1
|
Liang M, Wang H, Zhou Z, Huang Y, Suo H. Antibacterial mechanism of Lactiplantibacillus plantarum SHY96 cell-free supernatant against Listeria monocytogenes revealed by metabolomics and potential application on chicken breast meat preservation. Food Chem X 2025; 25:102078. [PMID: 39758074 PMCID: PMC11699396 DOI: 10.1016/j.fochx.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
The cell-free supernatant of Lactiplantibacillus plantarum (LCFS) is considered a potential natural antimicrobial agent due to its outstanding antimicrobial activity. This study demonstrated that the cell-free supernatant of L. plantarum SHY96 (LCFS96) effectively inhibits the growth and biofilm formation of L. monocytogenes CMCC(B)54002 (L. monocytogenes_02) by reducing cell metabolic activity and damaging cell structure. Metabolomic analysis revealed that LCFS96 significantly altered 450 intracellular metabolites, affecting key metabolic pathways including linoleic acid metabolism, pyrimidine metabolism, purine metabolism, pantothenic acid and CoA biosynthesis, and the TCA cycle. Additionally, application of LCFS96 significantly reduced L. monocytogenes_02 viable counts by 84.93%, while maintaining the pH, TVB-N and organoleptic properties of chicken meat under refrigeration at 4 °C for 12 days. These findings highlight the antimicrobial mechanism and potential application of LCFS96 in extending the shelf-life of meat products.
Collapse
Affiliation(s)
- Ming Liang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, SouthwestUniversity, Chongqing 400715, China
| | - Hongwei Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, SouthwestUniversity, Chongqing 400715, China
| | - Zhaoquan Zhou
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, SouthwestUniversity, Chongqing 400715, China
| | - Yechuan Huang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, SouthwestUniversity, Chongqing 400715, China
| |
Collapse
|
2
|
An FK, Li MY, Luo HL, Liu XL, Fu Z, Ren MH. Structural properties and antioxidant capacity of different aminated starch-phenolic acid conjugates. Food Chem 2024; 460:140592. [PMID: 39067431 DOI: 10.1016/j.foodchem.2024.140592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Different aminated starch (AS) [EEAS (introducing ethylenediamine into starch using cross-linking-etherification-amination method (CEA)), EPAS (introducing o-phenylenediamine using CEA), OEAS (introducing ethylenediamine using cross-linking-oxidation-amination method (COA)), and OPAS (introducing o-phenylenediamine using COA)] were synthesized. The AS-phenolic acids [gallic acid (GA), syringic acid (SA), and vanillic acid (VA)] conjugates were prepared by laccase-catalyzed reaction. The grafting efficiency of EEAS on GA, SA, and VA was 36.59%, 69.71%, and 68.85%, respectively. SA reduced the maximum depolymerization rate of EEAS. The relative crystallinity of EEAS and EPAS grafted phenolic acid increased, and their particles showed severe breakage in appearance. OEAS-phenolic acid conjugates lost its granular structure and behaved as flakes and lumps, while the surface of OPAS-phenolic acid conjugates remained smooth after grafting phenolic acid. GA increased the DPPH· scavenging efficiency of EEAS from 16.12% to 79.92%. The increased antioxidant capacity of the conjugates suggested that AS-phenolic acids conjugates have high potential for applications.
Collapse
Affiliation(s)
- Feng-Kun An
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Guangxi University, Nanning, China
| | - Meng-Yun Li
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Guangxi University, Nanning, China
| | - Hai-Lu Luo
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Guangxi University, Nanning, China
| | - Xing-Long Liu
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Guangxi University, Nanning, China
| | - Zhen Fu
- Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Guangxi University, Nanning, China.
| | - Min-Hong Ren
- Guangxi Vocational & Technical Institute of Industry, Nanning 530001, China
| |
Collapse
|
3
|
Sun Y, Ju Y, Xie Q, Tao R, Wang L, Fan B, Wang F. Active Packaging Film Developed by Incorporating Starch Aldehyde-Quercetin Conjugate into SPI Matrix. Antioxidants (Basel) 2024; 13:810. [PMID: 39061879 PMCID: PMC11274113 DOI: 10.3390/antiox13070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, soy protein isolate (SPI) films incorporating quercetin-grafted dialdehyde starch (DAS-QR) and DAS/QR, respectively, were developed. The structural, physical, and functional properties of the composite films were determined. The results suggested that DAS-QR and DAS/QR formed hydrogen bonding with the SPI matrix, which improved the structural properties of the films. The light-blocking capacity, thermal stability, hydrophobicity, tensile strength, elongation at break, and antioxidant and antibacterial abilities of SPI films were improved by DAS-QR and DAS/QR. Notably, SPI films incorporated with DAS-QR exhibited better performance than those with DAS/QR in terms of antioxidant (SPI/DAS-QR: 79.8% of DPPH and 62.1% of ABTS scavenging activity; SPI/DAS/QR: 71.4% of DPPH and 56.0% of ABTS scavenging activity) and antibacterial abilities against S. aureus (inhibition rate: 92.7% for SPI/DAS-QR, 83.4% for SPI/DAS/QR). The composite coating film SPI/DAS-QR effectively maintained appearance quality, delayed the loss of weight and total soluble solids, postponed malondialdehyde accumulation, and decreased peroxidase activity and microbial contamination in fresh-cut potatoes. These good performances highlight SPI/DAS-QR as a promising active packaging material for fresh-cut product preservation.
Collapse
Affiliation(s)
| | | | | | | | | | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.S.); (Y.J.); (Q.X.); (R.T.); (L.W.)
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.S.); (Y.J.); (Q.X.); (R.T.); (L.W.)
| |
Collapse
|
4
|
Bhat ZF, Bhat HF, Manzoor M, Abdi G, Aadil RM, Hassoun A, Aït-Kaddour A. Enhancing the lipid stability of foods of animal origin using edible packaging systems. Food Chem X 2024; 21:101185. [PMID: 38384687 PMCID: PMC10879673 DOI: 10.1016/j.fochx.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024] Open
Abstract
Foods of animal origin are prone to oxidation due to their high lipid content and fatty acid profile. Edible packaging systems have evolved as a new way of preserving animal-derived foods and have been reported to retard lipid oxidation using antioxidant molecules from side-streams, waste, and agricultural by-products. Studies have evaluated previously undocumented film materials and novel bioactive molecules as additives for edible packaging for animal-derived foods. However, none of the studies is specifically focused on evaluating the packaging systems available for enhancing lipid stability. This paper thoroughly examines and discusses the application of edible packaging containing novel antioxidant molecules for controlling the lipid oxidation of animal-derived foods. The paper analyses and interprets the main findings of the recently published research papers. The materials and active principles used for enhancing lipid stability have been summarised and the underlying mechanisms discussed in detail. Studies should aim at using cheaper and readily available natural ingredients in future for the production of affordable packaging systems.
Collapse
Affiliation(s)
| | - Hina F. Bhat
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | - Mehnaza Manzoor
- Fermentation and Microbial Biotechnology Division, CSIR-IIIM, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, 75169, Iran
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdo Hassoun
- Univ. Littoral Côte d’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | | |
Collapse
|
5
|
Ma M, Gu M, Zhang S, Yuan Y. Effect of tea polyphenols on chitosan packaging for food preservation: Physicochemical properties, bioactivity, and nutrition. Int J Biol Macromol 2024; 259:129267. [PMID: 38199547 DOI: 10.1016/j.ijbiomac.2024.129267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Chitosan packaging has been widely studied for food preservation, the application of which is expanded by the incorporation of tea polyphenols. This paper reviews the influence of tea polyphenols incorporation on chitosan-based packaging from the perspectives of physicochemical properties, bioactivity used for food preservation, and nutritional value. The physicochemical properties included optical properties, mechanical properties, water solubility, moisture content, and water vapor barrier property, concluding that the addition of tea polyphenols improved the opacity, water solubility, and water vapor barrier property of chitosan packaging, and the mechanical properties and water content were decreased. The bioactivity used for food preservation, that is antioxidant and antimicrobial properties, is enhanced by tea polyphenols, improving the preservation of food like meat, fruits, and vegetables. In the future, efforts will be needed to improve the mechanical properties of composite film and adjust the formula of tea polyphenols/chitosan composite film to apply to different foods. Besides, the identification and development of high nutritional value tea polyphenol/chitosan composite film is a valuable but challenging task. This review is expected to scientifically guide the application of tea polyphenols in chitosan packaging.
Collapse
Affiliation(s)
- Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingfei Gu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuaizhong Zhang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Gagaoua M, Suman SP, Purslow PP, Lebret B. The color of fresh pork: Consumers expectations, underlying farm-to-fork factors, myoglobin chemistry and contribution of proteomics to decipher the biochemical mechanisms. Meat Sci 2023; 206:109340. [PMID: 37708621 DOI: 10.1016/j.meatsci.2023.109340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/14/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023]
Abstract
The color of fresh pork is a crucial quality attribute that significantly influences consumer perception and purchase decisions. This review first explores consumer expectations and discrimination regarding pork color, as well as an overview of the underlying factors that, from farm-to-fork, contribute to its variation. Understanding the husbandry factors, peri- and post-mortem factors and consumer preferences is essential for the pork industry to meet market demands effectively. This review then delves into current knowledge of pork myoglobin chemistry, its modifications and pork discoloration. Pork myoglobin, which has certain peculiarities comparted to other meat species, plays a weak role in determining pork color, and a thorough understanding of the biochemical changes it undergoes is crucial to understand and improve color stability. Furthermore, the growing role of proteomics as a high-throughput approach and its application as a powerful research tool in meat research, mainly to decipher the biochemical mechanisms involved in pork color determination and identify protein biomarkers, are highlighted. Based on an integrative muscle biology approach, the available proteomics studies on pork color have enabled us to provide the first repertoire of pork color biomarkers, to shortlist and propose a list of proteins for evaluation, and to provide valuable insights into the interconnected biochemical processes implicated in pork color determination. By highlighting the contributions of proteomics in elucidating the biochemical mechanisms underlying pork color determination, the knowledge gained hold significant potential for the pork industry to effectively meet market demands, enhance product quality, and ensure consistent and appealing pork color.
Collapse
Affiliation(s)
| | - Surendranath P Suman
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States
| | | | | |
Collapse
|
7
|
Ying JP, Wu G, Zhang YM, Zhang QL. Proteomic analysis of Staphylococcus aureus exposed to bacteriocin XJS01 and its bio-preservative effect on raw pork loins. Meat Sci 2023; 204:109258. [PMID: 37379704 DOI: 10.1016/j.meatsci.2023.109258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Antibacterial mechanism of bacteriocins against foodborne S. aureus is still to be explored, particularly in proteomics, and a deep and comprehensive study on application of bacteriocins for preservation of raw pork is required. Here, proteomic mechanism of Lactobacillus salivarius bacteriocin XJS01 against foodborne S. aureus 2612:1606BL1486 (S. aureus_26) and its preservation effect on raw pork loins stored at 4 °C for 12 days was investigated. The results showed that 301 differentially abundant proteins (DAPs) were identified between XJS01-treated and -free groups (control group) using Tandem mass tag (TMT) quantitative proteomics technology, which were primarily involved in amino acids and carbohydrate metabolism, cytolysis, defense response, cell apoptosis, cell killing, adhesion, and oxygen utilization of S. aureus_26. Bacterial secretion system (SRP) and cationic antimicrobial peptide resistance may be key pathways to maintain protein secretion and counteract the deleterious effects on S. aureus_26 caused by XJS01. In addition, XJS01 could significantly improve the preservation of raw pork loins by the evaluation results of sensory and antibacterial activity on the meat surface. Overall, this study showed that XJS01 induced a complex organism response in S. aureus, and it could be potential pork preservative.
Collapse
Affiliation(s)
- Jian-Ping Ying
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China
| | - Gang Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China; Department of Neurology, Yan'an Hospital of Kunming City, Kunming, Yunnan 650051, China
| | - Yan-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China
| | - Qi-Lin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan, Kunming 650500, China.
| |
Collapse
|
8
|
Bhat ZF, Bhat HF, Mohan MS, Aadil RM, Hassoun A, Aït-Kaddour A. Edible packaging systems for improved microbial quality of animal-derived foods and the role of emerging technologies. Crit Rev Food Sci Nutr 2023; 64:12137-12165. [PMID: 37594230 DOI: 10.1080/10408398.2023.2248494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Animal-derived foods are susceptible to microbial spoilage due to their superior nutritional composition and high moisture content. Among the various options, edible packaging is a relatively nascent area and can effectively control microbial growth without substantially affecting the sensory and techno-functional properties. Numerous studies have evaluated the effect of edible packaging systems on the microbial quality of animal-derived foods, however, a review that specifically covers the effect of edible packaging on animal foods and summarizes the findings of these studies is missing in the literature. To fill this gap, the present review analyses the findings of the studies on animal foods published during the last five years. Studies have reported edible-packaging systems for improving microbial stability of animal foods using different biopolymers (proteins, polysaccharides, lipids, and their derivatives) and bioactive ingredients (phytochemicals, peptides, plant extracts, essential oils, and their nanoparticles, nanoemulsions or coarse emulsions). In general, nanoparticles and nanoemulsions are more effective in controlling microbial spoilage in animal foods compared to the direct addition of bioactive agents to the film matrices. Studies have reported the use of non-thermal and emerging technologies in combination with edible packaging systems for improved food safety or their use for enhancing functionality, bioactivity and characteristics of the packaging systems. Future studies should focus on developing sustainable packaging systems using widely available biopolymers and bioactive ingredients and should also consider the economic feasibility at the commercial scale.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, India
| | - Hina F Bhat
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India
| | - Maneesha S Mohan
- Dairy and Food Science, South Dakota State University, Brookings, SD, USA
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Boulogne-sur-Mer, France
| | | |
Collapse
|
9
|
Bhat ZF, Bhat HF, Manzoor M, Proestos C, Hassoun A, Dar BN, Aadil RM, Aït-Kaddour A, Bekhit AEDA. Edible packaging systems for enhancing the sensory quality of animal-derived foods. Food Chem 2023; 428:136809. [PMID: 37433253 DOI: 10.1016/j.foodchem.2023.136809] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Maintaining the sensory quality of animal-derived foods from paddock to plate is a big challenge due to their fatty acid profile and susceptibility to oxidative changes and microbial spoilage. Preventive measures are taken by manufacturers and retailers to offset the adverse effects of storage to present animal foods to consumers with their best sensory attributes. The use of edible packaging systems is one of the emerging strategies that has recently attracted the attention of researchers and food processors. However, a review that specifically covers the edible packaging systems focused on improving the sensory quality of animal-derived foods is missing in the literature. Therefore, the objective of this review is to discuss in detail various edible packaging systems currently available and their mechanisms for enhancing the sensory properties of animal-derived foods. The review includes the findings of recent papers published during the last 5 years and summarises the novel materials and bioactive agents.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, India.
| | - Hina F Bhat
- Division of Animal Biotechnology, SKUAST-K, Srinagar, India.
| | - Mehnaza Manzoor
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, University of Athens, Zografou, Greece.
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia F-62200, Boulogne-sur-Mer, France.
| | - B N Dar
- Department of Food Technology, IUST, J&K, India
| | - Rana M Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
| | | | | |
Collapse
|
10
|
Cui H, Xu R, Hu W, Li C, Abdel-Samie MA, Lin L. Effect of soy protein isolate nanoparticles loaded with litsea cubeba essential oil on performance of lentinan edible films. Int J Biol Macromol 2023:124686. [PMID: 37146850 DOI: 10.1016/j.ijbiomac.2023.124686] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023]
Abstract
Environmental issues caused by plastic packaging materials have gotten increasingly severe, and substantial research has been conducted on environmentally friendly active packaging materials. In this study, the Litsea cubeba essential oil loaded soy protein isolate nanoparticles (LSNPs) with appropriate particle size, high storage stability and salt solution stability were fabricated. The LSNPs with the highest encapsulation efficiency of 81.76 % were added into the lentinan edible film. The microstructures of the films were observed by scanning electron microscopy. The physical properties of the films were measured. The results show that the lentinan film with LSNPs in the volume ratio of 4:1 (LF-4) had the highest elongation at break of 196 %, the lowest oxygen permeability of 12 meq/kg, and good tensile strength, water vapor barrier property, antibacterial property, oxidation resistance and thermal stability. The study suggested that LF-4 film could inhibit the growth of bacteria and delay the oxidation of lipid and protein on beef surface for 7 d.
Collapse
Affiliation(s)
- Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rui Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Hu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Mohamed A Abdel-Samie
- Department of Food and Dairy Sciences and Technology, Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
11
|
A Bioactive Chitosan-Based Film Enriched with Benzyl Isothiocyanate/α-Cyclodextrin Inclusion Complex and Its Application for Beef Preservation. Foods 2022; 11:foods11172687. [PMID: 36076872 PMCID: PMC9455720 DOI: 10.3390/foods11172687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
A bioactive packaging material based on chitosan (CS) incorporated with benzyl isothiocyanate (BITC) and α−cyclodextrin (α−CD) was fabricated to evaluate its preservative effects on fresh beef stored at 4 °C for 12 d according to the quality analysis. The Fourier-transform infrared (FTIR) spectrum revealed that the major structural moiety of BITC was embedded in the cavity of α−CD, except for the thiocyanate group. FTIR and X-ray diffraction analysis further verified that intermolecular interactions were formed between the BITC−α−CD and CS film matrix. The addition of BITC−α−CD decreased the UV light transmittance of pure CS film to lower than 63% but still had enough transparency for observing packaged items. The CS−based composite film displayed a sustainable antibacterial capacity and an enhanced antioxidant activity. Moreover, the total viable counts, total volatile base nitrogen, pH, thiobarbituric acid–reactive substances, and sensory evaluation of the raw beef treated with the CS−based composite film were 6.31 log colony-forming unit (CFU)/g, 19.60 mg/100 g, 6.84, 0.26 mg/kg, and 6.5 at 12 days, respectively, indicating the favorable protective efficacy on beef. These results suggested that the fabricated CS−based composite film has the application potential to be developed as a bioactive food packaging material, especially for beef preservation.
Collapse
|