1
|
Quintarelli V, Borgatti D, Baretta M, Stazi SR, Allevato E, Pancaldi S, Baldisserotto C, Mancinelli R, Tedeschi P, Radicetti E, Ben Hassine M. Microbial biofertilizers and algae-based biostimulant affect fruit yield characteristics of organic processing tomato. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:530-539. [PMID: 39215534 DOI: 10.1002/jsfa.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Microbial biofertilizers and algae-based biostimulants have been recognized for supporting sustainable agriculture. Field experiments were conducted in 2022 and 2023 growing seasons in an organic farm located in Ferrara (Italy) with the aim of evaluating plant growth-promoting microorganisms (PGPMs) and algae-based biostimulants (Biost) in tomato (Solanum lycopersicum L.). The experimental treatments were: (i) two microbial biofertilizers (PGPM_1, PGPM_2) and no inoculated plants (No_PGPM); and (ii) two algae-based biostimulant rates (0.5% (Biost_0.5%), 1.0% (Biost_1.0%)) and no application (No_Biost). PGPMs were applied at transplanting, while biostimulants at 15 and 30 days after transplanting. Treatments were replicated three times according to a split-plot experimental design. Plant characteristics were evaluated at 30 days after transplanting in No_Biost treatments. During tomato cultivation, soil plant analysis development (SPAD), nitrogen difference vegetation index (NDVI), leaf area index (LAI) and photosynthetic photon flux density (PPFD) were monitored. Tomato yield was determined. RESULTS PGPM_2 showed the highest shoot biomass (132.9 g plant-1), plant height (44.7 cm), leaf number (34.0 plant-1) and root biomass (9.22 g plant-1). Intermediate values were observed in PGPM_1, while all parameters were lower in No_PGPM. Both PGPMs achieved higher values of SPAD, NDVI, PPFD and LAI than No_PGPM. Biost_1.0% increased all measured growth parameters followed by Biost_0.5% and No_Biost, respectively. Tomato yield was the highest for PGPM_2-Biost_1.0% (67.2 t ha-1). PGPMs affected fruit size and sugar content, while biostimulants were associated with color and lycopene. CONCLUSION The application of microbial biofertilizers and algae-based biostimulants could be part of environment-friendly practice in organic farming. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Valentina Quintarelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Daniele Borgatti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mattia Baretta
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Silvia Rita Stazi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Enrica Allevato
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Costanza Baldisserotto
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Roberto Mancinelli
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Paola Tedeschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Emanuele Radicetti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mortadha Ben Hassine
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
2
|
Cao M, Xiang Y, Huang L, Li M, Jin C, He C, Xin G. Winter forage crops influence soil properties through establishing different arbuscular mycorrhizal fungi communities in paddy field. ADVANCED BIOTECHNOLOGY 2024; 2:30. [PMID: 39883251 PMCID: PMC11740874 DOI: 10.1007/s44307-024-00037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 01/31/2025]
Abstract
Winter planting is promising for improving the utilization rate of fallow paddy fields in southern China by establishing arbuscular mycorrhizal fungi (AMF) communities. However, the effects of different winter forage crops on AMF community construction remain unknown. The AMF community establishment of different winter planting forage crops were conducted in oat, rye, Chinese milk vetch, and ryegrass, with winter fallow as a control. The AMF colonization rate, soil AMF spore density, community structure and diversity, and soil physicochemical properties were determined. The results showed that the total nitrogen and available nitrogen in winter Chinese milk vetch were 11.11% and 16.92% higher than those in winter fallow (P < 0.05). After planting winter forage crops, the AMF spore density in winter oat, rye, Chinese milk vetch, and ryegrass soil were 127.90%, 64.37%, 59.91%, and 73.62% higher than that before planting, respectively (P < 0.05). Claroideoglomus was the dominant AMF genus in the soil of winter planting oat, rye, and ryegrass. The average membership function value of winter Chinese milk vetch was the highest, indicating that it had the best comprehensive effect on soil physicochemical properties, AMF community structure and diversity, and fresh forage yield. Winter forage crops could increase the spore pool of soil AMF and improve the soil AMF community structure and diversity. Winter Chinese milk vetch in paddy field had the best comprehensive effect on soil physicochemical properties and soil AMF community according to the comprehensive evaluation. These findings provide a theoretical basis for sustainable development and utilization of the southern rice paddy ecosystem.
Collapse
Affiliation(s)
- Mengyan Cao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Yao Xiang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Lingyue Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Menghao Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Cheng Jin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chuntao He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Guorong Xin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
3
|
Dai R, Jin C, Xiao M. The influence of urban environmental effects on the orchard soil microbial community structure and function: a case study in Zhejiang, China. Front Microbiol 2024; 15:1403443. [PMID: 39314879 PMCID: PMC11417026 DOI: 10.3389/fmicb.2024.1403443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/08/2024] [Indexed: 09/25/2024] Open
Abstract
The urban environmental effects can have multifaceted impacts on the orchard soil microbial community structure and function. To specifically study these effects, we investigated the soil bacterial and fungal community in the laxly managed citrus orchards using amplicon sequencing. Ascomycota demonstrated significant dominance within the citrus orchard soils. The increased presence of beneficial Trichoderma spp. (0.3%) could help suppress plant pathogens, while the elevated abundance of potential pathogenic fungi, such as Fusarium spp. (0.4%), might raise the likelihood of disorders like root rot, thereby hindering plant growth and resulting in reduced yield. Moreover, we observed significant differences in the alpha and beta diversity of bacterial communities between urban and rural soils (p < 0.001). Environmental surveys and functional prediction of bacterial communities suggested that urban transportation factors and rural waste pollution were likely contributing to these disparities. When comparing bacterial species in urban and rural soils, Bacillus spp. exhibited notable increases in urban areas. Bacillus spp. possess heavy metal tolerance attributed to the presence of chromium reductase and nitroreductase enzymes involved in the chromium (VI) reduction pathway. Our findings have shed light on the intricate interplay of urban environmental effects and root systems, both of which exert influence on the soil microbiota. Apart from the removal of specific pollutants, the application of Bacillus spp. to alleviate traffic pollution, and the use of Trichoderma spp. for plant pathogen suppression were considered viable solutions. The knowledge acquired from this study can be employed to optimize agricultural practices, augment citrus productivity, and foster sustainable agriculture.
Collapse
Affiliation(s)
- Rongchen Dai
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cuixiang Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng Xiao
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Vultaggio L, Allevato E, Sabatino L, Ntatsi G, Rouphael Y, Torta L, La Bella S, Consentino BB. Modulation of cherry tomato performances in response to molybdenum biofortification and arbuscular mycorrhizal fungi in a soilless system. Heliyon 2024; 10:e33498. [PMID: 39027518 PMCID: PMC11255863 DOI: 10.1016/j.heliyon.2024.e33498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/20/2024] Open
Abstract
Molybdenum (Mo) is a crucial microelement for both, humans and plants. The use of agronomic biofortification techniques can be an alternative method to enhance Mo content in vegetables. Concomitantly, arbuscular mycorrhizal fungi (AMF) application is a valuable strategy to enhance plant performances and overcome plant abiotic distresses such as microelement overdose. The aim of this research was to estimate the direct and/or indirect effects of Mo supply at four doses [0.0, 0.5 (standard dose), 2.0 or 4.0 μmol L-1], alone or combined with AMF inoculation, on plant performances. In particular, plant height and first flower truss emission, productive features (total yield, marketable yield and average marketable fruit weight) and fruit qualitative characteristics (fruit dry matter, soluble solids content, titratable acidity, ascorbic acid, lycopene, polyphenol, nitrogen, copper, iron and molybdenum) of an established cherry tomato genotype cultivated in soilless conditions were investigated. Moreover, proline and malondialdehyde concentrations, as well as Mo hazard quotient (HQ) in response to experimental treatments were determined. A split-plot randomized experimental block design with Mo dosages as plots and +AMF or -AMF as sub-plots was adopted. Data revealed that AMF inoculation enhanced marketable yield (+50.0 %), as well as some qualitative traits, such as fruit soluble solids content (SSC) (+9.9 %), ascorbic acid (+7.3 %), polyphenols (+2.3 %), and lycopene (+2.5 %). Molybdenum application significantly increased SSC, polyphenols, fruit Mo concentration (+29.0 % and +100.0 % in plants biofortified with 2.0 and 4.0 μmol Mo L-1 compared to those fertigated with the standard dose, respectively) and proline, whereas it decreased N (-25.0 % and -41.6 % in plants biofortified with 2.0 and 4.0 μmol Mo L-1 compared to those fertigated with the standard dose, respectively). Interestingly, the application of AMF mitigated the detrimental effect of high Mo dosages (2.0 or 4.0 μmol L-1). A pronounced advance in terms of plant height 45 DAT, fruit lycopene concentration and fruit Fe, Cu and Mo concentrations was observed when AMF treatment and Mo dosages (2.0 or 4.0 μmol Mo L-1) were combined. Plants inoculated or not with AMF showed an improvement in the hazard quotient (HQ) in reaction to Mo application. However, the HQ - for a consumption of 200 g day-1 of biofortified cherry tomato - remained within the safety level for human consumption. This study suggests that Mo-implementation (at 2.0 or 4.0 μmol L-1) combined with AMF inoculation could represent a viable cultivation protocol to enhance yield, produce premium quality tomato fruits and, concomitantly, improve Mo dose in human diet. In the light of our findings, further studies on the interaction between AMF and microelements in other vegetable crops are recommended.
Collapse
Affiliation(s)
- Lorena Vultaggio
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Enrica Allevato
- Department of Environmental and Prevention Sciences (DiSAP), University of Ferrara, 44121 Ferrara, Italy
| | - Leo Sabatino
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Georgia Ntatsi
- Department of Crop Science, Laboratory of Vegetable Production, Agricultural University of Athens, 11855 Athens, Greece
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Livio Torta
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Salvatore La Bella
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| | - Beppe Benedetto Consentino
- Department of Agricultural, Food, and Forestry Sciences (SAAF), University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
5
|
Soussani FE, Boutasknit A, Ben-Laouane R, Benkirane R, Baslam M, Meddich A. Arbuscular Mycorrhizal Fungi and Compost-Based Biostimulants Enhance Fitness, Physiological Responses, Yield, and Quality Traits of Drought-Stressed Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091856. [PMID: 37176914 PMCID: PMC10180964 DOI: 10.3390/plants12091856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Climate change-driven water resource constraints cause tomatoes to suffer from drought. The use of biostimulants has emerged as an important approach to enhancing resilience to drought. However, the roles of biostimulants in the physicochemical characteristics of tomatoes in response to drought are poorly understood. In this study, we evaluated the ability of arbuscular mycorrhizal fungi (AMF) and compost (versus NPK application) to improve the agro-physiology, yield, and fruit quality of tomato plants and their tolerance to drought by comparing them with conventional chemical fertilizers (NPK). Under drought conditions, plant growth traits associated with yield and fruit bioactive compounds (carotenoids: 73%; lycopene: 53%; polyphenols: 310%; and flavonoids: 158%) were increased in the AMF-tomato treatment. Compost significantly enhanced sugars (ca. 60%) and protein contents (ca. 20%). Moreover, AMF protected the photosynthetic apparatus from drought-induced oxidative stress, improved photosynthetic efficiency, leaf water potential, and osmolytes, and reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) accumulation by increasing peroxidase (POX) (140%) and polyphenol oxidase (PPO) (340%) activities compared to their controls. Our findings revealed that NPK is an important nutrient-based fertilizer for plant growth and development. However, its efficiency as a fertilizer is quite low. In addition, we highlighted different mechanisms mediated by AMF and compost, inducing drought tolerance in tomato plants.
Collapse
Affiliation(s)
- Fatima Ezzahra Soussani
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), "Physiology of Abiotic Stresses" Team, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh 40000, Morocco
- Laboratory of Plant, Animal, and Agro-Industry Productions, Faculty of Science, University Ibn Toufail, Kenitra 14000, Morocco
| | - Abderrahim Boutasknit
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), "Physiology of Abiotic Stresses" Team, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh 40000, Morocco
| | - Raja Ben-Laouane
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), "Physiology of Abiotic Stresses" Team, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh 40000, Morocco
- Department of Biology, Faculty of Science and Techniques, BP. 509, Boutalamine, Errachidia 52000, Morocco
| | - Rachid Benkirane
- Laboratory of Plant, Animal, and Agro-Industry Productions, Faculty of Science, University Ibn Toufail, Kenitra 14000, Morocco
| | - Marouane Baslam
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), "Physiology of Abiotic Stresses" Team, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh 40000, Morocco
| | - Abdelilah Meddich
- Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), "Physiology of Abiotic Stresses" Team, Cadi Ayyad University, Marrakesh 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh 40000, Morocco
| |
Collapse
|
6
|
Chandra Singh M, Price WE, Kelso C, Arcot J, Probst Y. Measuring the anthocyanin content of the Australian fruit and vegetables for the development of a food composition database. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Aguilera P, Ortiz N, Becerra N, Turrini A, Gaínza-Cortés F, Silva-Flores P, Aguilar-Paredes A, Romero JK, Jorquera-Fontena E, Mora MDLL, Borie F. Application of Arbuscular Mycorrhizal Fungi in Vineyards: Water and Biotic Stress Under a Climate Change Scenario: New Challenge for Chilean Grapevine Crop. Front Microbiol 2022; 13:826571. [PMID: 35317261 PMCID: PMC8934398 DOI: 10.3389/fmicb.2022.826571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
The crop Vitis vinifera (L.) is of great economic importance as Chile is one of the main wine-producing countries, reaching a vineyard area of 145,000 ha. This vine crop is usually very sensitive to local condition changes and agronomic practices; therefore, strategies to counteract the expected future decrease in water level for agricultural irrigation, temperature increase, extreme water stress (abiotic stress), as well as increase in pathogenic diseases (biotic stress) related to climate change will be of vital importance for this crop. Studies carried out in recent years have suggested that arbuscular mycorrhizal fungi (AMF) can provide key ecosystem services to host plants, such as water uptake implementation and enhanced absorption of nutrients such as P and N, which are key factors for improving the nutritional status of the vine. AMF use in viticulture will contribute also to sustainable agronomic management and bioprotection against pathogens. Here we will present (1) the current status of grapevines in Chile, (2) the main problems in grapevines related to water stress and associated with climate change, (3) the importance of AMF to face water stress and pathogens, and (4) the application of AMF as a biotechnological and sustainable tool in vineyards.
Collapse
Affiliation(s)
- Paula Aguilera
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Nancy Ortiz
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Ninozhka Becerra
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Alessandra Turrini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | - Patricia Silva-Flores
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Talca, Chile
- Centro del Secano, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Ana Aguilar-Paredes
- Programa de Restauración Biológica de Suelos, Centro Regional de Investigación e Innovación para la Sostenibilidad de la Agricultura y los Territorios Rurales (CERES), Quillota, Chile
- Vicerrectoría de Investigación y Estudios Avanzados, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan Karlo Romero
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Emilio Jorquera-Fontena
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Temuco, Chile
| | - María de La Luz Mora
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Fernando Borie
- Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
- Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| |
Collapse
|