Zhao M, Li S, Ahn DU, Huang X. Phosvitin phosphopeptides produced by pressurized hea-trypsin hydrolysis promote the differentiation and mineralization of MC3T3-E1 cells via the OPG/RANKL signaling pathways.
Poult Sci 2021;
100:527-536. [PMID:
33518105 PMCID:
PMC7858084 DOI:
10.1016/j.psj.2020.10.053]
[Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 10/31/2022] Open
Abstract
Phosvitin (PV) from egg yolk is an excellent substrate for the production of phosphopeptides, which have a strong calcium chelating capacity and promoting calcium absorption and bone mineralization. This study investigated the effect of PV hydrolysates produced using a effective preparation method (high temperature (121°C) and mild pressure (0.1 MPa), HTMP) or HTMP pretreatment and trypsin hydrolysis combination (HTMP-PV18) on the physiology of an osteoblast MC3T3-E1 cells line. The proliferation, apoptosis, and differentiation of MC3T3-E1 cells were analyzed using the CCK-8, flow cytometry, and RT-PCR reactions, respectively. Both the HTMP-PV and HTMP-PV18 increased the proliferation, and inhibited the apoptosis of MC3T3-E1 cells significantly. The HTMP-PV increased the proliferation of MC3T3-E1 cells by 147.12 ± 2.11% and the HTMP-PV18 by 136.43 ± 4.51%. In addition, the HTMP-PV and HTMP-PV18 effectively promoted the expression of genes related to the OPG/RANKL signaling channel during cell differentiation. This indicated that both the HTMP-PV and HTMP-PV18 have the potential to promote bone mineralization by improving the proliferation and differentiation of osteoblastic cells.
Collapse