1
|
Xue M, Du R, Zhou Y, Liu Y, Tian Y, Xu Y, Yan J, Song P, Wan L, Xu H, Zhang H, Liang H. Fucoidan Supplementation Relieved Kidney Injury and Modulated Intestinal Homeostasis in Hyperuricemia Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27187-27202. [PMID: 39600107 DOI: 10.1021/acs.jafc.4c07209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Hyperuricemia is a metabolic disease characterized by an excessively increased level of uric acid (UA) in the blood, with an increasing prevalence and often associated with kidney damage. Gut microbiota and endotoxins of gut origin are key mediators in the gut-kidney axis that can cause renal impairment. The study was to reveal the protective effects of fucoidan on renal injury caused by hyperuricemia. The hyperuricemia model was established in C57BL/6J mice. After 10 weeks of fucoidan supplementation, we found that the levels of serum UA and creatinine were reduced, and the levels of renal tumor necrosis factor α, interleukin-18 (IL-18), IL-6, and interleukin-1β (IL-1β) were also decreased. Fucoidan inhibited the expressions of phosphorylated NF-κB p65, NLRP3, and activated caspase-1 in the kidneys. Fucoidan also regulated the expressions of Bcl-2 family proteins and decreased the activation of caspase-3, thereby exerting antiapoptotic effect. In addition, fucoidan could reduce the expressions of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) proteins, thereby promoting the excretion of UA from the kidneys. Moreover, the protective effect of fucoidan on renal injury may be related to maintaining intestinal homeostasis. Fucoidan reduced serum lipopolysaccharide and improved the intestinal mucosal barrier function. Fucoidan decreased the abundances of Blautia, Muribaculaceae, and Dubosiella, and increased the abundances of Lactobacillus. High-dose fucoidan supplementation increased the content of butyric acid and enhanced the expression of ATP binding box transporter G2 (ABCG2) via the AMPK/AKT/CREB pathway in ileum. Conclusion: Fucoidan could protect against hyperuricemia-induced renal injury by inhibiting renal inflammation and apoptosis and modulating intestinal homeostasis in hyperuricemia mice.
Collapse
Affiliation(s)
- Meilan Xue
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Ronghuan Du
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Yifan Zhou
- School of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Yuhan Liu
- School of Biomedical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yingjie Tian
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Yan Xu
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Jiayi Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Pengzhao Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Lu Wan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Hongsen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, P. R. China
| | - Huaqi Zhang
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| | - Hui Liang
- Department of Human Nutrition, College of Public Health, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
2
|
Wang Z, Lai Y, Zhang N, Yang H, Huang Y, Yang Y, Zhang X, Ye J, Xiao M. Fucoidan treats chemotherapy-induced alopecia and helps cyclophosphamide treat tumors. Int J Biol Macromol 2024; 287:138321. [PMID: 39638216 DOI: 10.1016/j.ijbiomac.2024.138321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/30/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Chemotherapy-induced alopecia (CIA) represents one of the most common side effects of cancer treatment. Currently, scalp cooling systems are utilized to treat CIA, but their safety and effectiveness remain limited. The objective of this study was to investigate the effect of fucoidan on CIA and to elucidate the possible mechanism of fucoidan in treating CIA. The results showed that when the dosage of fucoidan was 100 mg/kg·d, it could effectively alleviate CIA induced by cyclophosphamide and promote hair recovery. Altering the dosage affected the therapeutic effect. A lower dosage (50 mg/kg·d) could not effectively prevent the hair from falling off, and the regrown hair was sparse, while an increased dosage led to slow hair growth, although the hair regrown was thick and black. It was also found that with the increase in dosage, key CIA proteins P53 and Fas were down-regulated. However, the cyclin was decreased when the dose was too high. In addition, fucoidan proved beneficial to cyclophosphamide treatment, which further inhibited tumor growth, aggravated tumor necrosis, and reduced the side effects of cyclophosphamide, especially at high doses. These results demonstrate that fucoidan has a therapeutic effect on CIA and does not compromise the effect of chemotherapy.
Collapse
Affiliation(s)
- Zhiyan Wang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Yanbin Lai
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Na Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China.
| | - Hongjie Yang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Yayan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Yucheng Yang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Xueqin Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| | - Meitian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China; Xiamen Engineering and Technological Research Center for Comprehensive Utilization of Marine Biological Resources, Xiamen 361021, China
| |
Collapse
|
3
|
Zhang Y, Zhao Q, Zhao R, Lu Y, Jiang S, Tang Y. Efficacy of DHA-enriched phosphatidylserine and its underlying mechanism in alleviating polystyrene nanoplastics-induced hepatotoxicity in mice. Int Immunopharmacol 2024; 142:113154. [PMID: 39278057 DOI: 10.1016/j.intimp.2024.113154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Plastic pollution has become a global pollution problem that cannot be ignored. As the main destination of human oral intake, the toxic effects of plastic on the digestive system represented by the intestine and liver are the focus of current research. Marine-derived DHA-PS has a variety of biological activities, mainly focusing on improving brain function and regulating lipid metabolism. However, whether it has an improvement effect on PS-NPs-induced hepato-intestinal injury and the underlying mechanism remain unclear. METHODS A murine liver injury model was established by gavage of PS-NPs for six weeks. By integrating approaches from lipidomics, transcriptomics, and gut microbiota analysis, the molecular mechanism by which DHA-PS alleviates PS-NPs-induced murine hepatotoxicity was explored through the "gut-liver axis". RESULTS Our findings reveal that prolonged exposure to PS-NPs results in significant murine liver damage and dysfunction, characterized by increased oxidative stress and inflammation, along with exacerbated hepatic lipid accumulation. Mechanistically, PS-NPs disrupt the hepatic SIRT1-AMPK pathway by suppressing the expression of SIRT1, AMPKα, and PPARα, while enhancing the expression of SREBP-1c, ultimately leading to disordered hepatic lipid metabolism. The sphingolipid and glycerophospholipid metabolic pathways were particularly affected. Additionally, in agreement with transcriptomic analyses, PS-NPs activate the hepatic TLR4/NF-κB pathway. At the same time, exposure to PS-NPs decreases the expression of ZO-1, occludin, and claudin-1, diminishes the relative abundance of beneficial gut bacteria (norank_f_Muribaculaceae, Akkermansia, and norank_f_norank_o_Clostridia_UCG-014), and increases the prevalence of pathogenic gut bacteria (Coriobacteriaceae_UCG-002 and Desulfovibrio), exacerbating liver injury through the gut-liver axis. However, administering DHA-PS (50 mg/kg) effectively alleviated these injuries. CONCLUSION This study was the first to employ multi-omics techniques to elucidate the potential mechanisms underlying hepatotoxicity induced by PS-NPs, thereby supporting the use of DHA-PS as a dietary supplement to mitigate the effects of nanoplastic pollutants.
Collapse
Affiliation(s)
- Yuanlei Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan, 316000, China
| | - Rui Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yun Lu
- Medical Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China.
| | - Su Jiang
- ECA Healthcare Inc, Shanghai, 201101, China
| | - Yunping Tang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
4
|
Zhang H, Lu Y, Zhang Y, Dong J, Jiang S, Tang Y. DHA-enriched phosphatidylserine ameliorates cyclophosphamide-induced liver injury via regulating the gut-liver axis. Int Immunopharmacol 2024; 140:112895. [PMID: 39133957 DOI: 10.1016/j.intimp.2024.112895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVE This study explores the therapeutic effects and mechanisms of DHA-enriched phosphatidylserine (DHA-PS) on liver injury induced by cyclophosphamide (CTX) in mice, focusing on the gut-liver axis. METHODS A mouse model was established by administering CTX (80 mg/kg) intraperitoneally for 5 days. DHA-PS (50 or 100 mg/kg) was administered for the next 7 days to assess its reparative impact on liver damage. RESULTS The findings revealed significant improvements in liver biochemical indices, inflammatory markers, and oxidative stress levels in the mice treated with DHA-PS. Through non-targeted metabolomics analysis, DHA-PS mitigated CTX-induced metabolic disruptions by modulating lipid, amino acid, and pyrimidine metabolism. Immunofluorescence analysis further confirmed that DHA-PS reduced the expression of liver-associated inflammatory proteins by inhibiting the TLR4/NF-κB pathway. Additionally, DHA-PS restored the intestinal barrier, evidenced by adjustments in the levels of intestinal lipopolysaccharide (LPS), secretory immunoglobulin A (sIgA), and tight junction proteins (Claudin-1, Occludin, and ZO-1). It also improved gut microbiota balance by enhancing microbial diversity, increasing beneficial bacteria, and altering community structures. CONCLUSION These results suggest that DHA-PS could be a potential therapeutic agent or functional food for CTX-induced liver injury through its regulation of the gut-liver axis.
Collapse
Affiliation(s)
- Honglei Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yun Lu
- Medical Department, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China.
| | - Yuanlei Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiayu Dong
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Su Jiang
- ECA Healthcare Inc, Shanghai, 201101, China
| | - Yunping Tang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
5
|
Ye Y, Li M, Chen W, Wang H, He X, Liu N, Guo Z, Zheng C. Natural polysaccharides as promising reno-protective agents for the treatment of various kidney injury. Pharmacol Res 2024; 207:107301. [PMID: 39009291 DOI: 10.1016/j.phrs.2024.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/13/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Renal injury, a prevalent clinical outcome with multifactorial etiology, imposes a substantial burden on society. Currently, there remains a lack of effective management and treatments. Extensive research has emphasized the diverse biological effects of natural polysaccharides, which exhibit promising potential for mitigating renal damage. This review commences with the pathogenesis of four common renal diseases and the shared mechanisms underlying renal injury. The renoprotective roles of polysaccharides in vivo and in vitro are summarized in the following five aspects: anti-oxidative stress effects, anti-apoptotic effects, anti-inflammatory effects, anti-fibrotic effects, and gut modulatory effects. Furthermore, we explore the structure-activity relationship and bioavailability of polysaccharides in relation to renal injury, as well as investigate their utility as biomaterials for alleviating renal injury. The clinical experiments of polysaccharides applied to patients with chronic kidney disease are also reviewed. Broadly, this review provides a comprehensive perspective on the research direction of natural polysaccharides in the context of renal injury, with the primary aim to serve as a reference for the clinical development of polysaccharides as pharmaceuticals and prebiotics for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Yufei Ye
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Maoting Li
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China; Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China
| | - Wei Chen
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Hongrui Wang
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuhui He
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Nanmei Liu
- Department of Nephrology, Naval Medical Center of PLA, Second Military Medical University/Naval Medical University, 338 West Huaihai Road, Shanghai 200052, China.
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University/Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Chengjian Zheng
- Department of Chinese Medicine Authentication, Faculty of Pharmacy, Second Military Medical University/Naval Medical University, 325 Guohe Road, Shanghai 200433, China.
| |
Collapse
|
6
|
Ince S, Demirel HH, Demirkapi EN, Kucukkurt I, Eryavuz A, Arslan-Acaroz D, Acaroz U, Tureyen A. Magnolin alleviates cyclophosphamide-induced oxidative stress, inflammation, and apoptosis via Nrf2/HO-1 signaling pathway. Toxicol Res (Camb) 2024; 13:tfae129. [PMID: 39148957 PMCID: PMC11323662 DOI: 10.1093/toxres/tfae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
In the present study, we investigated the protective effect of magnolin (MAG) against oxidative stress induced by cyclophosphamide (CP) and its role in the Nrf2/HO-1 signaling pathway. Rats were administered MAG (1 mg/kg, i.p.) for 14 days and CP (75 mg/kg, i.p.) on the 14th day. CP administration increased tissue damage, as evidenced by elevated levels of transaminases (aspartate and alanine), alkaline phosphatase, and renal parameters (blood urea nitrogen and creatinine). Additionally, 8-hydroxy-2'-deoxyguanosine and malondialdehyde levels were increased, whereas glutathione levels, along with catalase and superoxide dismutase activities, decreased in CP-treated rats. CP also down-regulated the expression of Bcl-2, HO-1, Nrf2, and NQO-1, while up-regulating Bax, Cas-3, TNF-α, Cox-2, iNOS, IL-6, IL-1β, and NFκB in liver and kidney tissues. In addition, CP treatment caused histopathological changes in heart, lung, liver, kidney, brain, and testis tissues. Treatment with MAG improved biochemical and oxidative stress parameters and prevented histopathological changes in CP-treated rats. Moreover, MAG suppressed the expression of inflammatory cytokines and apoptosis markers. In conclusion, MAG effectively prevented CP-induced toxicity by reducing oxidative stress, inflammation, and apoptosis, with its protective efficacy associated with the up-regulation of Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Sinan Ince
- Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | | | - Ezgi Nur Demirkapi
- Faculty of Veterinary Medicine, Department of Physiology, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Ismail Kucukkurt
- Faculty of Veterinary Medicine, Department of Biochemistry, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Abdullah Eryavuz
- Faculty of Veterinary Medicine, Department of Physiology, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Damla Arslan-Acaroz
- Faculty of Veterinary Medicine, Department of Biochemistry, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
- Kyrgyz-Turkish Manas University, Department of Biochemistry, Faculty of Veterinary Medicine, Bishkek, KG-720038, Kyrgyzstan
| | - Ulas Acaroz
- Kyrgyz-Turkish Manas University, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, KG720038, Bishkek, Kyrgyzstan
- Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, Afyon Kocatepe University, 03200 Afyonkarahisar, Turkey
| | - Ali Tureyen
- Department of Gastroenterology, Ministry of Health Eskisehir City Hospital, 26080 Eskisehir, Turkey
| |
Collapse
|
7
|
Lu M, Yin J, Xu T, Dai X, Liu T, Zhang Y, Wang S, Liu Y, Shi H, Zhang Y, Mo F, Sukhorukov V, Orekhov AN, Gao S, Wang L, Zhang D. Fuling-Zexie formula attenuates hyperuricemia-induced nephropathy and inhibits JAK2/STAT3 signaling and NLRP3 inflammasome activation in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117262. [PMID: 37788785 DOI: 10.1016/j.jep.2023.117262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuling-Zexie (FZ) formula, a traditional Chinese herbal prescription composed of Poria cocos (Schwan.) Wolf. (Poria), Pueraria lobate (Willd.) Howe. (Puerariae Lobatae Radix), Alisma orientale (Sam.) Julep. (Alismatis Rhizoma), and Atractylodes lancea (Thunb.) Dc. (Atractylodis Rhizoma), has been clinically used to ameliorate hyperuricemia (HUA) and its associated renal injury. AIM OF STUDY This study aims to explore the action and mechanism of FZ on renal inflammation and dysfunction caused by HUA. MATERIALS AND METHODS FZ was orally administered to rapid HUA mouse induced by potassium oxonate (PO) and hypoxanthine (HX) for 7 days. Serum levels of uric acid (UA), creatinine (CRE), blood urea nitrogen (BUN), xanthine oxidase (XOD), adenosine deaminase (ADA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), urine levels of UA, CRE and urinary albumin were determined by biochemical assays. Serum levels of interleukin (IL)-1β and IL-6 were tested by ELISA. Hematoxylin-eosin and Masson staining were used to examine kidney and liver histopathological alterations. The expressions of renal glucose transporter 9 (GLUT9), ATP-binding cassette subfamily G member 2 (ABCG2), organic anion transporter 1 (OAT1), phospho-janus kinase 2 (p-JAK2), p-signal transducer and activator of transcription 3 (p-STAT3), suppression of cytokine signaling 3 (SOCS3), NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and cleaved-cysteinyl aspartate specific proteinase-1 (cleaved-Cas-1) were detected by western blots. The potential protein targets and pathways of FZ intervention on HUA were predicted by network pharmacology. The constituents in FZ aqueous extract were analyzed by UPLC-MS. RESULTS FZ reduced serum UA, CRE, BUN, and urinary albumin and increased urine UA, CRE levels in HUA mice. In addition, the treatment with FZ to HUA mice inhibited the elevated serum levels of XOD and ADA, and regulated renal urate transports including OAT1, GLUT9 and ABCG2. FZ also attenuated kidney inflammation and fibrosis and downregulated the expressions of IL-1β, p-JAK2, p-STAT3, SOCS3, IL-6, NLRP3, ASC, and cleaved-Cas-1. Thirteen compounds were identified in the FG, including L-phenylalanine, D-tryptophan, 3'-hydroxypuerarin, Puerarin, 3'-Methoxy Puerarin, Daidzin, Pueroside A, formononetin-8-C- [xylosyl (1→6)]-glucoside, Ononin, Alisol I 23-acetate, 16-oxo-alisol A, Alisol C and Alisol A. CONCLUSION FZ inhibits serum UA generation and promotes urine UA excretion as well as attenuates kidney inflammation and fibrosis in HUA mouse with nephropathy. The underlying mechanism of its action may be associated with suppression of the JAK2/STAT3 signaling pathway and NLRP3 inflammasome activation. This formula may offer a novel source for developing anti-HUA drugs.
Collapse
Affiliation(s)
- Meixi Lu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yueyi Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yanfei Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Fangfang Mo
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Vasily Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
8
|
Zayed A, Al-Saedi DA, Mensah EO, Kanwugu ON, Adadi P, Ulber R. Fucoidan's Molecular Targets: A Comprehensive Review of Its Unique and Multiple Targets Accounting for Promising Bioactivities Supported by In Silico Studies. Mar Drugs 2023; 22:29. [PMID: 38248653 PMCID: PMC10820140 DOI: 10.3390/md22010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Fucoidan is a class of multifunctional polysaccharides derived from marine organisms. Its unique and diversified physicochemical and chemical properties have qualified them for potential and promising pharmacological uses in human diseases, including inflammation, tumors, immunity disorders, kidney diseases, and diabetes. Physicochemical and chemical properties are the main contributors to these bioactivities. The previous literature has attributed such activities to its ability to target key enzymes and receptors involved in potential disease pathways, either directly or indirectly, where the anionic sulfate ester groups are mainly involved in these interactions. These findings also confirm the advantageous pharmacological uses of sulfated versus non-sulfated polysaccharides. The current review shall highlight the molecular targets of fucoidans, especially enzymes, and the subsequent responses via either the upregulation or downregulation of mediators' expression in various tissue abnormalities. In addition, in silico studies will be applied to support the previous findings and show the significant contributors. The current review may help in understanding the molecular mechanisms of fucoidan. Also, the findings of this review may be utilized in the design of specific oligomers inspired by fucoidan with the purpose of treating life-threatening human diseases effectively.
Collapse
Affiliation(s)
- Ahmed Zayed
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
- Department of Pharmacognosy, College of Pharmacy, Tanta University, El-Guish Street (Medical Campus), Tanta 31527, Egypt
| | - Dalal A. Al-Saedi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Emmanuel Ofosu Mensah
- Faculty of Ecotechnology, ITMO University, Lomonosova Street 9, Saint Petersburg 191002, Russia;
| | - Osman Nabayire Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Mira Street 28, Yekaterinburg 620002, Russia;
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Parise Adadi
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand;
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663 Kaiserslautern, Germany
| |
Collapse
|
9
|
Pu Q, Yang F, Zhao R, Jiang S, Tang Y, Han T. Investigation of the potential ameliorative effects of DHA-enriched phosphatidylserine on bisphenol A-induced murine nephrotoxicity. Food Chem Toxicol 2023; 180:114012. [PMID: 37666289 DOI: 10.1016/j.fct.2023.114012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
In order to investigate the amelioration of docosahexaenoic acid-enriched phosphatidylserine (DHA-PS) on bisphenol A (BPA)-induced nephrotoxicity, the murine nephrotoxicity model was established by intragastric administration of BPA (5 mg/kg/B.W.) for 6 weeks. The biochemical indices, hematoxylin-eosin (H&E) staining, kidney metabolomics, and related protein expression levels of SIRT1-AMPK pathway were then determined. Our results indicated that DHA-PS (100 mg/kg/B.W.) ameliorated the BPA-induced nephrotoxicity after 6 weeks of intragastric administration, primarily by decreasing the serum creatinine (CRE) and blood urea nitrogen (BUN), renal inflammatory cytokines and lipid levels, and increasing the antioxidant enzyme activities. In addition, the untargeted metabolomics of the kidney indicated that BPA perturbed the tryptophan metabolism, pyridine metabolism, and valine, leucine, and isoleucine biosynthesis, while DHA-PS administration significantly affected the glycerophospholipid metabolism, valine, leucine, and isoleucine biosynthesis to ameliorate the BPA-induced metabolic disorder. Moreover, DHA-PS administration could ameliorate the BPA-induced lipid disturbance by upregulating the expressions of AMPKα1, SIRT1, and PPARα while downregulating the expression of SREBP-1c through the SIRT1-AMPK pathway. This is the first time that the amelioration effects of DHA-PS on BPA-induced nephrotoxicity have been investigated from multiple perspectives, suggesting that DHA-PS might be a potential dietary supplement for reducing BPA-induced nephrotoxicity.
Collapse
Affiliation(s)
- Qiuyan Pu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Fei Yang
- Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Neonatal Intensive Care Unit, Hangzhou, 310008, China
| | - Rui Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Su Jiang
- ECA Healthcare Inc, Shanghai, 201101, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China.
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China.
| |
Collapse
|
10
|
Zhang Y, Wang S, Dai X, Liu T, Liu Y, Shi H, Yin J, Xu T, Zhang Y, Zhao D, Sukhorukov V, Orekhov AN, Gao S, Wang L, Zhang D. Simiao San alleviates hyperuricemia and kidney inflammation by inhibiting NLRP3 inflammasome and JAK2/STAT3 signaling in hyperuricemia mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116530. [PMID: 37098372 DOI: 10.1016/j.jep.2023.116530] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Simiao San (SmS), a famous traditional Chinese formula, is clinically used to treat patients with hyperuricemia (HUA). However, its mechanism of action on lowering uric acid (UA) and inhibiting inflammation still deserves further investigation. AIM OF THE STUDY To examine the effect and its possible underlying mechanism of SmS on UA metabolism and kidney injury in HUA mouse. MATERIALS AND METHODS The HUA mouse model was constructed with the combined administration of both potassium oxalate and hypoxanthine. The effects of SmS on UA, xanthine oxidase (XOD), creatinine (CRE), blood urea nitrogen (BUN), interleukin-10 (IL-10), interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) were determined by ELISA or biochemical assays. Hematoxylin and eosin (H&E) was used to observe pathological alterations in the kidneys of HUA mice. The expression levels of organic anion transporter 1 (OAT1), recombinant urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), nucleotide binding domain and leucine rich repeat pyrin domain containing 3 (NLRP3), Cleaved-Caspase 1, apoptosis-associated speck like protein (ASC), nuclear factor kappa-B (NF-κB), IL-6, janus kinase 2 (JAK2), phosphor (P)-JAK2, signal transducers and activators of transcription 3 (STAT3), P-STAT3, suppressor of cytokine signaling 3 (SOCS3) were examined by Western blot and/or immunohistochemical (IHC) staining. The major ingredients in SmS were identified by a HPLC-MS assay. RESULTS HUA mouse exhibited an elevation in serum levels of UA, BUN, CRE, XOD, and the ratio of urinary albumin to creatinine (UACR), and a decline in urine levels of UA and CRE. In addition, HUA induces pro-inflammatory microenvironment in mouse, including an increase in serum levels of IL-1β, IL-6, and TNF-α, and renal expressions of URAT1, GULT9, NLRP3, ASC, Cleaved-Caspase1, P-JAK2/JAK2, P-STAT3/STAT3, and SOCS3, and a decrease in serum IL-10 level and renal OAT1 expression as well as a disorganization of kidney pathological microstructure. In contrast, SmS intervention reversed these alterations in HUA mouse. CONCLUSION SmS could alleviate hyperuricemia and renal inflammation in HUA mouse. The action mechanisms behind these alterations may be associated with a limitation of the NLRP3 inflammasome and JAK2/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Yueyi Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yage Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yanfei Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dandan Zhao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Vasily Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, Moscow, 125315, Russia.
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
11
|
Abouelkheir M, Taher I, Eladl ASR, Shabaan DA, Soliman MFM, Taha AE. Detection and Quantification of Some Ethanol-Producing Bacterial Strains in the Gut of Mouse Model of Non-Alcoholic Fatty Liver Disease: Role of Metformin. Pharmaceuticals (Basel) 2023; 16:ph16050658. [PMID: 37242441 DOI: 10.3390/ph16050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Ethanol-producing dysbiotic gut microbiota could accelerate the progress of non-alcoholic fatty liver disease (NAFLD). Metformin demonstrated some benefits in NAFLD. In the present study, we tested the ability of metformin to modify ethanol-producing gut bacterial strains and, consequently, retard the progress of NAFLD. This 12-week study included forty mice divided into four groups (n = 10); normal diet, Western diet, Western diet with intraperitoneal metformin, and Western diet with oral metformin. Oral metformin has a slight advantage over intraperitoneal metformin in ameliorating the Western diet-induced changes in liver function tests and serum levels of different cytokines (IL-1β, IL-6, IL-17, and TNF-α). Changes in liver histology, fibrosis, lipid content, Ki67, and TNF-α were all corrected as well. Faecal ethanol contents were increased by the Western diet but did not improve after treatment with metformin although the numbers of ethanol-producing Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) were decreased by oral metformin. Metformin did not affect bacterial ethanol production. It does not seem that modification of ethanol-producing K. pneumoniae and E. coli bacterial strains by metformin could have a significant impact on the therapeutic potentials of metformin in this experimental model of NAFLD.
Collapse
Affiliation(s)
- Mohamed Abouelkheir
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Department of Pharmacology, College of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ibrahim Taher
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
| | - Amira S R Eladl
- Department of Pharmacology, College of Medicine, Mansoura University, Mansoura 35516, Egypt
- Department of Pharmacology, College of Medicine, Horus University, Damietta 34511, Egypt
| | - Dalia A Shabaan
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mona F M Soliman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed E Taha
- Microbiology and Immunology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
12
|
Chemical characterization of polysaccharides from Arctium lappa root and its hepatoprotective effects on mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
13
|
Gao Y, Zong Z, Xia W, Fang X, Liu R, Wu W, Mu H, Han Y, Xiao S, Gao H, Chen H. Hepatoprotective effect of water bamboo shoot (
Zizania latifolia
) extracts against acute alcoholic liver injury in a mice model and screening of bioactive phytochemicals. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
14
|
Tian S, Zhao Y, Qian L, Jiang S, Tang Y, Han T. DHA-enriched phosphatidylserine alleviates high fat diet-induced jejunum injury in mice by modulating gut microbiota. Food Funct 2023; 14:1415-1429. [PMID: 36644847 DOI: 10.1039/d2fo03019e] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A long-term high-fat diet (HFD) is one of the high-risk factors for intestinal barrier damage. Docosahexaenoic acid-enriched phosphatidylserine (DHA-PS) has multiple biological activities, while its protective effect on HFD-caused jejunum injury remains unknown. Thus, the present study investigated the protective effect of DHA-PS on HFD-induced jejunum injury in mice. Our results showed that DHA-PS (100 mg per kg per d) could protect against HFD-caused jejunum injury by decreasing the levels of inflammatory factors such as interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in the serum and jejunum tissues, with histological analysis confirming this injury amelioration. Additionally, DHA-PS alleviated the HFD-caused oxidative stress by decreasing malondialdehyde (MDA) and increasing total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) levels in the jejunum. Moreover, DHA-PS significantly increased the expression of tight junction proteins (ZO-1, occludin, and claudin-4) in the jejunum, and modulated the HFD-induced gut microbiota disorder by decreasing the Firmicutes and Bacteroidetes ratio, and reducing the relative abundance of Lachnoclostridium, Coriobacteriaceae, Desulfovibrionaceae, and Helicobacter, while increasing the relative abundance of Lachnospiraceae_NK4A136_group, Alistipes, norank_f__Muribaculaceae, and Bacteroides. Overall, these results support that DHA-PS can alleviate the HFD-caused jejunum injury.
Collapse
Affiliation(s)
- Shanshan Tian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yanfeng Zhao
- Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Neonatal Intensive Care Unit, Hangzhou, 310008, China
| | - Li Qian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Su Jiang
- ECA Healthcare Inc., Shanghai 201101, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China.
| |
Collapse
|
15
|
Uyumlu AB, Satılmış B, Atıcı B, Taşlıdere A. Phenethyl isothiocyanate protects against cyclophosphamide-induced nephrotoxicity via nuclear factor E2-related factor 2 pathway in rats. Exp Biol Med (Maywood) 2023; 248:157-164. [PMID: 36598044 PMCID: PMC10041055 DOI: 10.1177/15353702221139206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/06/2022] [Indexed: 01/05/2023] Open
Abstract
Phenethyl isothiocyanate (PEITC), a secondary metabolite in Cruciferous plants, exerts chemopreventive and antioxidant effects. However, its therapeutic potential in cyclophosphamide (CP)-induced nephrotoxicity is not clear. So, we focused to research on the effect of PEITC against renal toxicity caused by CP and its relationship to the Nrf2 signaling mechanism. Thirty female Wistar albino rats were allocated to three groups: control (n = 10), CP (n = 10), and PEITC-pretreated group (150 µmol/kg b.w. orally; n = 10). The antioxidant enzyme activities and levels of malondialdehyde (MDA), sirtuin 1 (SIRT1), glutathione-S-transferase (GST), nuclear factor E2-related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), serum urea, and creatinine (Cr) were measured. In the CP group, serum urea and Cr, MDA, and NF-κB levels have risen, and the activities of antioxidant enzymes and SIRT1, Nrf2, and GST levels have reduced significantly (P < 0.05). PEITC diminished levels of Cr, urea, MDA, and NF-κB while it enhanced antioxidant enzyme activities and GST, Nrf2, and SIRT1 levels significantly (P < 0.05). Pretreatment with PEITC ameliorated kidney tissue injury. The renal protective effect of the PEITC was supported by the histological analysis of the kidney. PEITC prevented CP-induced nephrotoxicity by decreasing oxidative damage through Nrf2 and SIRT1 activation and NF-κB inhibition. Therefore, we have suggested that PEITC may be a useful agent for protection against CP-induced renal injury.
Collapse
Affiliation(s)
| | - Basri Satılmış
- Hepatology Research Laboratory, Liver Transplantation Institute, İnönü University, 44280 Malatya, Turkey
| | - Buğrahan Atıcı
- Department of Biochemistry, İnönü University, 44280 Malatya, Turkey
| | - Aslı Taşlıdere
- Department of Histology and Embryology, İnönü University, 44280 Malatya, Turkey
| |
Collapse
|
16
|
Luo JH, Li J, Shen ZC, Lin XF, Chen AQ, Wang YF, Gong ES, Liu D, Zou Q, Wang XY. Advances in health-promoting effects of natural polysaccharides: Regulation on Nrf2 antioxidant pathway. Front Nutr 2023; 10:1102146. [PMID: 36875839 PMCID: PMC9978827 DOI: 10.3389/fnut.2023.1102146] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Natural polysaccharides (NPs) possess numerous health-promoting effects, such as liver protection, kidney protection, lung protection, neuroprotection, cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway is an important endogenous antioxidant pathway, which plays crucial roles in maintaining human health as its protection against oxidative stress. Accumulating evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory targets for the health-promoting effects of NPs. However, the information concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and NPs show different regulatory behaviors in their different health-promoting processes. Therefore, in this article, structural features of NPs having regulation on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of NPs on this pathway for health-promoting effects are summarized. Furthermore, structure-activity relationship of NPs for health-promoting effects by regulating the pathway is preliminarily discussed. Otherwise, the prospects on future work for regulation of NPs on this pathway are proposed. This review is beneficial to well-understanding of underlying mechanisms for health-promoting effects of NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical basis for the development and utilization of NPs in promoting human health.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Bagalagel A, Diri R, Noor A, Almasri D, Bakhsh HT, Kutbi HI, Al-Gayyar MMH. Curative effects of fucoidan on acetic acid induced ulcerative colitis in rats via modulating aryl hydrocarbon receptor and phosphodiesterase-4. BMC Complement Med Ther 2022; 22:196. [PMID: 35870906 PMCID: PMC9308347 DOI: 10.1186/s12906-022-03680-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Ulcerative colitis (UC) is an inflammatory bowel disease. Fucoidan, sulfated polysaccharide of brown seaweed, demonstrates various pharmacological actions as anti-inflammatory, anti-tumor and anti-bacterial effects. Therefore, we opt to investigate the potential curative effects of fucoidan in experimentally induced UC in rats through modulating aryl hydrocarbon receptor (AhR), phosphodiesterase-4 (PDE4), nuclear factor erythroid 2-related factor 2 (Nrf2) and Heme Oxygenase-1 (HO-1). Methods UC was induced in rats using intracolonic 2 ml of 4% acetic acid. Some rats were treated with 150 mg/kg fucoidan. Samples of colon were used to investigate gene and protein expression of AhR, PDE4, Nrf2, HO-1 and cyclic adenosine monophosphate (cAMP). Sections of colon were stained with hematoxylin/eosin, Alcian blue or immune-stained with anti-PDE4 antibodies. Results Investigation of hematoxylin/eosin stained micro-images of UC rats revealed damaged intestinal glands, severe hemorrhage and inflammatory cell infiltration, while sections stained with Alcian Blue revealed damaged and almost absent intestinal glands. UC results in elevated gene and protein expression of PDE4 associated with reduced gene and protein expression of AhR, IL-22, cAMP, Nrf2 and HO-1. Finally, UC increased the oxidative stress and reduced antioxidant activity in colon tissues. All morphological changes as well as gene and protein expressions were ameliorated by fucoidan. Conclusion Fucoidan could treat UC induced in rats. It restored the normal weight and length of colon associated with morphological improvement as found by examining sections stained with hematoxylin/eosin and Alcian Blue. The curative effects could be explained by enhancing antioxidant activity, reducing the expression of PDE4 and increasing the expression of AhR, IL-22 and cAMP.
Collapse
|
18
|
Ren Z, Yang F, Yao S, Bi L, Jiang G, Huang J, Tang Y. Effects of low molecular weight peptides from monkfish (Lophius litulon) roe on immune response in immunosuppressed mice. Front Nutr 2022; 9:929105. [PMID: 36211506 PMCID: PMC9532971 DOI: 10.3389/fnut.2022.929105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the immunomodulatory activation of low-molecular-weight peptides from monkfish (Lophius litulon) roe (named MRP) on cyclophosphamide (CTX)-induced immunosuppressed mice. Our results indicated that MRP (100 mg/kg/d BW) could significantly increase the body weight and immune organ index, and improve the morphological changes in the spleen and thymus of mice. These effects subsequently enhance the serum levels of interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, and immunoglobulin (Ig) A, IgM, and IgG. Furthermore, MRP could also improve CTX-induced oxidative stress, and activate the NF-κB and MAPK pathways in the spleen tissues. The findings reported herein indicate that MRP has a good immunomodulatory activation toward immunosuppressed mice, hence can potentially be developed as an immune adjuvant or functional food.
Collapse
Affiliation(s)
- Zhexin Ren
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Fei Yang
- Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Neonatal Intensive Care Unit, Hangzhou, China
| | - Sijia Yao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Lijun Bi
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Guanqin Jiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Ju Huang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Ju Huang
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- Yunping Tang
| |
Collapse
|
19
|
Zhang N, Tian Y, Wang Y, Fan Y, Zhang Y, Xing X, Nan B, Ai Z, Li X, Wang Y. Ameliorative effect of Lactobacillus plantarum Lp2 against cyclophosphamide-induced liver injury in mice. Food Chem Toxicol 2022; 169:113433. [PMID: 36122811 DOI: 10.1016/j.fct.2022.113433] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 11/29/2022]
Abstract
Cyclophosphamide (CTX) is a widely used anticancer drug that can cause liver injury, but there is no effective treatment available at present. The antioxidant properties of Lactobacillus plantarum Lp2 in vitro and its effect on CTX-induced liver injury in mice were investigated thoroughly. The order of antioxidant capacity of the fermentate of Lp2 was as followed: fermented supernatant > cell-free extract > intact cell. BALB/c mice were intraperitoneally injected with 80 mg/kg BW/d CTX for 3 days to build a liver injury model, then treated with Lp2 fermented supernatant (Lp2-s) and Lp2 culture broth (Lp2). After 10 days, the indicators of oxidative stress and liver injury were measured. Both Lp2-s and Lp2 restored the levels of T-SOD, CAT, GSH-Px, MDA, GSH, ALT, and AST. The western blotting results showed that Lp2-s and Lp2 ameliorated CTX-induced oxidative damage and hepatocyte apoptosis via inhibiting MAPKs pathway and strengthening Nrf2/HO-1/NQO1 antioxidant defense system, thus inhibiting the mitochondrial-mediated apoptosis pathway. Therefore, both Lp2-s and Lp2 had similar protective effects on CTX-induced liver injury.
Collapse
Affiliation(s)
- Nan Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, 130118, China
| | - Yuan Tian
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, 130118, China
| | - Yu Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, 130118, China
| | - Yuling Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, 130118, China
| | - Yue Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyue Xing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, 130118, China
| | - Bo Nan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, 130118, China
| | - Zhiyi Ai
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, 130118, China
| | - Xia Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, 130118, China.
| | - Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China; Jilin Province Innovation Center for Food Biological Manufacture, Jilin Agricultural University, Changchun, 130118, China; National Processing Laboratory for Soybean Industry and Technology, Changchun, 130118, China; National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, 130118, China.
| |
Collapse
|
20
|
Chen H, Zheng H, Li T, Jiang Q, Liu S, Zhou X, Ding Y, Xiang X. Protective Effect of Oyster Peptides Derived From Crassostrea gigas on Intestinal Oxidative Damage Induced by Cyclophosphamide in Mice Mediated Through Nrf2-Keap1 Signaling Pathway. Front Nutr 2022; 9:888960. [PMID: 35651503 PMCID: PMC9149377 DOI: 10.3389/fnut.2022.888960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Oyster peptide (OP) has exhibited useful biological activities and can be used in multi-functional foods. OP has been reported to play a significant role in intestinal protection, but its specific mechanism is still not completely understood. The aim of this study was to analyze the potential effect of OP on oxidative damage of mice intestine induced by cyclophosphamide (Cy). The experimental results revealed that intragastric administration of OP significantly increased average bodyweight, improved ileum tissue morphology and villus structure, as well as increased the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) in oxidized mice serum and liver. The content of malondialdehyde (MDA) in the mice serum and liver homogenate was found to be markedly decreased. Moreover, OP significantly increased the relative mRNA expression levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), quinone oxidoreductase (NQO1) and heme oxidase-1 (HO-1) in ileum. Western-blot results indicated that prior administration of OP significantly up-regulated the Nrf2 production in ileum, and substantially decreased then Keap1 gene expression. In conclusion, intake of OP was found to markedly improve intestinal oxidative stress in vivo, and this effect was primarily mediated through the simulation of antioxidant Nrf2-Keap1 signaling pathway. This study is beneficial to the application of peptide nutrients in the prevention or mitigation of intestinal oxidative damage.
Collapse
Affiliation(s)
- Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China.,National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Huizhen Zheng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Qihong Jiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China.,Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
21
|
Tang Y, Pu Q, Zhao Q, Zhou Y, Jiang X, Han T. Effects of Fucoidan Isolated From Laminaria japonica on Immune Response and Gut Microbiota in Cyclophosphamide-Treated Mice. Front Immunol 2022; 13:916618. [PMID: 35664002 PMCID: PMC9160524 DOI: 10.3389/fimmu.2022.916618] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
The effects of Laminaria japonica fucoidan (LF) on immune regulation and intestinal microflora in cyclophosphamide (CTX)-treated mice were investigated in this work. Results indicated that LF significantly enhanced the spleen and thymus indices, promoted spleen lymphocyte and peritoneal macrophages proliferation, and increased the immune-related cytokines production in serum. Moreover, LF could regulate intestinal flora composition, increasing the abundance of Lactobacillaceae and Alistipes, and inhibiting Erysipelotrichia, Turicibacter, Romboutsia, Peptostreptococcaceae, and Faecalibaculum. These results were positively correlated with immune characteristics. Overall, LF could be useful as a new potential strategy to mitigate CTX immunosuppression and intestinal microbiota disorders.
Collapse
Affiliation(s)
- Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Qiuyan Pu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan, China
| | - Yafeng Zhou
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoxia Jiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
22
|
Qian L, Tian S, Jiang S, Tang Y, Han T. DHA-enriched phosphatidylcholine from Clupea harengus roes regulates the gut–liver axis to ameliorate high-fat diet-induced non-alcoholic fatty liver disease. Food Funct 2022; 13:11555-11567. [DOI: 10.1039/d2fo02672d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DHA-enriched phosphatidylcholine from Clupea harengus roes could likely be used as a functional food supplement for the prevention of high-fat diet-induced non-alcoholic fatty liver disease via the gut–liver axis.
Collapse
Affiliation(s)
- Li Qian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shanshan Tian
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Su Jiang
- ECA Healthcare Inc, Shanghai 201101, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan 316000, China
| |
Collapse
|
23
|
Ahmad AM, Mohammed HA, Faris TM, Hassan AS, Mohamed HB, El Dosoky MI, Aboubakr EM. Nano-Structured Lipid Carrier-Based Oral Glutathione Formulation Mediates Renoprotection against Cyclophosphamide-Induced Nephrotoxicity, and Improves Oral Bioavailability of Glutathione Confirmed through RP-HPLC Micellar Liquid Chromatography. Molecules 2021; 26:7491. [PMID: 34946570 PMCID: PMC8706828 DOI: 10.3390/molecules26247491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
The study aimed to develop a new glutathione (GSH) oral formulation to enhance the delivery of GSH and counter the nephrotoxicity of the anticancer drug, cyclophosphamide (CP). A nanostructured lipid carrier glutathione formulation (GSH-NLCs) composed of glutathione (500 mg), stearic and oleic acid (300 mg, each), and Tween® 80 (2%, w/v) was prepared through the emulsification-solvent-evaporation technique, which exhibited a 452.4 ± 33.19 nm spheroidal-sized particulate material with narrow particle size distributions, -38.5 ± 1.4 mV zeta potential, and an entrapment efficiency of 79.8 ± 1.9%. The GSH formulation was orally delivered, and biologically tested to ameliorate the CP-induced renal toxicity in a rat model. Detailed renal morphology, before and after the GSH-NLCs administration, including the histopathological examinations, confirmed the ameliorating effects of the prepared glutathione formulation together with its safe oral delivery. CP-induced oxidative stress, superoxide dismutase depletion, elevation of malondialdehyde levels, depletion of Bcl-2 concentration levels, and upregulated NF-KB levels were observed and were controlled within the recommended and near normal/control levels. Additionally, the inflammatory mediator marker, IL-1β, serum levels were marginally normalized by delivery of the GHS-NLCs formulation. Oral administration of the pure glutathione did not exhibit any ameliorating effects on the renal tissues, which suggested that the pure glutathione is reactive and is chemically transformed during the oral delivery, which affected its pharmacological action at the renal site. The protective effects of the GSH-NLCs formulation through its antioxidant and anti-inflammatory effects suggested its prominent role in containing CP-induced renal toxicity and renal tissue damage, together with the possibility of administrating higher doses of the anticancer drug, cyclophosphamide, to achieve higher and effective anticancer action in combination with the GSH-NLCs formulation.
Collapse
Affiliation(s)
- Adel M. Ahmad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Tarek M. Faris
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Al-Azhar University, Cairo 11371, Egypt;
| | - Abeer S. Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt; (A.S.H.); (H.B.M.)
| | - Hebatallah B. Mohamed
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt; (A.S.H.); (H.B.M.)
| | - Mahmoud I. El Dosoky
- Department of Pathology, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Esam M. Aboubakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt;
| |
Collapse
|