1
|
Shao J, Li J, Zhao Y, Huang R, Guo A, Hou L, Leng X, Li Q. Extraction and Structural Characterization of Four Grape Polysaccharides and Their Protective Effects in Alcohol-Induced Gastric Mucosal Injury. Foods 2024; 13:3500. [PMID: 39517282 PMCID: PMC11545244 DOI: 10.3390/foods13213500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Grapes, recognized as a nutritionally rich fruit, have been found through extensive research to contain various bioactive components. However, the roles of polysaccharides and their bioactive properties remain unclear. Based on this, in our research, four different grape polysaccharides were obtained using an enzymatic-assisted extraction method. We investigated and compared their physicochemical properties, antioxidant activities, and protective effects on gastric mucosa in mice. The results indicated that the monosaccharide compositions of these specific grape polysaccharides were similar; however, their molar ratios, molecular weights, and morphological characteristics varied. The results of radical scavenging tests revealed that red-fleshed grape polysaccharide (RFP) exhibited superior antioxidant properties. In vivo assessments demonstrated that RFP protects against gastric mucosal injury in mice by inhibiting inflammation and radical generation. Therefore, the polysaccharide from red-fleshed grape holds potential application value in the pharmaceutical and food industries.
Collapse
Affiliation(s)
- Jian Shao
- National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China; (J.S.); (J.L.); (R.H.); (A.G.); (X.L.)
- Beijing Shengtaier Technology Co., Ltd., Beijing 100083, China
| | - Jizhen Li
- National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China; (J.S.); (J.L.); (R.H.); (A.G.); (X.L.)
| | - Yonghui Zhao
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266000, China;
| | - Rong Huang
- National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China; (J.S.); (J.L.); (R.H.); (A.G.); (X.L.)
| | - Aixin Guo
- National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China; (J.S.); (J.L.); (R.H.); (A.G.); (X.L.)
| | - Lijuan Hou
- Weihai Academy of Agricultural Sciences, Weihai 264299, China;
| | - Xiangpeng Leng
- National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China; (J.S.); (J.L.); (R.H.); (A.G.); (X.L.)
| | - Qiu Li
- National Joint Local Engineering Laboratory of Agricultural Bio-Pharmaceutical Laboratory, College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China; (J.S.); (J.L.); (R.H.); (A.G.); (X.L.)
| |
Collapse
|
2
|
Arshad KT, Xiang C, Yuan C, Li L, Wang J, Zhou P, Manzoor N, Yang S, Li M, Liang Y, Chen J, Zhao Y. Elucidation of AsANS controlling pigment biosynthesis in Angelica sinensis through hormonal and transcriptomic analysis. PHYSIOLOGIA PLANTARUM 2024; 176:e14500. [PMID: 39221482 DOI: 10.1111/ppl.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Angelica sinensis, a traditional Chinese medicinal plant, has been primarily reported due to its nutritional value. Pigmentation in this plant is an important appearance trait that directly affects its commercial value. To understand the mechanism controlling purpleness in A. sinensis, hormonal and transcriptomic analyses were performed in three different tissues (leave, root and stem), using two cultivars with contrasting colors. The two-dimensional data set provides dynamic hormonal and gene expression networks underpinning purpleness in A. sinensis. We found abscisic acid as a crucial hormone modulating anthocyanin biosynthesis in A. sinensis. We further identified and validated 7 key genes involved in the anthocyanin biosynthesis pathway and found a specific module containing ANS as a hub gene in WGCNA. Overexpression of a candidate pigment regulatory gene, AsANS (AS08G02092), in transgenic calli of A. sinensis resulted in increased anthocyanin production and caused purpleness. Together, these analyses provide an important understanding of the molecular networks underlying A. sinensis anthocyanin production and its correlation with plant hormones, which can provide an important source for breeding.
Collapse
Affiliation(s)
- Khadija Tehseen Arshad
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Chunfan Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Chengxiao Yuan
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| | - Lesong Li
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Juan Wang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Pinhan Zhou
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Nazer Manzoor
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Yanli Liang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Junwen Chen
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yan Zhao
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming, China
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China
| |
Collapse
|
3
|
Li H, Jiang X, Mashiguchi K, Yamaguchi S, Lu S. Biosynthesis and signal transduction of plant growth regulators and their effects on bioactive compound production in Salvia miltiorrhiza (Danshen). Chin Med 2024; 19:102. [PMID: 39049014 PMCID: PMC11267865 DOI: 10.1186/s13020-024-00971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024] Open
Abstract
Plant growth regulators (PGRs) are involved in multiple aspects of plant life, including plant growth, development, and response to environmental stimuli. They are also vital for the formation of secondary metabolites in various plants. Salvia miltiorrhiza is a famous herbal medicine and has been used commonly for > 2000 years in China, as well as widely used in many other countries. S. miltiorrhiza is extensively used to treat cardiovascular and cerebrovascular diseases in clinical practices and has specific merit against various diseases. Owing to its outstanding medicinal and commercial potential, S. miltiorrhiza has been extensively investigated as an ideal model system for medicinal plant biology. Tanshinones and phenolic acids are primary pharmacological constituents of S. miltiorrhiza. As the growing market for S. miltiorrhiza, the enhancement of its bioactive compounds has become a research hotspot. S. miltiorrhiza exhibits a significant response to various PGRs in the production of phenolic acids and tanshinones. Here, we briefly review the biosynthesis and signal transduction of PGRs in plants. The effects and mechanisms of PGRs on bioactive compound production in S. miltiorrhiza are systematically summarized and future research is discussed. This article provides a scientific basis for further research, cultivation, and metabolic engineering in S. miltiorrhiza.
Collapse
Affiliation(s)
- Heqin Li
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Xuwen Jiang
- College of Agronomy, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
- Shandong Bairuijia Food Co., Ltd, No. 8008, Yi Road, Laizhou, Yantai, 261400, Shandong, People's Republic of China
| | - Kiyoshi Mashiguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Shinjiro Yamaguchi
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Shanfa Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
4
|
Wu H, Cui H, Tian Y, Wu J, Bai Z, Zhang X. Exogenous ethephon treatment on the biosynthesis and accumulation of astragaloside IV in Astragalus membranaceus Bge. Var. Mongholicus (Bge.) Hsiao. BOTANICAL STUDIES 2024; 65:16. [PMID: 38967679 PMCID: PMC11226570 DOI: 10.1186/s40529-024-00426-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Astragaloside IV is a main medicinal active ingredient in Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao, which is also the key biomarker of A. membranaceus quality. Ethylene has been well-documented to involve in secondary metabolites biosynthesis in plants. Nevertheless, how ethylene regulates astragaloside IV biosynthesis in A. membranaceus is still unclear. Therefore, in the present study different dosages and time-dependent exogenous application of ethephon (Eth) were employed to analyze astragaloside IV accumulation and its biosynthesis genes expression level in hydroponically A. membranaceus. RESULTS Exogenous 200 µmol·L- 1Eth supply is most significantly increased astragaloside IV contents in A. membranaceus when compared with non-Eth supply. After 12 h 200 µmol·L- 1 Eth treatment, the astragaloside IV contents reaching the highest content at 3 d Eth treatment(P ≤ 0.05). Moreover, After Eth treatment, all detected key genes involved in astragaloside IV synthesis were significant decrease at 3rd day(P ≤ 0.05). However, SE displayed a significant increase at the 3rd day under Eth treatment(P ≤ 0.05). Under Eth treatment, the expression level of FPS, HMGR, IDI, SS, and CYP93E3 exhibited significant negative correlations with astragaloside IV content, while expression level of SE displayed a significant positive correlation. CONCLUSIONS These findings suggest that exogenous Eth treatment can influence the synthesis of astragaloside IV by regulating the expression of FPS, HMGR, IDI, SS, CYP93E3 and SE. This study provides a theoretical basis for utilizing molecular strategies to enhance the quality of A. membranaceus.
Collapse
Affiliation(s)
- Haonan Wu
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Hang Cui
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Yu Tian
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Jiawen Wu
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Zhenqing Bai
- College of Life Sciences, Yan'an University, Yan'an, 716000, China.
- Inner Mongolia Academy of Science and Technology, Hohhot, 010018, China.
| | - Xiujuan Zhang
- Inner Mongolia Academy of Science and Technology, Hohhot, 010018, China.
| |
Collapse
|
5
|
Chen K, Chen J, Pi X, Huang LJ, Li N. Isolation, Purification, and Application of Protoplasts and Transient Expression Systems in Plants. Int J Mol Sci 2023; 24:16892. [PMID: 38069215 PMCID: PMC10706244 DOI: 10.3390/ijms242316892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Protoplasts, derived from plant cells, exhibit remarkable totipotency and hold significant value across a wide spectrum of biological and biotechnological applications. These versatile applications encompass protein subcellular localization and interaction analysis, gene expression regulation, functional characterization, gene editing techniques, and single-cell sequencing. Protoplasts' usability stems from their inherent accessibility and their ability to efficiently incorporate exogenous genes. In this review, we provide a comprehensive overview, including details on isolation procedures and influencing factors, purification and viability assessment methodologies, and the utilization of the protoplast transient expression system. The aim is to provide a comprehensive overview of current applications and offer valuable insights into protoplast isolation and the establishment of transient expression systems in a diverse range of plant species, thereby serving as a valuable resource for the plant science community.
Collapse
Affiliation(s)
- Kebin Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jiali Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Pi
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Huang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ning Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Key Laboratory of Forest Bio-Resources and Integrated Pest Management for Higher Education in Hunan Province, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
6
|
Xu J, Fan Y, Han X, Pan H, Dai J, Wei Y, Zhuo R, Liu J. Integrated Transcriptomic and Metabolomic Analysis Reveal the Underlying Mechanism of Anthocyanin Biosynthesis in Toona sinensis Leaves. Int J Mol Sci 2023; 24:15459. [PMID: 37895157 PMCID: PMC10607221 DOI: 10.3390/ijms242015459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Toona sinensis, commonly known as Chinese Toon, is a plant species that possesses noteworthy value as a tree and vegetable. Its tender young buds exhibit a diverse range of colors, primarily determined by the presence and composition of anthocyanins and flavonoids. However, the underlying mechanisms of anthocyanin biosynthesis in Toona sinensis have been rarely reported. To explore the related genes and metabolites associated with composition of leaf color, we conducted an analysis of the transcriptome and metabolome of five distinct Toona clones. The results showed that differentially expressed genes and metabolites involved in anthocyanin biosynthesis pathway were mainly enriched. A conjoint analysis of transcripts and metabolites was carried out in JFC (red) and LFC (green), resulting in the identification of 510 genes and 23 anthocyanin-related metabolites with a positive correlation coefficient greater than 0.8. Among these genes and metabolites, 23 transcription factors and phytohormone-related genes showed strong coefficients with 13 anthocyanin derivates, which mainly belonged to the stable types of delphinidin, cyanidin, peonidin. The core derivative was found to be Cyanidin-3-O-arabinoside, which was present in JFC at 520.93 times the abundance compared to LFC. Additionally, the regulatory network and relative expression levels of genes revealed that the structural genes DFR, ANS, and UFGT1 might be directly or indirectly regulated by the transcription factors SOC1 (MADS-box), CPC (MYB), and bHLH162 (bHLH) to control the accumulation of anthocyanin. The expression of these genes was significantly higher in red clones compared to green clones. Furthermore, RNA-seq results accurately reflected the true expression levels of genes. Overall, this study provides a foundation for future research aimed at manipulating anthocyanin biosynthesis to improve plant coloration or to derive human health benefits.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yanru Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Huanhuan Pan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jianhua Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yi Wei
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jun Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
7
|
An X, Tan T, Song Z, Guo X, Zhang X, Zhu Y, Wang D. Physiological response of anthocyanin synthesis to different light intensities in blueberry. PLoS One 2023; 18:e0283284. [PMID: 37352171 PMCID: PMC10289459 DOI: 10.1371/journal.pone.0283284] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/06/2023] [Indexed: 06/25/2023] Open
Abstract
Fruit color is an important economic character of blueberry, determined by the amount of anthocyanin content. Anthocyanin synthesis within the blueberry fruits is significantly affected by light. To reveal the physiological response mechanism of anthocyanin synthesis in blueberry fruits in different light intensities, four light intensities (100% (CK), 75%, 50% and 25%) were set for the 'O'Neal' southern highbush blueberry as the experimental material in our study. The relationship between endogenous hormones content, associated enzyme activities, and variations with the anthocyanin content in blueberry fruits under various light intensities during the white fruit stage (S1), purple fruit stage (S2), and blue fruit stage (S3) were studied. The results showed that adequate light could significantly promote anthocyanin synthesis in blueberry fruits (P < 0.05). Blueberry fruits had an anthocyanin content that was 1.76~24.13 times higher under 100% light intensity than it was under non-full light intensity. Different light intensities significantly affected the content of endogenous hormones and the activity of associated enzymes in anthocyanin synthesis pathway (P < 0.05). Among them, the JA (jasmonic acid) content and PAL (phenylalanine ammonia lyase) activity of fruits under 100% light intensity were 2.49%~41.83% and 2.47%~48.48% higher than those under other light intensity, respectively. And a significant correlation was found between the variations in anthocyanin content in fruits and the content or activities of JA, ABA (abscisic acid), ETH (ethylene), GA3 (gibberellin 3), IAA (indoleacetic acid), PAL, CHI (chalcone isomerase), DFR (dihydroflavonol reductase) and UFGT (UDP-glucose: flavonoid 3-glucosyltransferase) (P < 0.05). It indicated that 100% light intensity significantly promoted anthocyanin synthesis in blueberry fruits by affecting endogenous hormones content and associated enzyme activities in the anthocyanin synthesis pathway. This study will lay a foundation for further research on the molecular mechanism of light intensity regulating anthocyanin synthesis in blueberry.
Collapse
Affiliation(s)
- Xiaoli An
- College of Forestry, Guizhou University, Huaxi, Guiyang, Guizhou, China
| | - Tianyu Tan
- Forestry Bureau of Kaili, Kaili, Guizhou, China
| | - Zejun Song
- College of Forestry, Guizhou University, Huaxi, Guiyang, Guizhou, China
| | - Xiaolan Guo
- College of Life Sciences, Huizhou University, Huizhou, Guangdong, China
| | - Xinyu Zhang
- College of Forestry, Guizhou University, Huaxi, Guiyang, Guizhou, China
| | - Yunzheng Zhu
- College of Forestry, Guizhou University, Huaxi, Guiyang, Guizhou, China
| | - Delu Wang
- College of Forestry, Guizhou University, Huaxi, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Leng X, Li J, Miao W, Liu Y, Haider MS, Song M, Fang J, Li Q. Comparison of physicochemical characteristics, antioxidant and immunomodulatory activities of polysaccharides from wine grapes. Int J Biol Macromol 2023; 239:124164. [PMID: 37011744 DOI: 10.1016/j.ijbiomac.2023.124164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023]
Abstract
In this study, an efficient ultrasonic-assisted extraction method was used for the extraction and optimization of four wine grape polysaccharides. A three-level, three-factor Box Behnken Design combined with the response surface approach was used to optimize the extraction conditions. Their physicochemical properties, molecular structure, antioxidant activity, immunomodulatory activity and hepatoprotective effects were examined and compared. These findings suggest that the four wine grape polysaccharides share similar basic structural features and monosaccharide composition. Furthermore, four wine grape polysaccharides exhibited antioxidant and immunomodulatory activities in a concentration-dependent manner. Moldova (MD) polysaccharide displayed better antioxidant activity and immunomodulatory ability. Furthermore, MD polysaccharide has a significant therapeutic effect on CCl4-induced rat liver injury by improving the antioxidant defense system and inhibiting oxidative stress, indicating that MD has a hepatoprotective effect. Taken together, the MD wine grape polysaccharide may have potential applications in prevention of liver disease in the functional food and pharmaceutical industries.
Collapse
|
9
|
Leng X, Miao W, Li J, Liu Y, Zhao W, Mu Q, Li Q. Physicochemical characteristics and biological activities of grape polysaccharides collected from different cultivars. Food Res Int 2023; 163:112161. [PMID: 36596110 DOI: 10.1016/j.foodres.2022.112161] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/29/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
In this study, four wine grape polysaccharides were extracted and optimized by using an efficient ultrasound-assisted extraction. A three-level, three-factor Box Behnken Design (BBD) combining with response surface methodology (RSM) was employed to optimize the extraction conditions including ultrasonic power, ultrasonic time and liquid-to-solid ratio. Furthermore, their physicochemical structures, antioxidant and liver protective activity were investigated and compared. Results revealed that the functional groups and monosaccharide compositions of these grape polysaccharides collected from different varieties were similar. Nevertheless, their molecular weights, molar ratios of monosaccharide compositions and surface morphological features were different. And the antioxidant activities of these polysaccharides were screened by free radical scavenging test. 'Beichun' (BC) and 'Benni fuji' (BF) polysaccharides possessed better antioxidant function. Further, the in vivo evaluation indicated that the polysaccharides of BC and BF have a protective effect against myocardial I/R injury in mice by inhibiting myocardial necroptosis mediated by mitochondrial ROS generation. Therefore, BC and BF grapes have potential applications in the medical and food industries.
Collapse
Affiliation(s)
- Xiangpeng Leng
- Institute of Grape Science and Engineering, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), MARA, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenjun Miao
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jizhen Li
- Institute of Grape Science and Engineering, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), MARA, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuanxia Liu
- Institute of Grape Science and Engineering, Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenwen Zhao
- School of Basic Medical Sciences, Qingdao University, 308 Ningxiafrr Road, Qingdao, Shandong 266021, China
| | - Qian Mu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250110, China
| | - Qiu Li
- College of Chemical and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
10
|
Chen M, Gu H, Wang L, Shao Y, Li R, Li W. Exogenous Ethylene Promotes Peel Color Transformation by Regulating the Degradation of Chlorophyll and Synthesis of Anthocyanin in Postharvest Mango Fruit. Front Nutr 2022; 9:911542. [PMID: 35669069 PMCID: PMC9165547 DOI: 10.3389/fnut.2022.911542] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/27/2022] [Indexed: 12/16/2022] Open
Abstract
Due to geographical location and climatic factors, postharvest storage and preservation of tropical fruits and vegetables are still facing huge challenges. Ethephon (ETH) is widely used as an ethylene donor to achieve the commercial color and flavor of climacteric fruits. However, the effect of ETH on fruit coloration was affected by many factors, such as fruit species, plant hormones, and storage conditions. In this study, the main mango variety “Guifei” in Hainan, China, was used to study the effects of different concentrations of ETH on fruit ripening and coloration during storage at 25°C. Results showed that postharvest treatment with ETH (300, 500, and 900 mg·L−1) enhanced the activities of ACS and ACO, stimulated the release of endogenous ethylene, and accelerated fruit softening and color transformation. Compared with control, ETH treatment not only accelerated the breakdown of chlorophyll with higher activities of Chlase and MDCase but also induced the synthesis of carotenoid and anthocyanin with higher activities of PAL, CHI, DFR, and UFGT. Moreover, the changes in DFR and UFGT activities coincided with the increase in ETH concentration. Further, correlation analysis showed that the production of endogenous ethylene induced by ETH was significantly negatively correlated with firmness and chlorophyll content, whereas positively correlated with MDA content and anthocyanin content. This study suggests that the positive effect of ETH on “Guifei” mango color transformation is concentration-dependent within a certain concentration range. Anthocyanin is the main pigment for the red formation of “Guifei” mango, and DFR and UFGT may play critical roles in anthocyanin synthesis. ETH promoted the red coloration by promoting the release of endogenous ethylene and enhancing the activities of anthocyanin synthesis enzymes.
Collapse
Affiliation(s)
- Mingmin Chen
- School of Horticulture, Hainan University, Haikou, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, China
| | - Hui Gu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Lirong Wang
- School of Horticulture, Hainan University, Haikou, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, China
| | - Yuanzhi Shao
- School of Life Sciences, Hainan University, Haikou, China
| | - Rui Li
- School of Horticulture, Hainan University, Haikou, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, China
- *Correspondence: Rui Li
| | - Wen Li
- School of Horticulture, Hainan University, Haikou, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Hainan University, Haikou, China
- Wen Li
| |
Collapse
|
11
|
Wang P, Yu A, Ji X, Mu Q, Salman Haider M, Wei R, Leng X, Fang J. Transcriptome and metabolite integrated analysis reveals that exogenous ethylene controls berry ripening processes in grapevine. Food Res Int 2022; 155:111084. [PMID: 35400460 DOI: 10.1016/j.foodres.2022.111084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/19/2022]
Abstract
Although grapevine (Vitis vinifera L.) is generally classified as a non-climacteric fruit, the regulatory mechanisms of ethylene in the ripening of non-climacteric fruit are still poorly understood. In this study, exogenous ethephon (ETH) strongly stimulated fruit color and anthocyanin accumulation, which was consistent with the increased expression of anthocyanin structural, regulatory, and transport genes. ETH application increased ABA content and decreased IAA content by coordinating ABA and auxin biosynthesis regulatory network. ETH treatment also accelerated sugar (glucose and fructose) accumulation by enhancing the gene expression involved in sugar transport and sucrose cleavage. ETH treatment blocked the synthesis of cellulose and accelerated the degradation of pectin, which was strongly associated with berry softening. To further confirm the function of ethylene biosynthesis and signaling genes, transient overexpression of VvACO4 and VvEIL3 were performed in both in tomato and strawberry fruits. These findings of the ethylene cascade add to our understanding of ethylene in non-climacteric berry ripening regulation and revealed a complex involvement of ethylene and its interplay with phytohormones during grapevine berry ripening.
Collapse
Affiliation(s)
- Peipei Wang
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aishui Yu
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), MARA, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinglong Ji
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), MARA, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Qian Mu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250110, China
| | | | - Ruonan Wei
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiangpeng Leng
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), MARA, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China.
| | - Jinggui Fang
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|