1
|
Zhang B, Xu K, Deng W, Liu C, Xu Q, Sheng H, Feng J, Yuan Q. Protective effects of Sulforaphene on kidney damage and gut dysbiosis in high-fat diet plus streptozotocin-induced diabetic mice. Food Chem 2024; 469:142558. [PMID: 39709924 DOI: 10.1016/j.foodchem.2024.142558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/09/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Diabetic nephropathy (DN) is one of the most serious and prevalent complications associated with diabetes. Consequently, antidiabetic drugs or foods potentially protecting the kidneys are of significant therapeutic value. Sulforaphene (SFE) is a natural isothiocyanate derived from radish seeds, known for its anti-inflammatory and antioxidant properties. However, no studies have investigated on the ability of SFE to prevent or treat DN. This study established a high-fat diet combined with a streptozotocin-induced type II diabetes mellitus mouse model. We administered SFE treatment to examine its protective effects on renal and intestinal homeostasis in DN mice. After 4 weeks of treatment, SFE (50 mg/kg b.w.) not only reduced blood glucose concentration (20.3 %, P < 0.001), kidney to body weight ratio (26.2 %, P < 0.01), and levels of serum total cholesterol (40.6 %, P < 0.001), triglycerides (38.2 %, P < 0.01), creatinine (36.7 %, P < 0.01), and urea nitrogen (45.0 %, P < 0.001) in DN mice compared to control mice but also increased the kidney superoxide dismutase (72.7 %, P < 0.001), catalase (51.1 %, P < 0.001), and glutathione peroxidase activities (31.6 %, P < 0.01), as well as glutathione levels (39.2 %, P < 0.01) in comparison to DN mice. Furthermore, SFE decreased levels of reactive oxygen species (55.4 %, P < 0.01), 4-hydroxyalkenals (36.9 %, P < 0.001), malondialdehyde (42.6 %, P < 0.001), and 8-hydroxy-deoxyguanosine (26.3 %, P < 0.001), accompanied by a meliorating kidney morphological abnormalities. Notably, a reduction in renal inflammatory factors was also observed in SFE-treated DN mice compared to untreated DN mice, particularly in the C-X-C motif chemokine ligand 8 factors (54.8 %, P < 0.001). Western blotting results indicated that SFE significantly down-regulated the protein expression of TLR4 and MyD88 (1.9, 1.7-fold, P < 0.001). Additionally, SFE improved gut microbiota (GM) dysbiosis and intestinal homeostasis, as evidenced by increased expression of antimicrobial peptides and tight junction proteins in colon tissue. SFE appeared to enhance the proliferation of probiotics, such as Bacteroidota, Lachnospiraceae_NK4A136_group and norank_f__Muribaculaceae, while also decreasing harmful bacteria to a greater extent compared to STZ treatment. These findings suggest that SFE modulates GM and improves intestinal homeostasis, providing a theoretical basis for its use in the treatment of DN.
Collapse
Affiliation(s)
- Bo Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kang Xu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wenlei Deng
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ce Liu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qianmin Xu
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huakang Sheng
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jialu Feng
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Wang JX, Chang SY, Jin ZY, Li D, Zhu J, Luo ZB, Han SZ, Kang JD, Quan LH. Lactobacillus reuteri-Enriched Eicosatrienoic Acid Regulates Glucose Homeostasis by Promoting GLP-1 Secretion to Protect Intestinal Barrier Integrity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39680859 DOI: 10.1021/acs.jafc.4c03818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Lactobacillus reuteri is a well-known probiotic with beneficial effects, such as anti-insulin resistance, anti-inflammatory, and improvement of the intestinal barrier. However, the underlying mechanisms remain unclear. Here, we found that gavage of L. reuteri improved the intestinal barrier and glucose homeostasis in HFD-fed mice. Analysis of lipid metabolomics reveals a significant increase in eicosatrienoic acid (ETA) levels in mouse feces after L. reuteri gavage. We found that ETA maintain intestinal barrier integrity and improve glucose homeostasis by promoting GLP-1 secretion. Mechanistically, by using CD36 inhibitor in vivo and CD36 knockdown STC-1 cells in vitro, we elucidate that ETA activates intestinal CD36-activated PLC/IP3R/Ca2+ signaling to promote GLP-1 secretion. In vivo administration of GLP-1R inhibitor and in vitro intestinal organoid experiments demonstrate that GLP-1 upregulates the PI3K/AKT/HIF-1α pathway by GLP-1R and increases intestinal tight junction protein expressions, which in turn enhance the intestinal barrier integrity, reduce serum LPS level, attenuate inflammation in white adipose tissue (WAT), and ultimately improve glucose homeostasis in HFD and db/db mice. Our study elucidates for the first time the mechanism by which L. reuteri and its enriched metabolite ETA inhibit WAT inflammation by ameliorating the intestinal barrier, ultimately improving glucose homeostasis, and provides a new treatment strategy for T2D.
Collapse
Affiliation(s)
- Jun-Xia Wang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Zheng-Yun Jin
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
| | - Dongxu Li
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, China
| | - Jun Zhu
- Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Yanji 133002, China
| | - Zhao-Bo Luo
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Jin-Dan Kang
- Department of Animal Science, College of Agricultural, Yanbian University, Yanji 133002, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji 133002, China
| | - Lin-Hu Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| |
Collapse
|
3
|
Wang Y, Zhang L, Xiao H, Ye X, Pan H, Chen S. Revisiting dietary proanthocyanidins on blood glucose homeostasis from a multi-scale structural perspective. Curr Res Food Sci 2024; 9:100926. [PMID: 39654810 PMCID: PMC11626065 DOI: 10.1016/j.crfs.2024.100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Multi-dimensional studies have consistently indicated the benefits of dietary proanthocyanidins on blood glucose homeostasis through consumption of them from fruits, cereals and nuts. Proanthocyanidins from various sources possess different structures, but even the minor variations in structures influence their regulation on blood glucose, including the degree of polymerization, galloacylation at C3, number of hydroxyl groups in B ring and linkage type. Therefore, this Review details the role of three types of proanthocyanidins (procyanidins, prodelphinidins and propelargonidins) in blood glucose control and their underlying mechanisms, and various structural features contribute to. Due to the extremely low bioavailability, proanthocyanidins mainly ameliorate high blood glucose by luminal effects: inhibit enzyme activities, improve the structure of gut microbiota, and protect the intestinal barrier function. A few absorbed proanthocyanidins exert insulin-like effects on targeted organs. Prodelphinidin gallates exhibit greater hypoglycemic activities than others, due to their galloacylation at C3 and high amounts of hydroxyl groups in B ring. Because of different action pathways, comprehensive consideration on the degree of polymerization, linkage type and density of hydroxyl groups was required. Further understanding of these relationships can concrete diet therapeutic opportunities for proanthocyanidins.
Collapse
Affiliation(s)
- Yi Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
| | - Laiming Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Department of Food Science, University of Massachusetts, Amherst, 01003, USA
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, PR China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, PR China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, 310058, PR China
- Zhejiang University Zhongyuan Institute, Zhengzhou, 450000, PR China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, PR China
| |
Collapse
|
4
|
Zhou W, Zhao L, Wang K, Renard CMGC, Le Bourvellec C, Hu Z, Liu X. Plant leaf proanthocyanidins: from agricultural production by-products to potential bioactive molecules. Crit Rev Food Sci Nutr 2024; 64:11757-11795. [PMID: 37584238 DOI: 10.1080/10408398.2023.2244079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Proanthocyanidins (PAs) are a class of polymers composed of flavan-3-ol units that have a variety of bioactivities, and could be applied as natural biologics in food, pharmaceuticals, and cosmetics. PAs are widely found in fruit and vegetables (F&Vegs) and are generally extracted from their flesh and peel. To reduce the cost of extraction and increase the number of commercially viable sources of PAs, it is possible to exploit the by-products of plants. Leaves are major by-products of agricultural production of F&Vegs, and although their share has not been accurately quantified. They make up no less than 20% of the plant and leaves might be an interesting resource at different stages during production and processing. The specific structural PAs in the leaves of various plants are easily overlooked and are notably characterized by their stable content and degree of polymerization. This review examines the existing data on the effects of various factors (e.g. processing conditions, and environment, climate, species, and maturity) on the content and structure of leaf PAs, and highlights their bioactivity (e.g. antioxidant, anti-inflammatory, antibacterial, anticancer, and anti-obesity activity), as well as their interactions with gut microbiota and other biomolecules (e.g. polysaccharides and proteins). Future research is also needed to focus on their precise extraction, bioactivity of high-polymer native or modified PAs and better application type.
Collapse
Affiliation(s)
- Wenyi Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | | | | | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Cordeiro-Massironi K, Soares Freitas RAM, Vieira da Silva Martins IC, de Camargo AC, Torres EAFDS. Bioactive compounds of peanut skin in prevention and adjunctive treatment of chronic non-communicable diseases. Food Funct 2024; 15:6304-6323. [PMID: 38812411 DOI: 10.1039/d4fo00647j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The global prevalence of cancer continues to increase, so does its mortality. Strategies that can prevent/treat this condition are therefore required, especially low-cost and low-toxicity strategies. Bioactive compounds of plant origin have been presented as a good alternative. In this scenario, due to its abundant polyphenolic content (around 60 to 120 times greater than that of the grain), peanut skin by-products stand out as a sustainable source of food bioactives beneficial to human health. Investigated studies highlighted the importance of peanut skin for human health, its phytochemical composition, bioactivity and the potential for prevention and/or adjuvant therapy in cancer, through the advanced search for articles in the Virtual Health Library (VHL), Science direct and the Mourisco platform of the FioCruz Institute, from 2012 to 2022. Using the keywords, "peanut skin" AND "cancer" AND NOT "allergy", the words "peanut testa" and "peanut peel" were included replacing "peanut skin". 18 articles were selected from Plataforma Mourisco, 26 from Science Direct and 26 from VHL. Of these, 7 articles evaluated aspects of cancer prevention and/or treatment. Promising benefits were found in the prevention/treatment of chronic non-communicable diseases in the use of peanut and peanut skin extracts, such as cholesterolemia and glucose control, attenuation of oxidative stress and suppressive action on the proliferation and metabolism of cancer cells.
Collapse
|
6
|
Wang S, Cui Z, Yang H. Interactions between host and gut microbiota in gestational diabetes mellitus and their impacts on offspring. BMC Microbiol 2024; 24:161. [PMID: 38730357 PMCID: PMC11083820 DOI: 10.1186/s12866-024-03255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/08/2024] [Indexed: 05/12/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is characterized by insulin resistance and low-grade inflammation, and most studies have demonstrated gut dysbiosis in GDM pregnancies. Overall, they were manifested as a reduction in microbiome diversity and richness, depleted short chain fatty acid (SCFA)-producing genera and a dominant of Gram-negative pathogens releasing lipopolysaccharide (LPS). The SCFAs functioned as energy substance or signaling molecules to interact with host locally and beyond the gut. LPS contributed to pathophysiology of diseases through activating Toll-like receptor 4 (TLR4) and involved in inflammatory responses. The gut microbiome dysbiosis was not only closely related with GDM, it was also vital to fetal health through vertical transmission. In this review, we summarized gut microbiota signature in GDM pregnancies of each trimester, and presented a brief introduction of microbiome derived SCFAs. We then discussed mechanisms of microbiome-host interactions in the physiopathology of GDM and associated metabolic disorders. Finally, we compared offspring microbiota composition from GDM with that from normal pregnancies, and described the possible mechanism.
Collapse
Affiliation(s)
- Shuxian Wang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Zifeng Cui
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China
| | - Huixia Yang
- Department of Obstetrics and Gynaecology, Peking University First Hospital, Beijing, China.
- Beijing Key Laboratory of Maternal Fetal Medicine of Gestational Diabetes Mellitus, Beijing, China.
| |
Collapse
|
7
|
Zeng Y, Zhao L, Wang K, Renard CMGC, Le Bourvellec C, Hu Z, Liu X. A-type proanthocyanidins: Sources, structure, bioactivity, processing, nutrition, and potential applications. Compr Rev Food Sci Food Saf 2024; 23:e13352. [PMID: 38634188 DOI: 10.1111/1541-4337.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
A-type proanthocyanidins (PAs) are a subgroup of PAs that differ from B-type PAs by the presence of an ether bond between two consecutive constitutive units. This additional C-O-C bond gives them a more stable and hydrophobic character. They are of increasing interest due to their potential multiple nutritional effects with low toxicity in food processing and supplement development. They have been identified in several plants. However, the role of A-type PAs, especially their complex polymeric form (degree of polymerization and linkage), has not been specifically discussed and explored. Therefore, recent advances in the physicochemical and structural changes of A-type PAs and their functional properties during extraction, processing, and storing are evaluated. In addition, discussions on the sources, structures, bioactivities, potential applications in the food industry, and future research trends of their derivatives are highlighted. Litchis, cranberries, avocados, and persimmons are all favorable plant sources. Α-type PAs contribute directly or indirectly to human nutrition via the regulation of different degrees of polymerization and bonding types. Thermal processing could have a negative impact on the amount and structure of A-type PAs in the food matrix. More attention should be focused on nonthermal technologies that could better preserve their architecture and structure. The diversity and complexity of these compounds, as well as the difficulty in isolating and purifying natural A-type PAs, remain obstacles to their further applications. A-type PAs have received widespread acceptance and attention in the food industry but have not yet achieved their maximum potential for the future of food. Further research and development are therefore needed.
Collapse
Affiliation(s)
- Yu Zeng
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | | | | | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
8
|
Tang E, Hu T, Jiang Z, Shen X, Lin H, Xian H, Wu X. Isoquercitrin alleviates lipopolysaccharide-induced intestinal mucosal barrier damage in mice by regulating TLR4/MyD88/NF-κB signaling pathway and intestinal flora. Food Funct 2024; 15:295-309. [PMID: 38084034 DOI: 10.1039/d3fo03319h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Intestinal mucosal barrier damage is closely associated with the development of several intestinal inflammatory diseases. Isoquercitrin (IQ) is a natural flavonoid compound derived from plants, which exhibits high antioxidant and anti-inflammatory activity with minimal side effects in humans. Therefore, it shows great potential for preventing and treating intestinal mucosal barrier damage. This study aims to investigate the ameliorative effect and mechanism of IQ on lipopolysaccharide (LPS)-induced intestinal mucosal barrier damage in mice. The mice were treated with IQ for 7 days and then injected with LPS to induce intestinal mucosal barrier damage. The results revealed that IQ treatment alleviated LPS-induced intestinal mucosal barrier damage in mice, which can be evidenced by the improvements in intestinal morphology and the promotion of expression in intestinal tight junctions (ZO-1, Claudin-1, and Occludin), as well as MUC2 mucin. IQ also attenuated intestinal inflammatory responses by inhibiting the TLR4/MyD88/NF-κB signaling pathway and reducing the expression and plasma levels of IL-6, IL-1β, and TNF-α. Furthermore, IQ significantly increased the relative abundance of beneficial bacteria, including Dubosiella, Akkermansia muciniphila and Faecalibaculum rodentium, while suppressing the growth of harmful bacteria such as Mucispirillum schaedleri in the intestinal flora of mice. Consequently, IQ can alleviate the LPS-induced intestinal mucosal barrier damage in mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway and modulating the intestinal flora.
Collapse
Affiliation(s)
- Enhui Tang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Tong Hu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Zhaokang Jiang
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Xiaojun Shen
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Huan Lin
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Haiyan Xian
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| | - Xinlan Wu
- School of Public Health, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
9
|
Liu M, Shen J, Zhu X, Ju T, Willing BP, Wu X, Lu Q, Liu R. Peanut skin procyanidins reduce intestinal glucose transport protein expression, regulate serum metabolites and ameliorate hyperglycemia in diabetic mice. Food Res Int 2023; 173:113471. [PMID: 37803795 DOI: 10.1016/j.foodres.2023.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
One of diabetic characteristics is the postprandial hyperglycemia. Inhibiting glucose uptake may be beneficial for controlling postprandial blood glucose levels and regulating the glucose metabolism Peanut skin procyanidins (PSP) have shown a potential for lowering blood glucose; however, the underlying mechanism through which PSP regulate glucose metabolism remains unknown. In the current study, we investigated the effect of PSP on intestinal glucose transporters and serum metabolites using a mouse model of diabetic mice. Results showed that PSP improved glucose tolerance and systemic insulin sensitivity, which coincided with decreased expression of sodium-glucose cotransporter 1 and glucose transporter 2 in the intestinal epithelium induced by an activation of the phospholipase C β2/protein kinase C signaling pathway. Moreover, untargeted metabolomic analysis of serum samples revealed that PSP altered arachidonic acid, sphingolipid, glycerophospholipid, bile acids, and arginine metabolic pathways. The study provides new insight into the anti-diabetic mechanism of PSP and a basis for further research.
Collapse
Affiliation(s)
- Min Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Jinxin Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Xiaoling Zhu
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430070, China
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Xin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430000, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430000, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
10
|
Cheng H, Zhang D, Wu J, Liu J, Zhou Y, Tan Y, Feng W, Peng C. Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154979. [PMID: 37552899 DOI: 10.1016/j.phymed.2023.154979] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Polyphenols are a class of naturally sourced compounds with widespread distribution and an extensive array of bioactivities. However, due to their complex constituents and weak absorption, a convincing explanation for their remarkable bioactivity remains elusive for a long time. In recent years, interaction with gut microbiota is hypothesized to be a reasonable explanation of the potential mechanisms for natural compounds especially polyphenols. OBJECTIVES This review aims to present a persuasive explanation for the contradiction between the limited bioavailability and the remarkable bioactivities of polyphenols by examining their interactions with gut microbiota. METHODS We assessed literatures published before April 10, 2023, from several databases, including Scopus, PubMed, Google Scholar, and Web of Science. The keywords used include "polyphenols", "gut microbiota", "short-chain fatty acids", "bile acids", "trimethylamine N-oxide", "lipopolysaccharides" "tryptophan", "dopamine", "intestinal barrier", "central nervous system", "lung", "anthocyanin", "proanthocyanidin", "baicalein", "caffeic acid", "curcumin", "epigallocatechin-3-gallate", "ferulic acid", "genistein", "kaempferol", "luteolin", "myricetin", "naringenin", "procyanidins", "protocatechuic acid", "pterostilbene", "quercetin", "resveratrol", etc. RESULTS: The review first demonstrates that polyphenols significantly alter gut microbiota diversity (α- and β-diversity) and the abundance of specific microorganisms. Polyphenols either promote or inhibit microorganisms, with various factors influencing their effects, such as dosage, treatment duration, and chemical structure of polyphenols. Furthermore, the review reveals that polyphenols regulate several gut microbiota metabolites, including short-chain fatty acids, dopamine, trimethylamine N-oxide, bile acids, and lipopolysaccharides. Polyphenols affect these metabolites by altering gut microbiota composition, modifying microbial enzyme activity, and other potential mechanisms. The changed microbial metabolites induced by polyphenols subsequently trigger host responses in various ways, such as acting as intestinal acid-base homeostasis regulators and activating on specific target receptors. Additionally, polyphenols are transformed into microbial derivatives by gut microbiota and these polyphenols' microbial derivatives have many potential advantages (e.g., increased bioactivity, improved absorption). Lastly, the review shows polyphenols maintain intestinal barrier, central nervous system, and lung function homeostasis by regulating gut microbiota. CONCLUSION The interaction between polyphenols and gut microbiota provides a credible explanation for the exceptional bioactivities of polyphenols. This review aids our understanding of the underlying mechanisms behind the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
11
|
Chen X, Wu J, Fu X, Wang P, Chen C. Fructus mori polysaccharide alleviates diabetic symptoms by regulating intestinal microbiota and intestinal barrier against TLR4/NF-κB pathway. Int J Biol Macromol 2023; 249:126038. [PMID: 37516223 DOI: 10.1016/j.ijbiomac.2023.126038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Fructus mori polysaccharide (FMP) has a variety of biological activities. In this study, the results showed that FMP alleviated hyperglycemia, insulin resistance, hyperlipidemia, endotoxemia, and high metabolic inflammation levels in type 2 diabetic (T2DM) mice. Next, it was found that the above beneficial effects of FMP on diabetic mice were significantly attenuated after antibiotics eliminated intestinal microbiota (IM) of mice. In addition, FMP suppressed intestinal inflammation and oxidative stress levels by inhibiting the activation of the TLR4/MyD88/NF-κB pathway, and indirectly upregulated the expression of the tight junction proteins Claudin-1, Occludin, and Zonula occlusionn-1 (ZO-1) to repair the intestinal barrier. Interestingly, the protective effect of FMP on the intestinal barrier was also attributed to its regulation of IM. The 16S rRNA and Spearman correlation analysis showed that FMP could repair the intestinal barrier to improve T2DM by remodeling specific IM, especially by significantly inhibiting 93.66 % of endotoxin-producing Shigella and promoting the proliferation of probiotic Allobaculum and Bifidobacterium by 16.31 % and 19.07 %, respectively. This study provided a theoretical support for the application of FMP as a novel probiotic in functional foods for diabetes.
Collapse
Affiliation(s)
- Xiaoxia Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Junlin Wu
- Guangzhou Wondfo Health Science and Technology Co., Ltd, China.
| | - Xiong Fu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Pingping Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Chun Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Nansha 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
12
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
13
|
Cordeiro-Massironi K, Soares-Freitas RAM, Sampaio GR, Pinaffi-Langley ACDC, Bridi R, de Camargo AC, Torres EAFS. In Vitro Digestion of Peanut Skin Releases Bioactive Compounds and Increases Cancer Cell Toxicity. Antioxidants (Basel) 2023; 12:1356. [PMID: 37507896 PMCID: PMC10376574 DOI: 10.3390/antiox12071356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Peanut skin is a rich source of bioactive compounds which may be able to reduce the risk factors associated with metabolic syndromes. This study aimed to characterize bio-compounds from peanut skin (Arachis hypogaea) and their bioactivity (antioxidant activity, inhibition of lipase, and carbohydrase enzymes) and to evaluate their anti-proliferative properties in colorectal cancer cells (HCT116) upon in vitro digestion. Peanut skin was digested in two sequential phases, and the final content, named phase-1 (P1) and phase-2 (P2) extracts, was evaluated. Several bioactive compounds were positively identified and quantified by liquid chromatography, including quinic acid, released especially after in vitro digestion. The total phenolic content and, regardless of the method, the antioxidant activity of P1 was higher than P2. P1 also showed a lower enzyme inhibitory concentration IC50 than P2, lipase, and α-glucosidase. For cell viability in HCT116 cells, lower concentrations of P1 were found for IC50 compared to P2. In conclusion, bioactive compounds were released mainly during the first phase of the in vitro digestion. The digested samples presented antioxidant activity, enzyme inhibitory activity, and cancer cell cytotoxicity, especially those from the P1 extract. The potential applications of such a by-product in human health are reported.
Collapse
Affiliation(s)
- Karina Cordeiro-Massironi
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | | | - Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Ana Clara da C Pinaffi-Langley
- Department of Nutrition Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Raquel Bridi
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile
| | | | | |
Collapse
|
14
|
Redondo-Castillejo R, Garcimartín A, Hernández-Martín M, López-Oliva ME, Bocanegra A, Macho-González A, Bastida S, Benedí J, Sánchez-Muniz FJ. Proanthocyanidins: Impact on Gut Microbiota and Intestinal Action Mechanisms in the Prevention and Treatment of Metabolic Syndrome. Int J Mol Sci 2023; 24:ijms24065369. [PMID: 36982444 PMCID: PMC10049473 DOI: 10.3390/ijms24065369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
The metabolic syndrome (MS) is a cluster of risk factors, such as central obesity, hyperglycemia, dyslipidemia, and arterial hypertension, which increase the probability of causing premature mortality. The consumption of high-fat diets (HFD) is a major driver of the rising incidence of MS. In fact, the altered interplay between HFD, microbiome, and the intestinal barrier is being considered as a possible origin of MS. Consumption of proanthocyanidins (PAs) has a beneficial effect against the metabolic disturbances in MS. However, there are no conclusive results in the literature about the efficacy of PAs in improving MS. This review allows a comprehensive validation of the diverse effects of the PAs on the intestinal dysfunction in HFD-induced MS, differentiating between preventive and therapeutic actions. Special emphasis is placed on the impact of PAs on the gut microbiota, providing a system to facilitate comparison between the studies. PAs can modulate the microbiome toward a healthy profile and strength barrier integrity. Nevertheless, to date, published clinical trials to verify preclinical findings are scarce. Finally, the preventive consumption of PAs in MS-associated dysbiosis and intestinal dysfunction induced by HFD seems more successful than the treatment strategy.
Collapse
Affiliation(s)
- Rocío Redondo-Castillejo
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Marina Hernández-Martín
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Aránzazu Bocanegra
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.B.); (F.J.S.-M.); Tel.: +34-394-1700 (A.B.); +34-913-941-828 (F.J.S.-M.)
| | - Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco J. Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (A.B.); (F.J.S.-M.); Tel.: +34-394-1700 (A.B.); +34-913-941-828 (F.J.S.-M.)
| |
Collapse
|
15
|
Wang H, Zhou C, Gu S, Sun Y. Surrogate fostering of mice prevents prenatal estradiol-induced insulin resistance via modulation of the microbiota-gut-brain axis. Front Microbiol 2023; 13:1050352. [PMID: 36699605 PMCID: PMC9868306 DOI: 10.3389/fmicb.2022.1050352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Prenatal and early postnatal development are known to influence future health. We previously reported that prenatal high estradiol (HE) exposure induces insulin resistance in male mice by disrupting hypothalamus development. Because a foster dam can modify a pup's gut microbiota and affect its health later in life, we explored whether surrogate fostering could also influence glucose metabolism in HE offspring and examined mechanisms that might be involved. Methods We performed a surrogate fostering experiment in mice and examined the relationship between the metabolic markers associated to insulin resistance and the composition of the gut microbiota. Results HE pups raised by HE foster dams (HE-HE) developed insulin resistance, but HE pups fostered by negative control dams (NC-HE) did not. The gut microbiota composition of HE-HE mice differed from that of NC mice raised by NC foster dams (NC-NC), whereas the composition in NC-HE mice was similar to that of NC-NC mice. Compared with NC-NC mice, HE-HE mice had decreased levels of fecal short-chain fatty acids and serum intestinal hormones, increased food intake, and increased hypothalamic neuropeptide Y expression. In contrast, none of these indices differed between NC-HE and NC-NC mice. Spearman correlation analysis revealed a significant correlation between the altered gut microbiota composition and the insulin resistance-related metabolic indicators, indicating involvement of the microbiota-gut-brain axis. Discussion Our findings suggest that alterations in the early growth environment may prevent fetal-programmed glucose metabolic disorder via modulation of the microbiota-gut-brain axis. These findings offer direction for development of translational solutions for adult diseases associated with aberrant microbial communities in early life.
Collapse
Affiliation(s)
- Huihui Wang
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China,Animal Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengliang Zhou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Shuping Gu
- Department of Science and Technology Research, Shanghai Model Organisms, Shanghai, China
| | - Yun Sun
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China,Animal Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Yun Sun, ✉
| |
Collapse
|
16
|
Aydin OC, Aydın S, Barun S. Role of natural products and intestinal flora on type 2 diabetes mellitus treatment. World J Clin Cases 2023; 11:65-72. [PMID: 36687192 PMCID: PMC9846977 DOI: 10.12998/wjcc.v11.i1.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 01/04/2023] Open
Abstract
Diabetes mellitus (DM) is a complicated, globally expanding disease that is influenced by hereditary and environmental variables. Changes in modern society's food choices, physical inactivity, and obesity are significant factors in the development of type 2 DM (T2DM). The association between changes in intestinal flora and numerous disorders, including obesity, diabetes, and cardiovascular diseases, has been studied in recent years. The purpose of this review is to analyze the mechanisms underlying the alteration of the diabetic patients' intestinal flora, as well as their therapeutic choices. Also included is a summary of the anti-diabetic benefits of natural compounds demonstrated by studies. The short-chain fatty acids theory, the bile acid theory, and the endotoxin theory are all potential methods by which intestinal flora contributes to the establishment and progression of T2DM. Due to an intestinal flora imbalance, abnormalities in short-chain fatty acids and secondary bile acids have been found in diabetic patients. Additionally, metabolic endotoxemia with altering flora induces a systemic inflammatory response by stimulating the immune system via bacterial translocation. The agenda for diabetes treatment includes the use of short-chain fatty acids, probiotics, prebiotics in the diet, fecal bacteria transplantation, and antibiotics. Animal studies have proven the antidiabetic benefits of numerous bioactive substances, including Flavonoids, Alkaloids, Saponin, and Allicin. However, further research is required to contribute to the treatment of diabetes.
Collapse
Affiliation(s)
- Ozlem Celik Aydin
- Department of Medical Pharmacology, Erzincan Mengücek Gazi Training and Research Hospital, Erzincan 24100, Turkey
| | - Sonay Aydın
- Department of Radiology, Erzincan Binali Yıldırım University, Mengücek Gazi Training and Research Hospital, Erzincan 24100, Turkey
| | - Sureyya Barun
- Department of Medical Pharmacology, Gazi University Faculty of Medicine, Ankara 06500, Turkey
| |
Collapse
|
17
|
Wang N, Chen W, Cui C, Zheng Y, Yu Q, Ren H, Liu Z, Xu C, Zhang G. The Peanut Skin Procyanidins Attenuate DSS-Induced Ulcerative Colitis in C57BL/6 Mice. Antioxidants (Basel) 2022; 11:2098. [PMID: 36358470 PMCID: PMC9686776 DOI: 10.3390/antiox11112098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 08/10/2023] Open
Abstract
Polyphenols from peanut skin have been reported to possess many beneficial functions for human health, including anti-oxidative, antibacterial, anticancer, and other activities. To date, however, its anti-inflammatory effect and the underlying mechanism remain unclear. In this study, the anti-inflammatory effect of peanut skin procyanidins extract (PSPE) and peanut skin procyanidins (PSPc) were investigated by a dextran sodium sulfate (DSS)-induced colitis mouse model. The results showed that both PSPE and PSPc supplementation reversed the DSS-induced body weight loss and reduced disease activity index (DAI) values, accompanied by enhanced goblet cell numbers and tight junction protein claudin-1 expression in the colon. PSPE and PSPc treatment also suppressed the inflammatory responses and oxidative stress in the colon by down-regulating IL-1β, TNF-α, and MDA expressions. Meanwhile, PSPE and PSPc significantly altered the gut microbiota composition by increasing the relative abundance of Clostridium XlVb and Anaerotruncus, and inhibiting the relative abundance of Alistipes at the genus level. PSPE and PSPc also significantly elevated the production of short-chain fatty acids (SCFAs) in mice with colitis. The correlation analysis suggested that the protective effects of PSPE and PSPc on colitis might be related to the alteration of gut microbiota composition and the formation of SCFAs. In conclusion, the current research indicates that supplementation of PSPE and PSPc could be a promising nutritional strategy for colitis prevention and treatment.
Collapse
Affiliation(s)
- Na Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Research Center for Animal Immunology, Zhengzhou 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, China
| | - Weixuan Chen
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, China
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chenxu Cui
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, China
| | - Yuru Zheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, China
| | - Qiuying Yu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Research Center for Animal Immunology, Zhengzhou 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, China
| | - Hongtao Ren
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, China
| | - Zhigang Liu
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, China
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chao Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Nutrition and Healthy Food of Zhengzhou, Zhengzhou 450002, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
- International Joint Research Center for Animal Immunology, Zhengzhou 450002, China
| |
Collapse
|
18
|
Jiang X, Sun B, Zhou Z. Preclinical Studies of Natural Products Targeting the Gut Microbiota: Beneficial Effects on Diabetes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8569-8581. [PMID: 35816090 DOI: 10.1021/acs.jafc.2c02960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Diabetes mellitus (DM) is a serious metabolic disease characterized by persistent hyperglycemia, with a continuously increasing morbidity and mortality. Although traditional treatments including insulin and oral hypoglycemic drugs maintain blood glucose levels within the normal range to a certain extent, there is an urgent need to develop new drugs that can effectively improve glucose metabolism and diabetes-related complications. Notably, accumulated evidence implicates that the gut microbiota is unbalanced in DM individuals and is involved in the physiological and pathological processes of this metabolic disease. In this review, we introduce the molecular mechanisms by which the gut microbiota contributes to the development of DM. Furthermore, we summarize the preclinical studies of bioactive natural products that exert antidiabetic effects by modulating the gut microbiota, aiming to expand the novel therapeutic strategies for DM prevention and management.
Collapse
Affiliation(s)
- Xiaofang Jiang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Boyu Sun
- The Third People's Hospital of Qingdao, Qingdao 266000, China
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
19
|
Zhang L, Zhang H, Xie Q, Xiong S, Jin F, Zhou F, Zhou H, Guo J, Wen C, Huang B, Yang F, Dong Y, Xu K. A bibliometric study of global trends in diabetes and gut flora research from 2011 to 2021. Front Endocrinol (Lausanne) 2022; 13:990133. [PMID: 36339425 PMCID: PMC9633665 DOI: 10.3389/fendo.2022.990133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Diabetes mellitus is a serious metabolic disease that causes a serious economic burden worldwide. Gut flora is a major component of diabetes research, and the aim of this study was to understand the trends and major components of research related to diabetes and gut flora in the last 11 years. METHODS We searched the Web of Science Core Collection database for articles on diabetes and gut flora related research from 2011-2021 on July 2, 2022. The literature data were analyzed for country, institution, author, steward, journal, and highly cited literature using Citespace.5.8.R3 and Vosviewer1.6.17. RESULTS Finally 4834 articles that met the requirements were included. The overall trend of articles published in the last 11 years is increasing, and the trend of articles published after 2019 is increasing significantly. In total, 109 countries, 4820 institutions, and 23365 authors were involved in the field of research. The highest number of publications was 1262 articles from the United States, the institution with the most publications was the University of Copenhagen with 134 articles, and the author with the most publications was PATRICE D CANI with 52 articles. CONCLUSION The number of studies related to diabetes and intestinal flora is increasing and more and more researchers are involved in this field. Intestinal flora provides a key research direction for the treatment of diabetes. In the future, gut flora will remain the focus of the diabetes field.
Collapse
Affiliation(s)
- Lu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongcai Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Quan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuai Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengchen Jin
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Zhou
- North Sichuan Medical College, Nanchong, China
| | - Hongjun Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhong Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuanbiao Wen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Biao Huang
- Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- *Correspondence: Biao Huang, ; Fei Yang, ; Yuanwei Dong, ; Ke Xu,
| | - Fei Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Biao Huang, ; Fei Yang, ; Yuanwei Dong, ; Ke Xu,
| | - Yuanwei Dong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Biao Huang, ; Fei Yang, ; Yuanwei Dong, ; Ke Xu,
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing, China
- *Correspondence: Biao Huang, ; Fei Yang, ; Yuanwei Dong, ; Ke Xu,
| |
Collapse
|