1
|
Zare T, Fournier-Level A, Ebert B, Roessner U. Chia (Salvia hispanica L.), a functional 'superfood': new insights into its botanical, genetic and nutraceutical characteristics. ANNALS OF BOTANY 2024; 134:725-746. [PMID: 39082745 PMCID: PMC11560377 DOI: 10.1093/aob/mcae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/30/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Chia (Salvia hispanica L.) seeds have become increasingly popular among health-conscious consumers owing to their high content of ω-3 fatty acids, which provide various health benefits. Comprehensive chemical analyses of the fatty acids and proteins in chia seeds have been conducted, revealing their functional properties. Recent studies have confirmed the high ω-3 content of chia seed oil and have hinted at additional functional characteristics. SCOPE This review article aims to provide an overview of the botanical, morphological and biochemical features of chia plants, seeds and seed mucilage. Additionally, we discuss the recent developments in genetic and molecular research on chia, including the latest transcriptomic and functional studies that examine the genes responsible for chia fatty acid biosynthesis. In recent years, research on chia seeds has shifted its focus from studying the physicochemical characteristics and chemical composition of seeds to understanding the metabolic pathways and molecular mechanisms that contribute to their nutritional benefits. This has led to a growing interest in various pharmaceutical, nutraceutical and agricultural applications of chia. In this context, we discuss the latest research on chia and the questions that remain unanswered, and we identify areas that require further exploration. CONCLUSIONS Nutraceutical compounds associated with significant health benefits, including ω-3 polyunsaturated fatty acids, proteins and phenolic compounds with antioxidant activity, have been measured in high quantities in chia seeds. However, comprehensive investigations through both in vitro experiments and in vivo animal and controlled human trials are expected to provide greater clarity on the medicinal, antimicrobial and antifungal effects of chia seeds. The recently published genome of chia and gene-editing technologies, such as CRISPR, facilitate functional studies deciphering molecular mechanisms of biosynthesis and metabolic pathways in this crop. This necessitates development of stable transformation protocols and creation of a publicly available lipid database, mutant collection and large-scale transcriptomic datasets for chia.
Collapse
Affiliation(s)
- Tannaz Zare
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Berit Ebert
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biology and Biotechnology, The Ruhr-University Bochum, 44780 Bochum, Germany
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
2
|
Pinc MM, Dalmagro M, da Cruz Alves Pereira E, Donadel G, Thomaz RT, da Silva C, Macruz PD, Jacomassi E, Gasparotto Junior A, Hoscheid J, Lourenço ELB, Alberton O. Extraction Methods, Chemical Characterization, and In Vitro Biological Activities of Plinia cauliflora (Mart.) Kausel Peels. Pharmaceuticals (Basel) 2023; 16:1173. [PMID: 37631088 PMCID: PMC10459866 DOI: 10.3390/ph16081173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Plinia cauliflora (Mart.) Kausel, popularly known as jabuticaba, possesses bioactive compounds such as flavonoids, tannins, and phenolic acids, known for their antioxidant, antibacterial, wound healing, and cardioprotective effects. Therefore, this study aimed to standardize the P. cauliflora fruit peel extraction method, maximize phenolic constituents, and evaluate their antioxidative and antimicrobial effects. Various extraction methods, including vortex extraction with and without precipitation at 25, 40, and 80 °C, and infusion extraction with and without precipitation, were performed using a completely randomized design. Extraction without precipitation (E - P) showed the highest yield (57.9%). However, the precipitated extraction (E + P) method displayed a yield of 45.9%, higher levels of phenolic derivatives, and enhanced antioxidant capacity. Major compounds, such as D-psicose, D-glucose, and citric acid, were identified through gas chromatography-mass spectrometry (GC-MS) analysis. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) analysis identified citric acid, hexose, flavonoids, tannins, and quercetin as the major compounds in the extracts. Furthermore, the extracts exhibited inhibitory effects against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli bacteria. In conclusion, the E + P method efficiently obtained extracts with high content of bioactive compounds showing antioxidant and antimicrobial capacities with potential application as a dietary supplement.
Collapse
Affiliation(s)
- Mariana Moraes Pinc
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Mariana Dalmagro
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Elton da Cruz Alves Pereira
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Guilherme Donadel
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Renan Tedeski Thomaz
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Camila da Silva
- Department of Technology, State University of Maringá, Umuarama 87506-370, Paraná, Brazil;
| | - Paula Derksen Macruz
- Department of Chemical Engineering, State University of Maringá, Maringá 87020-900, Paraná, Brazil;
| | - Ezilda Jacomassi
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados 79804-970, Mato Grosso do Sul, Brazil;
| | - Jaqueline Hoscheid
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Emerson Luiz Botelho Lourenço
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| | - Odair Alberton
- Laboratory of Preclinical Research of Natural Products, Paranaense University, Umuarama 87502-210, Paraná, Brazil; (M.M.P.); (M.D.); (E.d.C.A.P.); (G.D.); (R.T.T.); (E.J.); (J.H.); (E.L.B.L.)
| |
Collapse
|
3
|
Grauso L, de Falco B, Bochicchio R, Scarpato S, Addesso R, Lanzotti V. Leaf metabolomics and molecular networking of wild type and mutant genotypes of chia (Salvia hispanica L.). PHYTOCHEMISTRY 2023; 209:113611. [PMID: 36804479 DOI: 10.1016/j.phytochem.2023.113611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Salvia hispanica L., commonly named Chia, is a food plant from Central America and Australia, producing seeds whose consumption has been increasing in the last decade. Several articles analysed the seeds metabolite content. However, few is known about Chia leaves. This work is the first report on the whole metabolite profile of chia leaves, determined by spectroscopic methods including NMR, GC-MS and LC-MS coupled with chemometrics analysis. Additionally, molecular networking has been applied to the LC-MS data to determine the flavonoid composition. Different chia sources were compared: one commercial (black) and three early flowering (G3, G8 and G17) mutant genotypes cultivated at two irrigation regimes (50 and 100%). Organic extracts were mainly composed by saturated and mono- and polyunsaturated fatty acids with palmitic being the most abundant followed by oleic and linolenic acids. Aqueous extracts contained glucose, galactose, and fructose as main sugars. Flavonoids were based on vitexin and orientin and their analogues. Chemical composition of early flowering genotypes was quite similar to commercial black chia with the exception of G8 showing significant differences in the polar phase. A generally highest content of omega-9 fatty acids has been found in the early flowering genotypes along with high content of nutraceuticals suggesting them as a potential source of raw materials for the food/feed industry.
Collapse
Affiliation(s)
- Laura Grauso
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, I-80055 Portici, Naples, Italy.
| | - Bruna de Falco
- Canarian Science and Technology Park Foundation, Spanish Bank of Algae, University of Las Palmas de Gran Canaria, 35214, Telde, Spain.
| | - Rocco Bochicchio
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università della Basilicata, viale dell'Ateneo Lucano 10, I-85100 Potenza, Italy.
| | - Silvia Scarpato
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano, 49, 80131, Naples, Italy.
| | - Rosangela Addesso
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università della Basilicata, viale dell'Ateneo Lucano 10, I-85100 Potenza, Italy.
| | - Virginia Lanzotti
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, I-80055 Portici, Naples, Italy.
| |
Collapse
|
4
|
Nahar L, Al-Groshi A, Kumar A, Sarker SD. Arbutin: Occurrence in Plants, and Its Potential as an Anticancer Agent. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248786. [PMID: 36557918 PMCID: PMC9787540 DOI: 10.3390/molecules27248786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Arbutin, a hydroquinone glucoside, has been detected in ca. 50 plant families, especially in the plants of the Asteraceae, Ericaceae, Proteaceae and Rosaceae families. It is one of the most widely used natural skin-whitening agents. In addition to its skin whitening property, arbutin possesses other therapeutically relevant biological properties, e.g., antioxidant, antimicrobial and anti-inflammatory, as well as anticancer potential. This review presents, for the first time, a comprehensive overview of the distribution of arbutin in the plant kingdom and critically appraises its therapeutic potential as an anticancer agent based on the literature published until the end of August 2022, accessed via several databases, e.g., Web of Science, Science Direct, Dictionary of Natural Products, PubMed and Google Scholar. The keywords used in the search were arbutin, cancer, anticancer, distribution and hydroquinone. Published outputs suggest that arbutin has potential anticancer properties against bladder, bone, brain, breast, cervix, colon, liver, prostate and skin cancers and a low level of acute or chronic toxicity.
Collapse
Affiliation(s)
- Lutfun Nahar
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Correspondence: or (L.N.); (S.D.S.)
| | - Afaf Al-Groshi
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
- Faculty of Pharmacy, Tripoli University, Tripoli 42300, Libya
| | - Anil Kumar
- Department of Biotechnology, Government V. Y. T. PG Autonomous College, Durg 491001, Chhattisgarh, India
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
- Correspondence: or (L.N.); (S.D.S.)
| |
Collapse
|
5
|
Lanzotti V, Anzano A, Grauso L, Zotti M, Sacco A, Senatore M, Moreno M, Diano M, Parente M, Esposito S, Termolino P, Palomba E, Zoina A, Mazzoleni S. NMR Metabolomics and Chemometrics of Lettuce, Lactuca sativa L., under Different Foliar Organic Fertilization Treatments. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11162164. [PMID: 36015467 PMCID: PMC9413100 DOI: 10.3390/plants11162164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 06/12/2023]
Abstract
Lettuce plants were grown in a greenhouse affected by the fungal pathogen Fusarium oxysporum to test the effects on plant metabolomics by different organic treatments. Three foliar application treatments were applied: a commercial compost tea made of aerobically fermented plant organic matter, a pure lyophilized microalga Artrospira platensis, commonly named spirulina, and the same microalga previously exposed during its culture to a natural uptake from medium enriched with F. oxysporum fragmented DNA (NAT). The experiment is the first attempt to observe in field conditions, the use and effects of a natural microbial library as a carrier of pathogenic fungal DNA for disease control. Untargeted NMR metabolomics and chemometrics showed that foliar organic application significantly reduced fumaric and formic acids, aromatic amino acids, and nucleosides, while increasing ethanolamine. A strong decrease in phenolic acids and an increase in citric acid and glutamine were specifically observed in the NAT treatment. It is noteworthy that the exposure of a known biostimulant microalga to fungal DNA in its culture medium was sufficient to induce detectable changes in the metabolomic profiles of the fertilized plants. These findings deserve further investigation to assess the potential relevance of the presented approach in the field of crop biostimulation and biocontrol of plant pathogens.
Collapse
Affiliation(s)
- Virginia Lanzotti
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Attilio Anzano
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Laura Grauso
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Maurizio Zotti
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Adriana Sacco
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Mauro Senatore
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Mauro Moreno
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Marcello Diano
- M2M Engineering sas, Business Innovation Center, Science Center, Via Coroglio, 80124 Naples, Italy
| | - Maddalena Parente
- M2M Engineering sas, Business Innovation Center, Science Center, Via Coroglio, 80124 Naples, Italy
| | - Serena Esposito
- M2M Engineering sas, Business Innovation Center, Science Center, Via Coroglio, 80124 Naples, Italy
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Emanuela Palomba
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Astolfo Zoina
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Stefano Mazzoleni
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
6
|
Rodríguez Lara A, Mesa-García MD, Medina KAD, Quirantes Piné R, Casuso RA, Segura Carretero A, Huertas JR. Assessment of the Phytochemical and Nutrimental Composition of Dark Chia Seed ( Salvia hispánica L.). Foods 2021; 10:3001. [PMID: 34945556 PMCID: PMC8702123 DOI: 10.3390/foods10123001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Chia seeds are rich sources of different macro and micronutrients associated with health benefits; thus, they may be considered as a functional food. However, the composition depends on the variety, origin, climate and soil. Here, we show a comprehensive characterization of extractable and non-extractable phenolic compounds of dark chia seed Salvia hispanica L. using high-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight (HPLC-ESI-QTOF) and discuss potential health benefits associated with the presence of a number of nutritional and bioactive compounds. We report that dark chia from Jalisco is a high-fiber food, containing omega-3 polyunsaturated fatty acids, essential amino acids (phenylalanine and tryptophan), and nucleosides (adenosine, guanidine and uridine), and rich in antioxidant phenolic compounds, mainly caffeic acid metabolites. Our data suggest that chia seeds may be used as ingredients for the development of functional foods and dietary supplements.
Collapse
Affiliation(s)
- Avilene Rodríguez Lara
- Department of Physiology, Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Granada, Spain; (A.R.L.); (R.A.C.)
| | - María Dolores Mesa-García
- Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Granada, Spain;
- Ibs.GRANADA, Biosanitary Research Institute of Granada, 18012 Granada, Spain
| | - Karla Alejandra Damián Medina
- University Center of Tonala, University of Guadalajara, Av 555 Ejido San José Tateposco, Nuevo Periferico Oriente, Tonala 45425, Mexico;
| | - Rosa Quirantes Piné
- Technological Centre for Research and Development of Functional Foods, Avenida del Conocimiento, 37, 18100 Granada, Spain; (R.Q.P.); (A.S.C.)
| | - Rafael A. Casuso
- Department of Physiology, Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Granada, Spain; (A.R.L.); (R.A.C.)
| | - Antonio Segura Carretero
- Technological Centre for Research and Development of Functional Foods, Avenida del Conocimiento, 37, 18100 Granada, Spain; (R.Q.P.); (A.S.C.)
| | - Jesús Rodríguez Huertas
- Department of Physiology, Biomedical Research Center, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Parque Tecnológico de la Salud, Avenida del Conocimiento s/n, 18100 Granada, Spain; (A.R.L.); (R.A.C.)
| |
Collapse
|