1
|
Zhang Y, Dong J, Wang F, Li Q, Fan Y, Zhao X, Hao L, Hou H. Stability of oil-in-water emulsion and immunomodulating activity in S180 tumor-bearing mice. J Food Sci 2024; 89:5884-5899. [PMID: 39150694 DOI: 10.1111/1750-3841.17237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024]
Abstract
The stability and nutritional integrity of emulsions are susceptible to various factors including thermal treatment, solid-liquid ratio, and sterilization. In this study, the physicochemical stability and immunomodulatory activities of an oil-in-water emulsion containing immune peptides (TUFSE) were assessed through particle size, zeta potential, related cytokines, and so on. When the temperature was 70°C and a solid-liquid ratio of 1:4, the emulsion revealed stability at high-pressure homogenization, with the small particle size. The loss rates of vitamins were 8.57%-62.26% in 6 months at 25°C. After treatment with cyclophosphamide (CTX), lymphocyte proliferation activity in TUFSE-H group increased (p < 0.05), and immune globulin levels were notably elevated (p < 0.05) in TUFSE groups compared to model group. It confirms the parameters of the emulsion, suggesting its ability to be prepared with minimal vitamin loss while simultaneously improving the disease status in CTX-treated tumor-bearing mice. It shows potential as an immune-enhancing supplement with significant potential value. PRACTICAL APPLICATION: This study validated the parameters of the oil-in-water emulsion and showed that it can be stably prepared with minor vitamin loss while simultaneously improving the disease status in CTX-treated tumor-bearing mice. TUFSE-H group exhibited a notable increase in lymphocytes proliferation activity, whereas serum cytokines and immune globulin levels were elevated compared to MC group, indicating its potential as an immune-enhancing supplement with substantial value.
Collapse
Affiliation(s)
- Yanying Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
| | - Jingning Dong
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
| | - FeiFei Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
| | - Qiqi Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
| | - Yan Fan
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
| | - Xue Zhao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
| | - Li Hao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, P. R. China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong, China
- Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan, China
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong, China
| |
Collapse
|
2
|
Zhang Y, Ren EF, Wen T, Lyu S, Gai L, Chen S, Li K, Han Z, Niu F, Niu D. Investigation into potential allergenicity of DBD plasma-treated casein digestion products based on immunoglobulin E linear epitopes and the sensitized-cell model. Food Chem 2024; 447:138940. [PMID: 38484545 DOI: 10.1016/j.foodchem.2024.138940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024]
Abstract
The study aimed to investigate the allergenicity change in casein treated with dielectric barrier discharge (DBD) plasma during in vitro simulated digestion, focusing on the immunoglobulin E (IgE) linear epitopes and utilizing a sensitized-cell model. Results indicated that prior treatment with DBD plasma treatment (4 min) before simulated digestion led to a 10.5% reduction in the IgE-binding capacity of casein digestion products. Moreover, the release of biologically active substances induced from KU812 cells, including β-HEX release rate, human histamine, IL-4, IL-6, and TNF-α, decreased by 2.1, 28.1, 20.6, 11.6, and 17.3%, respectively. Through a combined analysis of LC-MS/MS and immunoinformatics tools, it was revealed that DBD plasma treatment promoted the degradation of the IgE linear epitopes of casein during digestion, particularly those located in the α-helix region of αs1-CN and αs2-CN. These findings suggest that DBD plasma treatment prior to digestion may alleviate casein allergic reactions.
Collapse
Affiliation(s)
- Yongniu Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Er-Fang Ren
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China
| | - Tao Wen
- Guangxi Zhuang Autonomous Region Testing Institute of Product Quality, Nanning 530200, China
| | - Shijun Lyu
- Guangxi Zhuang Autonomous Region Testing Institute of Product Quality, Nanning 530200, China
| | - Lili Gai
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Siyu Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhong Han
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Debao Niu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
3
|
Pan W, Gu F, Yan X, Huang J, Liao H, Niu F. Biomacromolecular carriers based hydrophobic natural products for potential cancer therapy. Int J Biol Macromol 2024; 269:132274. [PMID: 38734357 DOI: 10.1016/j.ijbiomac.2024.132274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Cancer is the second leading cause of death worldwide. It was estimated that 90 % of cancer-related deaths were attributable to the development of multi-drug resistance (MDR) during chemotherapy, which results in ineffective chemotherapy. Hydrophobic natural products plays a pivotal role in the field of cancer therapy, with the potential to reverse MDR in tumor cells, thereby enhancing the efficacy of tumor therapy. However, their targeted delivery is considered a major hurdle in their application. The advent of numerous approaches for encapsulating bioactive ingredients in the nanodelivery systems has improved the stability and targeted delivery of these biomolecules. The manuscript comprehensively analyses the nanodelivery systems of bioactive compounds with potential cancer therapy applications, including liposomes, emulsions, solid lipid nanoparticles (NPs), and polymeric NPs. Then, the advantages and disadvantages of various nanoagents in the treatment of various cancer types are critically discussed. Further, the application of multiple-compbine delivery methods to overcome the limitations of single-delivery have need critically analyzed, which thus could help in the designing nanodrug delivery systems for bioactive compounds in clinical settings. Therefore, the review is timely and important for development of efficient nanodelivery systems involving hydrophobic natural products to improve pharmacokinetic properties for effective cancer treatment.
Collapse
Affiliation(s)
- Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feina Gu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinyu Yan
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jianghui Huang
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huabin Liao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Ghiasi F, Hashemi H, Esteghlal S, Hosseini SMH. An Updated Comprehensive Overview of Different Food Applications of W 1/O/W 2 and O 1/W/O 2 Double Emulsions. Foods 2024; 13:485. [PMID: 38338620 PMCID: PMC10855190 DOI: 10.3390/foods13030485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Double emulsions (DEs) present promising applications as alternatives to conventional emulsions in the pharmaceutical, cosmetic, and food industries. However, most review articles have focused on the formulation, preparation approaches, physical stability, and release profile of encapsulants based on DEs, particularly water-in-oil-in-water (W1/O/W2), with less attention paid to specific food applications. Therefore, this review offers updated detailed research advances in potential food applications of both W1/O/W2 and oil-in-water-in-oil (O1/W/O2) DEs over the past decade. To this end, various food-relevant applications of DEs in the fortification; preservation (antioxidant and antimicrobial targets); encapsulation of enzymes; delivery and protection of probiotics; color stability; the masking of unpleasant tastes and odors; the development of healthy foods with low levels of fat, sugar, and salt; and design of novel edible packaging are discussed and their functional properties and release characteristics during storage and digestion are highlighted.
Collapse
Affiliation(s)
- Fatemeh Ghiasi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz 71441-13131, Iran; (H.H.); (S.E.); (S.M.H.H.)
| | | | | | | |
Collapse
|