1
|
Yu H, Tonog G, Moon SK, Lee S, Jeong H, Kim HS, Kim KB, Suh HJ, Kim H. Immunostimulatory effects of Bacillus subtilis-fermented garlic (Aglio): an in-depth in vitro and in vivo analysis. Food Funct 2024; 15:10360-10372. [PMID: 39315926 DOI: 10.1039/d4fo03598d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This study evaluated the immunostimulatory potential of garlic fermented with Bacillus subtilis (Aglio) and identified the underlying mechanisms using in vitro and in vivo models. Aglio significantly enhanced macrophage activity, with increased TNF-α (9.3-46.6 fold), MCP-1 (5.3-41.4 fold), IL-6 (2.1-32.1 fold), and IL-12 (1.1-5.5 fold) secretion compared to those of the standard garlic extract. This macrophage-stimulatory activity was associated with MAPK (ERK, JNK, and p38) and NF-κB (IκBα and p65) signaling pathway activation. Aglio significantly increased splenocyte proliferation (1.8-2.9 fold) and TNF-α (32.5-96.6 fold), IFN-γ (26.6-362.3 fold), GM-CSF (2.1-3.9 fold), and IL-6 (10.3-11.6 fold) secretion. Gene expression analysis revealed Th1-related T-Bet upregulation and Th2- and Th17-related GATA3 and FOXP3 downregulation, indicating a Th1-mediated splenocyte activation mechanism. Oral administration of Aglio (125 and 250 mg kg-1) to BALB/c mice increased splenocyte proliferation (2.1-3.3 fold) and elevated splenic cytokine (TNF-α, 1.9-2.7 fold; GM-CSF, 2.2-2.3 fold; IL-6, 1.9 fold) and antibody (IgA, 1.4-1.8 fold; IgG, 1.0-1.7 fold) levels. Aglio administration also increased serum TNF-α (2.1-3.3 fold), IL-6 (1.0-1.1 fold), and IgG (1.6-1.9 fold) levels. Nutrient analysis indicated that Aglio lacked detectable carbohydrates and had negligible protein and polyphenol contents compared to standard garlic extract, suggesting complete biotransformation during fermentation. These findings demonstrate Aglio-mediated immune activation, highlighting its potential as a functional food or nutraceutical agent for immune enhancement.
Collapse
Affiliation(s)
- Hyeonjun Yu
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, South Korea.
| | - Genevieve Tonog
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, South Korea.
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, South Korea.
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, South Korea.
| | | | | | | | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, South Korea.
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, South Korea.
| |
Collapse
|
2
|
Shin HY, Kim YS, Shin KS, Han SH, Suh HJ, Yu KW. Effect of rhamnogalacturonan-I-rich polysaccharides isolated from crabapple hydrolysates on IL-1β-induced inflammation in intestinal epithelial cells. Int J Biol Macromol 2024; 277:134240. [PMID: 39094865 DOI: 10.1016/j.ijbiomac.2024.134240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
This study aimed to investigate the structural characteristics and intracellular mechanisms of polysaccharides (MP-PE-I) purified from a crabapple (Malus prunifolia) enzymatic hydrolysate (MP-PE). Activity-guided fractionation revealed that MP-PE-I was the active moiety and significantly reduced the production and gene expression of pro-inflammatory factors in interleukin (IL)-1β-treated intestinal epithelial cells (Caco-2). Moreover, MP-PE-I downregulated the phosphorylation and nuclear localization of proteins involved in the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways, as evidenced by immunoblotting and immunofluorescence analysis. In antagonistic studies with specific inhibitors of the MAPK and NF-κB pathways, IL-6 inhibition was significantly regulated by p38; IL-8 by IκBα, JNK, and p38; and monocyte chemoattractant protein-1 (MCP-1) by JNK, p38, and ERK. Additionally, MP-PE-I significantly decreased the mRNA and protein expression of IL-1 receptor type 1. Chemical and structural characteristic analyses showed that MP-PE-I is a polysaccharide rich in rhamnogalacturonan (RG)-I and plays a crucial role in intestinal immunomodulation. To our knowledge, this is the first study to demonstrate the intestinal immunomodulatory activity, intracellular mechanisms, and structural characteristics of RG-I-rich polysaccharides isolated from crabapples.
Collapse
Affiliation(s)
- Hyun Young Shin
- Transdisciplinary Major in Learning Health Systems, Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
| | - Yeon Suk Kim
- Major in Food & Nutrition, Korea National University of Transportation, Chungbuk 27909, Republic of Korea
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| | - Sung Hee Han
- Institute of Human Behavior & Genetics, Korea University, Seoul 02841, Republic of Korea.
| | - Hyung Joo Suh
- Transdisciplinary Major in Learning Health Systems, Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
| | - Kwang-Won Yu
- Major in Food & Nutrition, Korea National University of Transportation, Chungbuk 27909, Republic of Korea.
| |
Collapse
|
3
|
Hong M, Moon SK, Kim H, Hwang D. Elucidating Korean meadowsweet (Filipendula glaberrima Nakai)-derived arabinogalactan protein-induced macrophage activation and its associated mechanism of action. Int J Biol Macromol 2024; 273:132999. [PMID: 38866280 DOI: 10.1016/j.ijbiomac.2024.132999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 05/14/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
This study aimed to confirm macrophage-stimulatory component from Korean meadowsweet (Filipendula glaberrima; FG) and characterize its compositional and structural properties. FG-CWH, prepared via cool-water extraction and ethanol precipitation, induced the highest secretion of NO (6.0-8.0 μM), TNF-α (8.7-9.5 ng/mL), and IL-6 (1.0-5.7 ng/mL) compared to other samples at 0.4-10 μg/mL in RAW 264.7 cells. Analytical results revealed that FG-CWH is a high-molecular-weight component with an average molecular weight of 220 kDa, constituting a polysaccharide-protein mixture. Chemical and enzymatic treatment of FG-CWH indicated its primary composition as arabinogalactan protein (AGP)-rich glycoprotein, with activity likely associated with the chemical and structural characteristics of AGP. FG-CWH treatment resulted in significant and concentration-dependent increases in iNOS (20.0-29.6 folds), TNFα (10.6-18.6 folds) and IL6 (10.9-155.6 folds) gene expression, as well as the secretion of NO (5.3-6.3 μM), TNF-α (35.4-44.3 ng/mL), and IL-6 (4.1-8.4 ng/mL) secretion, even at a reduced concentration range of 125-500 ng/mL, compared to the negative control group. Immunoblotting analysis indicated FG-CWH-induced macrophage stimulation significantly associated with the activation of MAPK (ERK, JNK, and p38) and NF-κB (p65 and IκBα). These findings can serve as valuable groundwork for developing FG-derived AGP as novel functional ingredients to enhance human immunity.
Collapse
Affiliation(s)
- Mijin Hong
- Department of Integrated Biomedical and Life Science, College of Health Sciences, Korea University, 02841, South Korea.
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, South Korea.
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, South Korea.
| | - Dahyun Hwang
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Chungnam 31499, South Korea; The Research Institute for Basic Sciences, Hoseo University, Asan, Chungnam 31499, South Korea.
| |
Collapse
|
4
|
Wang Z, Zhang M, Hao L, Jiao X, Wu C. Two novel polysaccharides from Huangshui: Purification, structure, and bioactivities. Int J Biol Macromol 2024; 267:131396. [PMID: 38582468 DOI: 10.1016/j.ijbiomac.2024.131396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
In this study, the novel polysaccharides named HSP-0 M and HSP-0.1 M were successfully purified from Huangshui (HS), and their structural properties and bioactivities were investigated. Structural analysis revealed that HSP-0 M had a molecular weight of 493.87 kDa and was composed of arabinose, galactose, glucose, xylose, and mannose in a molar ratio of 1.48:1.09:26.52:1.33:1.00. On the other hand, HSP-0.1 M was made up of fructose, arabinose, galactose, glucose, xylose, mannose, ribose, galacturonic acid and glucuronic acid in a ratio of 2.67:26.00:29.10:36.83:16.22:30.53:1.00:1.43:3.64 with a molecular weight of 157.6 kDa. Methylated and 2D NMR analyses indicated that T-Glcp-(1 → 4)-Glcp-(1 → 2)-Glcp-(1 → 3)-Glcp was the primary chain of HSP-0 M, and the backbone of HSP-0.1 M was made up of →3)-Galp-(1 → 6)-Manp-(1 → 3)-Glcp-(1 → 6)-Glcp-(1 → 2)-Manp-(1 → 6)-Glcp-(1 → 3)-Galp. Morphological research showed that both polysaccharides were homogeneous as well as exhibit a web-like structure and an irregular lamellar structure. Furthermore, HSP-0 M demonstrated the capacity to safeguard Lactococcus lactis from damage caused by low temperatures and freeze-drying, while HSP-0.1 M exhibited noteworthy antioxidant activity. These results established a theoretical foundation for the applications of HSPs in food products, cosmetics, and medicines.
Collapse
Affiliation(s)
- Zihao Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue Jiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Kim H, Jeong EJ, Park C, Lee JS, Kim WJ, Yu KW, Suh HJ, Ahn Y, Moon SK. Modulation of gut microbiota ecosystem by a glucan-rich snail mucin heteropolysaccharide attenuates loperamide-induced constipation. Int J Biol Macromol 2023; 253:126560. [PMID: 37640190 DOI: 10.1016/j.ijbiomac.2023.126560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
The present study aimed to investigate the effect of oral administration of snail-derived mucin extract (SM) on ameliorating constipation symptoms of loperamide-induced constipated rats (n = 6). The analytical results indicated that SM mainly contains a glucan-rich snail mucin heteropolysaccharide with high molecular weights (108.5-267.9 kDa), comprising primarily of glucose (64.9 %) and galactose (22.4 %) with some deoxyhexoses (5.0 %) and hexosamines (4.9 %). Daily SM administration at doses of 10-40 mg/kg/day to the loperamide-induced constipated rats significantly (p < 0.05) ameliorated the deterioration in fecal parameters, such as numbers and weight of feces, fecal water contents, and gastrointestinal transit ratio. The histomorphometric results showed that the loperamide-induced decreases in the thickness of mucosal and muscularis mucosae layers as well as the distribution of mucin and c-KIT-positive areas were significantly (p < 0.05) improved via SM consumption at all doses tested. SM administration at all doses significantly increased the expression of genes encoding tryptophan hydroxylases (TPH1 and TPH2; p < 0.05), tight junction molecules (OCLN, CLDN1, and TJP1; p < 0.05), and mucin (MUC2 and MUC4; p < 0.05), but significantly decreased the aquaporin-encoding genes (AQP3 and AQP8; p < 0.05). Gut microbial community analysis indicated that SM administration could modulate loperamide-induced dysbiosis by increasing the phyla Actinobacteria (11.72-12.64 % at 10-40 mg/kg doses; p < 0.05) and Firmicutes (79.33 % and 74.24 % at 20 and 40 mg/kg doses; p < 0.05) and decreasing the phyla Bacteroidetes (5.98-12.47 % at 10-40 mg/kg doses; p < 0.05) and Verrucomicrobia (2.21 % and 2.78 % at 20 and 40 mg/kg doses; p < 0.05), suggesting that SM administration is effective in ameliorating constipation by controlling gut microbial communities. These findings can be utilized as fundamental data for developing novel functional materials using SM to prevent or treat constipation.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea
| | - Eun-Jin Jeong
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21 FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Chunwoong Park
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21 FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Jeong-Seok Lee
- Age at Labs Inc., 55, Digital-ro 32-gil, Guro-gu, Seoul 08379, South Korea
| | - Woo Jung Kim
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon 16229, South Korea
| | - Kwang-Won Yu
- Major in Food & Nutrition, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong 27909, South Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Yejin Ahn
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea.
| |
Collapse
|
6
|
Suh MG, Shin HY, Jeong EJ, Kim G, Jeong SB, Ha EJ, Choi SY, Moon SK, Shin KS, Yu KW, Suh HJ, Kim H. Identification of galacturonic acid-rich polysaccharide with intestinal immune system modulating activity via Peyer's patch from postbiotics of Phellinus linteus mycelial submerged culture. Int J Biol Macromol 2023; 234:123685. [PMID: 36796554 DOI: 10.1016/j.ijbiomac.2023.123685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Interests in the development and exploration of industrial applications of medicinal mushrooms as postbiotics have lately increased. We recently reported the potential use of Phellinus linteus mycelial-containing whole culture extract (PLME) prepared by submerged cultivation as a postbiotic that promotes immune system activation. Here, we aimed to isolate and structurally elucidate the active ingredients in PLME by activity-guided fractionation. The intestinal immunostimulatory activity was evaluated by bone marrow (BM) cell proliferation activity and related cytokine production in C3H-HeN mouse-derived Peyer's patch (PP) cells treated with polysaccharide fractions. The initially crude polysaccharide (PLME-CP) of PLME prepared using ethanol precipitation was further fractionated into four fractions (PLME-CP-0 to -III) by anion-exchange column chromatography. BM cell proliferation and cytokine production of PLME-CP-III were significantly improved compared to those of PLME-CP. PLME-CP-III was then fractionated into PLME-CP-III-1 and PLME-CP-III-2 by gel filtration chromatography. Based on the molecular weight distribution, monosaccharide, and glycosyl linkage analyses, PLME-CP-III-1 was revealed as a novel galacturonic acid-rich acidic polysaccharide and further shown to play an important role in facilitating PP-mediated intestinal immunostimulatory activity. This is the first study demonstrating the structural characteristics of a novel intestinal immune system modulating acidic polysaccharide from P. linteus mycelium-containing whole culture broth postbiotics.
Collapse
Affiliation(s)
- Min Geun Suh
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; R&D Center Neo Cremar Cooperation Limited, 211 Jungdae-ro, Songpa-gu, Seoul 05702, South Korea
| | - Hyun Young Shin
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Eun-Jin Jeong
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Gaeuleh Kim
- Major in Food & Nutrition, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong 27909, South Korea
| | - Se Bin Jeong
- Major in Food & Nutrition, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong 27909, South Korea
| | - Eun Ji Ha
- Major in Food & Nutrition, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong 27909, South Korea
| | - Sang-Yong Choi
- R&D Center Neo Cremar Cooperation Limited, 211 Jungdae-ro, Songpa-gu, Seoul 05702, South Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea
| | - Kwang-Soon Shin
- Department of Food and Biotechnology, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, South Korea
| | - Kwang-Won Yu
- Major in Food & Nutrition, Korea National University of Transportation, 61 Daehak-ro, Jeungpyeong 27909, South Korea
| | - Hyung-Joo Suh
- Department of Integrated Biomedical and Life Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, 4726 Seodong-daero, Daedeok-myeon, Anseong 17546, South Korea.
| |
Collapse
|
7
|
Dhandapani S, Wang R, cheol Hwang K, Kim H, Kim YJ. Enhanced skin anti-inflammatory and moisturizing action of gold nanoparticles produced utilizing Diospyros kaki fruit extracts. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
8
|
Shin DY, Kim BS, Lee HY, Park YM, Kim YW, Kim MJ, Yang HJ, Kim MS, Bae JS. Euonymus alatus (Thunb.) Siebold leaf extract enhanced immunostimulatory effects in a cyclophosphamide-induced immunosuppressed rat model. Food Nutr Res 2023; 67:9422. [PMID: 37152296 PMCID: PMC10155189 DOI: 10.29219/fnr.v67.9422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 05/09/2023] Open
Abstract
Background Euonymus alatus (Thunb.) Siebold (EA) is a medicinal plant used in some Asian countries to treat various diseases, including cancer, hyperglycemia, diabetes, urticaria, dysmenorrhea, and arthritis. Owing to the wide range of pharmacological applications of EA, various roles of EA are being studied. Objective We evaluated the immune-enhancing effect of EA treatment in a cyclophosphamide (Cy)-induced immunosuppressed rat model. Design We analyzed the immune enhancement effect of EA on macrophages by western blotting. In addition, cell viability and natural killer (NK) cell activity were analyzed in splenocytes following EA treatment. For in vivo studies, analysis of weekly body weight, spleen weight, immune cell count, cytokine levels, and spleen histological findings was performed following EA administration in Cy-induced immunocompromised rats. Results EA significantly increased cell viability and phospho-nuclear factor-kappa B and phospho-extracellular signal-regulated kinase protein levels in the macrophages. EA significantly increased NK cell activity in splenocytes compared with the control group. In Cy-induced immunosuppressed rats, EA administration increased spleen tissue weight and the contents of leukocytes, lymphocytes, granulocytes, intermediate cells, and plasma cytokines (tumor necrosis factor-α and interferon-γ). In addition, improvement in the damaged spleen tissue was observed. Conclusions These findings confirm that EA exerts an immune-enhancing effect, thereby suggesting its potential as an immunostimulatory agent or functional food.
Collapse
Affiliation(s)
- Dong Yeop Shin
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, South Korea
- INVIVO Co. Ltd., Nonsan, South Korea
| | - Byeong Soo Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, South Korea
| | | | | | - Yong Wan Kim
- Daegu Cancer Center, Research and Development Unit, DongSung Pharmaceuticals Co. Ltd., Daegu, South Korea
| | - Min Jung Kim
- Korea Food Research Institute, Iseo, South Korea
| | | | - Mi Seong Kim
- Department of Oral Biochemistry, College of Dentistry, Institute of Biomaterial-Implant, Wonkwang University, Iksan, South Korea
| | - Jun Sang Bae
- Department of Pathology, College of Korean Medicine, Wonkwang University, Iksan, South Korea
- Jun Sang Bae, Department of Pathology, College of Korean Medicine, Wonkwang University, 460, Iksan, Jeonbuk 54538, Korea.
| |
Collapse
|
9
|
Xu XY, Moon SK, Kim JK, Kim WJ, Kim YJ, Kim H. Structural properties and anti-dermatitis effects of flavonoids-loaded gold nanoparticles prepared by Eupatorium japonicum. Front Pharmacol 2022; 13:1055378. [PMID: 36386212 PMCID: PMC9659597 DOI: 10.3389/fphar.2022.1055378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 02/13/2024] Open
Abstract
Recently, green synthesis-based nanoformulations using plants or microorganisms have attracted great interest because of their several advantages. Nanotechnology-based biological macromolecules are emerging materials with potential applications in cosmetics and medications for ameliorating and treating inflammatory skin diseases (ISDs). Eupatorium japonicum (EJ), a native Korean medicinal plant belonging to the family Asteraceae, has been traditionally used to prepare prescriptions for the treatment of various inflammatory diseases. EJ-based gold nanoparticles (EJ-AuNPs) were biosynthesized under optimal conditions and characterized their physicochemical properties using various microscopic and spectrometric techniques. Additionally, the effects of EJ-AuNPs on ISDs as well as their underlying mechanisms were investigated in the tumor necrosis factor-α/interferon-γ (T+I)-induced skin HaCaT keratinocytes. The MTT and live/dead cell staining assays showed that EJ-AuNP treatment was considerably safer than EJ treatment alone in HaCaT cells. Moreover, EJ-AuNP treatment effectively suppressed the production of T+I-stimulated inflammatory cytokines (RANTES, TARC, CTACK, IL-6, and IL-8) and intracellular reactive oxygen species, and such EJ-driven anti-inflammatory effects were shown to be associated with the downregulation of intracellular mitogen-activated protein kinase and nuclear factor-κB signaling pathways. The present study provides preliminary results and a valuable strategy for developing novel anti-skin dermatitis drug candidates using plant extract-based gold nanoparticles.
Collapse
Affiliation(s)
- Xing Yue Xu
- Graduate School of Biotechnology, And College of Life Science, Kyung Hee University, Yongin, South Korea
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung Ang University, Anseong, South Korea
| | - Jin-Kyu Kim
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon, South Korea
| | - Woo Jung Kim
- Biocenter, Gyeonggido Business and Science Accelerator, Suwon, South Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology, And College of Life Science, Kyung Hee University, Yongin, South Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung Ang University, Anseong, South Korea
| |
Collapse
|
10
|
Wang R, Moon SK, Kim WJ, Dhandapani S, Kim H, Kim YJ. Biologically Synthesized Rosa rugosa-Based Gold Nanoparticles Suppress Skin Inflammatory Responses via MAPK and NF-κB Signaling Pathway in TNF-α/IFN-γ-Induced HaCaT Keratinocytes. ACS OMEGA 2022; 7:35951-35960. [PMID: 36249362 PMCID: PMC9558598 DOI: 10.1021/acsomega.2c04832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Nanotechnology-applied materials and related therapeutics have gained attention for treating inflammatory skin diseases. The beach rose (Rosa rugosa), belonging to the family Rosaceae, is a perennial, deciduous woody shrub endemic to northeastern Asia. In this study, R. rugosa-based gold nanoparticles (RR-AuNPs) were biologically synthesized under optimal conditions to explore their potential as anti-inflammatory agents for treating skin inflammation. The synthesized RR-AuNPs were analyzed using field emission-transmission electron microscopy, energy-dispersive X-ray spectrometry, selected-area electron diffraction, and X-ray diffraction. The uniformly well-structured AuNPs showed near-spherical and polygonal shapes. Cell viability evaluation and optical observation results showed that the RR-AuNPs were absorbed by human keratinocytes without causing cytotoxic effects. The effects of RR-AuNPs on the skin inflammatory response were investigated in human keratinocytes treated with tumor necrosis factor-α/interferon-γ (T + I). The results showed that T + I-stimulated increases in inflammatory mediators, including chemokines, interleukins, and reactive oxygen species, were significantly suppressed by RR-AuNP treatment in a concentration-dependent manner. The western blotting results indicated that the RR-AuNP-mediated anti-inflammatory effects were highly associated with the suppression of inflammatory signaling, mitogen-activated protein kinase, and nuclear factor-κB. These results demonstrate that plant extract-based AuNPs are novel anti-inflammatory candidates for topical application to treat skin inflammation.
Collapse
Affiliation(s)
- Rongbo Wang
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Deogyeong-daero 1732, Giheung-gu, Yongin 17104, Republic of Korea
| | - Sung-Kwon Moon
- Department
of Food and Nutrition, Chung Ang University, Seodong-daero 4726, Daedeok-myeon, Anseong 17546, Republic of Korea
| | - Woo-Jung Kim
- Biocenter, Gyeonggido
Business and Science Accelerator, Gwanggyo-ro 147, Yeongtong-gu, Suwon 16229, Republic
of Korea
| | - Sanjeevram Dhandapani
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Deogyeong-daero 1732, Giheung-gu, Yongin 17104, Republic of Korea
| | - Hoon Kim
- Department
of Food and Nutrition, Chung Ang University, Seodong-daero 4726, Daedeok-myeon, Anseong 17546, Republic of Korea
| | - Yeon-Ju Kim
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Deogyeong-daero 1732, Giheung-gu, Yongin 17104, Republic of Korea
| |
Collapse
|