1
|
Li L, Bao Y, Guo F, Chen J, Zhao M, Cao W, Liu W, Duan X, Ren G. Effect of constant and variable temperature drying processes on drying characteristics, quality, and volatile profile of rose petals in infrared-assisted spouted bed drying. J Food Sci 2024; 89:1387-1402. [PMID: 38282373 DOI: 10.1111/1750-3841.16950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
The edible rose (Rosa Crimson Glory) petals were dried using infrared-assisted spouted bed drying technology. The effects of different drying temperature conditions (30, 35, 40, 45, and 50°C, as well as stepped heating drying [SHD] and stepped cooling drying) on the drying characteristics, physicochemical properties, antioxidant capacity, and changes in volatile flavor compounds of the rose petals were investigated. The results showed that the drying time was shortened with increasing drying temperature. Both variable temperature drying processes gave the shortest drying times. Optimal color retention of rose petals was achieved at a constant temperature of 40°C and SHD. Increased drying temperature resulted in higher water-soluble polysaccharide content in the dried rose petals, whereas lower temperatures facilitated anthocyanin preservation. The variable temperature drying processes favored the retention of water-soluble polysaccharides in rose petals, but not anthocyanins. Regarding antioxidant capacity, the samples dried at 40°C and those subjected to the two variable temperature drying processes performed better. This study also analyzed the differences in volatile flavor compounds of rose petals dried under different drying conditions. It was found that the majority of volatile flavor compounds in the rose petals dried by SHD exhibited higher content levels than the other drying conditions. Therefore, considering a thorough evaluation of all relevant factors, it was clear that utilizing the SHD process was the most efficient method for obtaining the best quality rose petals overall.
Collapse
Affiliation(s)
- Linlin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Agricultural Product Drying Equipment Engineering Technology Research Center, Henan University of Science and Technology, Luoyang, China
| | - Yunfei Bao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Fuzhen Guo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Agricultural Product Drying Equipment Engineering Technology Research Center, Henan University of Science and Technology, Luoyang, China
| | - Mengyue Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Weiwei Cao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Agricultural Product Drying Equipment Engineering Technology Research Center, Henan University of Science and Technology, Luoyang, China
| | - Wenchao Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Agricultural Product Drying Equipment Engineering Technology Research Center, Henan University of Science and Technology, Luoyang, China
| | - Xu Duan
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Agricultural Product Drying Equipment Engineering Technology Research Center, Henan University of Science and Technology, Luoyang, China
| | - Guangyue Ren
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Agricultural Product Drying Equipment Engineering Technology Research Center, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
2
|
Zhao Y, Yu F. Efficient Production of High-Quality Infrared-Assisted Spouted Bed-Dried Areca taro Based on the Drying Temperature and Cutting Size Control. Foods 2024; 13:260. [PMID: 38254561 PMCID: PMC10815171 DOI: 10.3390/foods13020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The purpose of this study was to apply infrared-assisted spouted bed drying (IRSBD) technology for Areca taro drying and to investigate the effects of different parameters on its drying quality. Specifically, in order to determine the suitable conditions for IRSBD, the effects of different drying temperatures (45 °C, 50 °C, 55 °C, and 60 °C) and cutting sizes (6 × 6 × 6 mm, 8 × 8 × 8 mm, 10 × 10 × 10 mm, and 12 × 12 × 12 mm) on the drying characteristics, temperature uniformity, and quality properties (including colour, rehydration ratio, total phenol content, total flavonoid content, and antioxidant activity) of Areca taro were studied. The results showed that the optimal drying condition was the sample with a cutting size of 10 × 10 × 10 mm and drying at 50 °C, which yielded the dried sample with the best colour, highest total phenol and flavonoid contents, maximum antioxidant capacity, and rehydration ratio.
Collapse
Affiliation(s)
- Yitong Zhao
- Haide College, Ocean University of China, Qingdao 266100, China;
| | - Fanqianhui Yu
- Haide College, Ocean University of China, Qingdao 266100, China;
- Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Ao J, Shen H, Cai Y, Wang J, Xie Y, Luo A. Optimization of the pulsed vacuum drying process of green walnut husk through temperature adaptive regulation. J Food Sci 2024; 89:121-134. [PMID: 38010731 DOI: 10.1111/1750-3841.16853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
This study aimed to optimize the temperature adaptive conditions of pulsed vacuum drying (PVD) for green walnut husk (GWH) to tackle the issues of severe environmental pollution and limited utilization of GWH. The results of the single-factor experiment revealed that the optimal drying temperature for PVD of GWH was 65°C, with a pulsed ratio of 9 min: 3 min. The drying time decreased from 10.87 to 6.32 h with increasing drying temperature and from 8.83 to 6.23 kW·h/kg with increasing pulsed ratio. Energy consumption also decreased with shorter drying time and shorter vacuum time. Under this optimal variable temperature drying condition, GWH exhibited the highest total active substance content, with respective values of 9.43 mg/g for total triterpenes, 35.68 mg/g for flavonoids, 9.51 mg/g for polyphenols, and 9.55 mg/g for quinones. The experimental drying data of GWH were best fitted by a logarithmic model, with R2 values ranging from 0.9927 to 0.9943. Furthermore, the observed microstructure of GWH corresponded to the variations in total active substance content. This study provided valuable theoretical guidance for addressing environmental pollution associated with GWH and facilitating the industrialization and refinement of GWH drying processes. PRACTICAL APPLICATION: There is a growing interest in harnessing the potential value of agricultural waste to transform low-cost raw materials into high-value products while mitigating environmental pollution. In this study, for the first time, the effects of variable temperature pulsed vacuum drying on the content of active substances, drying time, and energy consumption of green walnut husk (GWH) were investigated. The findings serve as a theoretical foundation for addressing environmental pollution issues associated with GWH and enabling the industrialization and precision drying of GWH.
Collapse
Affiliation(s)
- Jingfang Ao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Heyu Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yongkang Xie
- Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Anwei Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Yang T, Zheng X, Xiao H, Shan C, Yao X, Li Y, Zhang J. Drying Temperature Precision Control System Based on Improved Neural Network PID Controller and Variable-Temperature Drying Experiment of Cantaloupe Slices. PLANTS (BASEL, SWITZERLAND) 2023; 12:2257. [PMID: 37375883 DOI: 10.3390/plants12122257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
A drying temperature precision control system was studied to provide technical support for developing and further proving the superiority of the variable-temperature drying process. In this study, an improved neural network (INN) proportional-integral-derivative (PID) controller (INN-PID) was designed. The dynamic performance of the PID, neural network PID (NN-PID) and INN-PID controllers was simulated with unit step signals as an input in MATLAB software. A drying temperature precision control system was set up in an air impingement dryer, and the drying temperature control experiment was carried out to verify the performance of the three controllers. Linear variable-temperature (LVT) and constant-temperature drying experiments of cantaloupe slices were carried out based on the system. Moreover, the experimental results were evaluated comprehensively with the brightness (L value), colour difference (ΔE), vitamin C content, chewiness, drying time and energy consumption (EC) as evaluation indexes. The simulation results show that the INN-PID controller outperforms the other two controllers in terms of control accuracy and regulation time. In the drying temperature control experiment at 50 °C-55 °C, the peak time of the INN-PID controller is 237.37 s, the regulation time is 134.91 s and the maximum overshoot is 4.74%. The INN-PID controller can quickly and effectively regulate the temperature of the inner chamber of the air impingement dryer. Compared with constant-temperature drying, LVT is a more effective drying mode as it ensures the quality of the material and reduces the drying time and EC. The drying temperature precision control system based on the INN-PID controller meets the temperature control requirements of the variable-temperature drying process. This system provides practical and effective technical support for the variable-temperature drying process and lays the foundation for further research. The LVT drying experiments of cantaloupe slices also show that variable-temperature drying is a better process than constant-temperature drying and is worthy of further study to be applied in production.
Collapse
Affiliation(s)
- Taoqing Yang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi 832003, China
| | - Xia Zheng
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi 832003, China
| | - Hongwei Xiao
- College of Engineering, China Agricultural University, 17 Qinghua Donglu, Beijing 100083, China
| | - Chunhui Shan
- College of Food, Shihezi University, Shihezi 832003, China
| | - Xuedong Yao
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi 832003, China
| | - Yican Li
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi 832003, China
| | - Jikai Zhang
- College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China
- Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi 832003, China
- Key Laboratory of Modern Agricultural Machinery Corps, Shihezi 832003, China
| |
Collapse
|