1
|
Wang P, Li Q, Wei J, Zeng S, Sun B, Sun W, Ma P. Germplasm Resources and Metabolite Marker Screening of High-Flavonoid Tartary Buckwheat ( Fagopyrum tataricum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20131-20145. [PMID: 38063436 DOI: 10.1021/acs.jafc.3c06878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Tartary buckwheat is an annual minor cereal crop with a variety of secondary metabolites, endowing it with a high nutritional and medicinal value. Flavonoids constitute the primary compounds of Tartary buckwheat. Recently, metabolomics, as an adjunct breeding method, has been increasingly employed in crop research. This study explores the correlation between the total flavonoid content (TFC) and antioxidant capacity in 167 Tartary buckwheat varieties. Ten Tartary buckwheat varieties with significant differences in flavonoid content and antioxidant capacity were selected by cluster analysis. With the use of liquid chromatography-mass spectrometry, 58 flavonoid compounds were identified, namely, 42 flavonols, 10 flavanols, 3 flavanones, 1 isoflavone, 1 anthocyanidin, and 1 proanthocyanidin. Different samples were clearly separated by employing principal component analysis and partial least-squares discriminant analysis. Eight differential flavonoid compounds were further selected through volcano plots and variable importance in projection. Differential metabolites were highly correlated with TFC and antioxidant capacity. Finally, metabolic markers of kaempferol-3-O-hexoside, kaempferol-7-O-glucoside, and naringenin-O-hexoside were determined by the random forest model. The findings provide a basis for the selection and identification of Tartary buckwheat varieties with high flavonoid content and strong antioxidant activity.
Collapse
Affiliation(s)
- Peng Wang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Qian Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Sijia Zeng
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Boshi Sun
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Pengda Ma
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
2
|
Pipan B, Sinkovič L, Neji M, Janovská D, Zhou M, Meglič V. Agro-Morphological and Molecular Characterization Reveal Deep Insights in Promising Genetic Diversity and Marker-Trait Associations in Fagopyrum esculentum and Fagopyrum tataricum. PLANTS (BASEL, SWITZERLAND) 2023; 12:3321. [PMID: 37765484 PMCID: PMC10534386 DOI: 10.3390/plants12183321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Characterisation of genetic diversity is critical to adequately exploit the potential of germplasm collections and identify important traits for breeding programs and sustainable crop improvement. Here, we characterised the phenotypic and genetic diversity of a global collection of the two cultivated buckwheat species Fagopyrum esculentum and Fagopyrum tataricum (190 and 51 accessions, respectively) using 37 agro-morphological traits and 24 SSR markers. A wide range of variation was observed in both species for most of the traits analysed. The two species differed significantly in most traits, with traits related to seeds and flowering contributing most to differentiation. The accessions of each species were divided into three major phenoclusters with no clear geographic clustering. At the molecular level, the polymorphic SSR markers were highly informative, with an average polymorphic information content (PIC) of over 0.65 in both species. Genetic diversity, as determined by Nei's expected heterozygosity (He), was high (He = 0.77 and He = 0.66, respectively) and differed significantly between species (p = 0.03) but was homogeneously distributed between regions, confirming the lack of genetic structure as determined by clustering approaches. The weak genetic structure revealed by the phenotypic and SSR data and the low fixation indices in both species suggested frequent seed exchange and extensive cultivation and selection. In addition, 93 and 140 significant (p < 0.05) marker-trait associations (MTAs) were identified in both species using a general linear model and a mixed linear model, most of which explained >20% of the phenotypic variation in associated traits. Core collections of 23 and 13 phenotypically and genetically diverse accessions, respectively, were developed for F. esculentum and F. tataricum. Overall, the data analysed provided deep insights into the agro-morphological and genetic diversity and genetic relationships among F. esculentum and F. tataricum accessions and pointed to future directions for genomics-based breeding programs and germplasm management.
Collapse
Affiliation(s)
- Barbara Pipan
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetocva ulica 17, SI-1000 Ljubljana, Slovenia; (L.S.); (M.N.); (V.M.)
| | - Lovro Sinkovič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetocva ulica 17, SI-1000 Ljubljana, Slovenia; (L.S.); (M.N.); (V.M.)
| | - Mohamed Neji
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetocva ulica 17, SI-1000 Ljubljana, Slovenia; (L.S.); (M.N.); (V.M.)
| | - Dagmar Janovská
- Gene Bank, Crop Research Institute, Drnovská 507, 161 06 Prague, Czech Republic;
| | - Meiliang Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Room 420, National Crop Genebank Building, Zhongguancun South Street No. 12, Haidian District, Beijing 100081, China;
| | - Vladimir Meglič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetocva ulica 17, SI-1000 Ljubljana, Slovenia; (L.S.); (M.N.); (V.M.)
| |
Collapse
|
3
|
Li J, Feng S, Zhang Y, Xu L, Luo Y, Yuan Y, Yang Q, Feng B. Genome-wide identification and expression analysis of the plant-specific PLATZ gene family in Tartary buckwheat (Fagopyrum tataricum). BMC PLANT BIOLOGY 2022; 22:160. [PMID: 35365087 PMCID: PMC8974209 DOI: 10.1186/s12870-022-03546-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/22/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Plant AT-rich sequence and zinc-binding (PLATZ) proteins belong to a novel class of plant-specific zinc-finger-dependent DNA-binding proteins that play essential roles in plant growth and development. Although the PLATZ gene family has been identified in several species, systematic identification and characterization of this gene family has not yet been carried out for Tartary buckwheat, which is an important medicinal and edible crop with high nutritional value. The recent completion of Tartary buckwheat genome sequencing has laid the foundation for this study. RESULTS A total of 14 FtPLATZ proteins were identified in Tartary buckwheat and were classified into four phylogenetic groups. The gene structure and motif composition were similar within the same group, and evident distinctions among different groups were detected. Gene duplication, particularly segmental duplication, was the main driving force in the evolution of FtPLATZs. Synteny analysis revealed that Tartary buckwheat shares more orthologous PLATZ genes with dicotyledons, particularly soybean. In addition, the expression of FtPLATZs in different tissues and developmental stages of grains showed evident specificity and preference. FtPLATZ3 may be involved in the regulation of grain size, and FtPLATZ4 and FtPLATZ11 may participate in root development. Abundant and variable hormone-responsive cis-acting elements were distributed in the promoter regions of FtPLATZs, and almost all FtPLATZs were significantly regulated after exogenous hormone treatments, particularly methyl jasmonate treatment. Moreover, FtPLATZ6 was significantly upregulated under all exogenous hormone treatments, which may indicate that this gene plays a critical role in the hormone response of Tartary buckwheat. CONCLUSIONS This study lays a foundation for further exploration of the function of FtPLATZ proteins and their roles in the growth and development of Tartary buckwheat and contributes to the genetic improvement of Tartary buckwheat.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Shan Feng
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an, 710129, Shaanxi, China
| | - Yuchuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yan Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yuhao Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Qinghua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas / College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Li J, Zhang Y, Xu L, Wang C, Luo Y, Feng S, Yuan Y, Yang Q, Feng B. Genome-Wide Identification of DNA Binding with One Finger ( Dof) Gene Family in Tartary Buckwheat ( Fagopyrum tataricum) and Analysis of Its Expression Pattern after Exogenous Hormone Stimulation. BIOLOGY 2022; 11:biology11020173. [PMID: 35205040 PMCID: PMC8869700 DOI: 10.3390/biology11020173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/11/2023]
Abstract
Simple Summary A number of studies have demonstrated that DNA binding with one finger (Dof) proteins are involved in multiple biological processes. In the present study, Dof genes or proteins in Tartary buckwheat (FtDofs) were systematically analysed, including their physical properties, phylogenetic relationships, structure, motif composition, cis-acting elements present in promoter regions, chromosomal distribution, gene duplication events, syntenic relationships, expression patterns in different tissues and different fruit developmental stages and responses to exogenous hormone stimulation. The results indicated that the expansion of FtDofs was mainly due to segmental duplication. The tissue-specific expression patterns of FtDofs and their positive responses to exogenous hormone stimulation suggest that they play important roles in the growth and development of Tartary buckwheat as well as in the adaptation to environmental changes. Collectively, this study lays a foundation for further exploration of the function of FtDof genes in Tartary buckwheat. Abstract DNA binding with one finger (Dof) proteins have been proven to be involved in multiple biological processes. However, genome-wide identification of the Dof gene family has not been reported for Tartary buckwheat (Fagopyrum tataricum). In this study, 35 FtDof proteins were identified, and they could be divided into nine phylogenetic subgroups. Proteins within the same subgroup had similar gene structure and motif composition. Moreover, abundant cis-acting elements were present in the promoter regions of FtDof genes. Segmental duplication was the primary driving force for the evolution of the FtDof gene family. Synteny analysis indicated that Tartary buckwheat was closer to dicotyledons, and more orthologous Dof genes existed among them. The expression pattern of FtDofs in different tissues and at different fruit developmental stages varied. Different tissues contained several genes that were specifically expressed. FtDof expression was mainly upregulated under methyl jasmonate treatment and downregulated under other hormone treatments. Taken together, FtDofs may play important roles in the growth and development of Tartary buckwheat and in response to abiotic and biotic stresses. Therefore, the genome-wide identification and expression pattern analysis of the Tartary buckwheat Dof gene family lays a foundation for further exploration of the functional characteristics of FtDofs in the future.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712000, China; (J.L.); (Y.Z.); (L.X.); (C.W.); (Y.L.); (Y.Y.); (Q.Y.)
| | - Yuchuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712000, China; (J.L.); (Y.Z.); (L.X.); (C.W.); (Y.L.); (Y.Y.); (Q.Y.)
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712000, China; (J.L.); (Y.Z.); (L.X.); (C.W.); (Y.L.); (Y.Y.); (Q.Y.)
| | - Chenyang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712000, China; (J.L.); (Y.Z.); (L.X.); (C.W.); (Y.L.); (Y.Y.); (Q.Y.)
| | - Yan Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712000, China; (J.L.); (Y.Z.); (L.X.); (C.W.); (Y.L.); (Y.Y.); (Q.Y.)
| | - Shan Feng
- School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an 710129, China;
| | - Yuhao Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712000, China; (J.L.); (Y.Z.); (L.X.); (C.W.); (Y.L.); (Y.Y.); (Q.Y.)
| | - Qinghua Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712000, China; (J.L.); (Y.Z.); (L.X.); (C.W.); (Y.L.); (Y.Y.); (Q.Y.)
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712000, China; (J.L.); (Y.Z.); (L.X.); (C.W.); (Y.L.); (Y.Y.); (Q.Y.)
- Correspondence:
| |
Collapse
|