, fruity and floral aromas, sweet taste, and general aroma perception. CONCLUSION The higher presence of volatile compounds such as 2,3-butanediol associated with cocoa aroma and 1-phenyl-2-ethanol and acetophenone associated with aromatic descriptors of fruity and floral series allowed establishment in 2% of microencapsulated P. kudriavzevii yeast, comprising the effective dose for promoting the biochemical dynamics of laboratory-scale fermentation and the development of cocoa, as well as the fruity and floral aromas of cocoa CCN-51 liquor. The microencapsulation is suitable for cocoa starters. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jenifer Criollo Nuñez
- Centro de Investigación Nataima, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Tolima, Colombia
- Facultad de Ingeniería, Escuela de Ingeniería de Alimentos, Universidad del Valle, Cali, Colombia
| | - Cristina Ramirez-Toro
- Facultad de Ingeniería, Escuela de Ingeniería de Alimentos, Universidad del Valle, Cali, Colombia
| | - German Bolivar
- Facultad de Ciencias Naturales y Exactas, Biología Marina, Universidad del Valle, Cali, Colombia
| | | | - María D Lozano Tovar
- Centro de Investigación Nataima, Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Tolima, Colombia
| |
Collapse
|
5
|
Díaz-Muñoz C, Van de Voorde D, Tuenter E, Lemarcq V, Van de Walle D, Soares Maio JP, Mencía A, Hernandez CE, Comasio A, Sioriki E, Weckx S, Pieters L, Dewettinck K, De Vuyst L. An in-depth multiphasic analysis of the chocolate production chain, from bean to bar, demonstrates the superiority of Saccharomyces cerevisiae over Hanseniaspora opuntiae as functional starter culture during cocoa fermentation. Food Microbiol 2023; 109:104115. [DOI: 10.1016/j.fm.2022.104115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 10/15/2022]
|
6
|
Díaz-Muñoz C, Verce M, De Vuyst L, Weckx S. Phylogenomics of a Saccharomyces cerevisiae cocoa strain reveals adaptation to a West African fermented food population. iScience 2022; 25:105309. [PMID: 36304120 PMCID: PMC9593892 DOI: 10.1016/j.isci.2022.105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/22/2022] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Various yeast strains have been proposed as candidate starter cultures for cocoa fermentation, especially strains of Saccharomyces cerevisiae. In the current study, the genome of the cocoa strain S. cerevisiae IMDO 050523 was unraveled based on a combination of long- and short-read sequencing. It consisted of 16 nuclear chromosomes and a mitochondrial chromosome, which were organized in 20 contigs, with only two small gaps. A phylogenomic analysis of this genome together with another 105 S cerevisiae genomes, among which 20 from cocoa strains showed a geographical distribution of the latter, including S. cerevisiae IMDO 050523. Its genome clustered together with that of a West African fermented food population, indicating a wider adaptation to West African food niches than cocoa. Furthermore, S. cerevisiae IMDO 050523 contained genetic signatures involved in sucrose hydrolysis, pectin degradation, osmotolerance, and conserved amino acid changes in key ester-producing enzymes that could point toward specific niche adaptations.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium,Corresponding author
| |
Collapse
|
7
|
Yeasts as Producers of Flavor Precursors during Cocoa Bean Fermentation and Their Relevance as Starter Cultures: A Review. FERMENTATION 2022. [DOI: 10.3390/fermentation8070331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the fermentation of cocoa beans, the yeasts produce volatile organic compounds (VOCs). Through reactions associated with amino acid metabolism, yeasts generate important aroma precursors as acetate esters and fatty acid ethyl esters are essential in developing fruity flavors and aromas in the final product (usually chocolate). In addition, some yeasts may have pectinolytic and antifungal activity, which is desirable in the post-harvest process of cocoa. The main yeast species in cocoa fermentation are Saccharomyces cerevisiae, Pichia kudriavzevii, and Hanseniaspora opuntiae. These produce higher alcohols and acetyl-CoA to make acetate–esters, compounds that produce floral and fruity notes. However, there are still controversies in scientific reports because some mention that there are no significant differences in the sensory characteristics of the final product. Others mention that the fermentation of cocoa by yeast has a significant influence on improving the sensory attributes of the final product. However, using yeasts as starter cultures for cocoa bean fermentation is recommended to homogenize sensory attributes such as notes and flavors in chocolate.
Collapse
|
8
|
Ooi TS, Ting ASY, Siow LF. Volatile organic compounds and sensory profile of dark chocolates made with cocoa beans fermented with Pichia kudriavzevii and Hanseniaspora thailandica. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2714-2723. [PMID: 35734109 PMCID: PMC9206966 DOI: 10.1007/s13197-021-05292-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/05/2021] [Accepted: 10/15/2021] [Indexed: 05/27/2023]
Abstract
Volatile organic compounds (VOCs) are important to determine the aroma and sensory perception of cocoa. Starter cultures can modulate the volatile profile of cocoa beans during fermentation. This study aimed to determine the VOCs and sensory of chocolates produced using cocoa beans fermented with yeast starters (Pichia kudriavzevii (MH979681), Hanseniaspora thailandica (MH979675) and the mixture of the two yeasts (Mix)). The VOCs of chocolates were determined by Head-Space Solid Phase Microextraction followed by Gas Chromatography-Mass Spectrophotometry. Sensory analysis was determined by using trained panels. VOCs profiles of chocolates produced using beans fermented with HT, PK or Mix were noticeably different from Ghana and control chocolates (no starter). The addition of yeast starters during cocoa fermentation produced chocolates that were preferred by trained panels. Bitterness and astringency were the more intense flavour attributes in chocolates produced using cocoa beans added with yeast starters. The chocolate produced using cocoa beans fermented with PK was the most acidic; whereas chocolate produced using beans fermented with Mix had the sweetest taste. The addition of PK or HT is helpful in producing chocolate with a distinct flavour.
Collapse
Affiliation(s)
- Teng Sin Ooi
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Lee Fong Siow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| |
Collapse
|
9
|
Díaz-Muñoz C, De Vuyst L. Functional yeast starter cultures for cocoa fermentation. J Appl Microbiol 2021; 133:39-66. [PMID: 34599633 PMCID: PMC9542016 DOI: 10.1111/jam.15312] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023]
Abstract
The quest to develop a performant starter culture mixture to be applied in cocoa fermentation processes started in the 20th century, aiming at achieving high‐quality, reproducible chocolates with improved organoleptic properties. Since then, different yeasts have been proposed as candidate starter cultures, as this microbial group plays a key role during fermentation of the cocoa pulp‐bean mass. Yeast starter culture‐initiated fermentation trials have been performed worldwide through the equatorial zone and the effects of yeast inoculation have been analysed as a function of the cocoa variety (Forastero, Trinitario and hybrids) and fermentation method (farm‐, small‐ and micro‐scale) through the application of physicochemical, microbiological and chemical techniques. A thorough screening of candidate yeast starter culture strains is sometimes done to obtain the best performing strains to steer the cocoa fermentation process and/or to enhance specific features, such as pectinolysis, ethanol production, citrate assimilation and flavour production. Besides their effects during cocoa fermentation, a significant influence of the starter culture mixture applied is often found on the cocoa liquors and/or chocolates produced thereof. Thus, starter culture‐initiated cocoa fermentation processes constitute a suitable strategy to elaborate improved flavourful chocolate products.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|