1
|
Huss JC, Antreich SJ, Felhofer M, Mayer K, Eder M, Vieira Dias dos Santos AC, Ramer G, Lendl B, Gierlinger N. Hydrolyzable tannins are incorporated into the endocarp during sclerification of the water caltrop Trapa natans. PLANT PHYSIOLOGY 2023; 194:94-105. [PMID: 37427803 PMCID: PMC10762508 DOI: 10.1093/plphys/kiad408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023]
Abstract
The water caltrop (Trapa natans) develops unique woody fruits with unusually large seeds among aquatic plants. During fruit development, the inner fruit wall (endocarp) sclerifies and forms a protective layer for the seed. Endocarp sclerification also occurs in many land plants with large seeds; however, in T. natans, the processes of fruit formation, endocarp hardening, and seed storage take place entirely underwater. To identify potential chemical and structural adaptations for the aquatic environment, we investigated the cell-wall composition in the endocarp at a young developmental stage, as well as at fruit maturity. Our work shows that hydrolyzable tannins-specifically gallotannins-flood the endocarp tissue during secondary wall formation and are integrated into cell walls along with lignin during maturation. Within the secondary walls of mature tissue, we identified unusually strong spectroscopic features of ester linkages, suggesting that the gallotannins and their derivatives are cross-linked to other wall components via ester bonds, leading to unique cell-wall properties. The synthesis of large amounts of water-soluble, defensive aromatic metabolites during secondary wall formation might be a fast way to defend seeds within the insufficiently lignified endocarp of T. natans.
Collapse
Affiliation(s)
- Jessica C Huss
- Institute of Biophysics, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Sebastian J Antreich
- Institute of Biophysics, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Martin Felhofer
- Institute of Biophysics, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Konrad Mayer
- Institute of Biophysics, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Michaela Eder
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam-Golm, Germany
| | | | - Georg Ramer
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria
| | - Notburga Gierlinger
- Institute of Biophysics, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| |
Collapse
|
2
|
Li R, Liu Y, Xia Z, Wang Q, Liu X, Gong Z. Discriminating geographical origins and determining active substances of water caltrop shells through near-infrared spectroscopy and chemometrics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123198. [PMID: 37531683 DOI: 10.1016/j.saa.2023.123198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/28/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Near-infrared spectroscopy (NIRS) combined with chemometric methods were used to discriminate the geographical origins of the water caltrop shells from different regions of China. Two active substances, the total phenolic content (TPC) and total flavonoid content (TFC) in the water caltrop shells were determined through the technique as well. Principal component analysis (PCA) combined with linear discriminant analysis (LDA) was adopted to build the geographical discriminant model. Quantitative analysis models of TPC and TFC were built using partial least squares (PLS) regression. 1st derivative and randomization test (RT) methods were used to optimize the quantitative analysis models. It was found that the geographical discriminant model can correctly recognize the water caltrop shells from different regions of China with a total accuracy of 93.33%. The values of TPC and TFC obtained by the optimized models and the standard method are close. The coefficient of determination (R2) and the ratio of prediction to deviation for the two substances were 0.91, 0.89 and 3.02, 3.02, respectively. The results demonstrated the feasibility of NIRS combined with chemometric methods for the geographical discrimination of water caltrop shells and the quantitative analysis of TPC and TFC in water caltrop shells.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yan Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil (Wuhan Polytechnic University), Ministry of Education, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products (Wuhan Polytechnic University), College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Center of Food Safety, Hubei Key Research Base of Humanities and Social Science, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Zhenzhen Xia
- Institute of Agricultural Quality Standards and Testing Technology Research, Hubei Academy of Agricultural Science, Wuhan 430064, PR China
| | - Qiao Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Xin Liu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhiyong Gong
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| |
Collapse
|
3
|
Lü H, Meng X, Ding X, Jian T, Zuo Y, Liu Y, Ren B, Li W, Chen J. Gallotannin Isolated from Pericarp of Water Caltrop Ameliorates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7046-7057. [PMID: 37113100 DOI: 10.1021/acs.jafc.3c01099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a worldwide prevalent chronic liver disease characterized by hepatic steatosis. Water caltrop, the fruit of Trapa natan, is widely cultivated as an edible vegetable in Asian countries. In China, water caltrop pericarp has long been used as a functional food to treat metabolic syndrome, yet the bioactive substances and their pharmacological mechanisms remain unclear. In this study, a natural gallotannin, 1,2,3,6-tetra-O-galloyl-β-D-glucopyranoside (GA), was isolated from water caltrop pericarp and evaluated for its therapeutic effect on NAFLD. Treatment of GA (15 and 30 mg/kg/day) suppressed the body weight gain (p < 0.001) and ameliorated lipid deposition (p < 0.001) in high-fat diet (HFD)-induced NAFLD mice. GA was able to alleviate HFD-induced insulin resistance (p < 0.001), oxidative stress (p < 0.001), and inflammation (p < 0.001), thereby restoring the liver function in HFD-induced NAFLD mice. Mechanistically, GA diminished the aberrant signaling pathways including AMPK/SREBP/ACC, IRs-1/Akt, IKK/IκB/NF-κB in HFD-induced NAFLD mice and modified gut microbiota dysbiosis in these mice as well. The current findings suggest that GA is a promising novel agent for NAFLD therapy.
Collapse
Affiliation(s)
- Han Lü
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Xiuhua Meng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Yuanyuan Zuo
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Yan Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Bingru Ren
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|