1
|
O’Neill L, Manzanilla EG, Ekhlas D, Leonard FC. Antimicrobial Resistance in Commensal Escherichia coli of the Porcine Gastrointestinal Tract. Antibiotics (Basel) 2023; 12:1616. [PMID: 37998818 PMCID: PMC10669415 DOI: 10.3390/antibiotics12111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Antimicrobial resistance (AMR) in Escherichia coli of animal origin presents a threat to human health. Although animals are not the primary source of human infections, humans may be exposed to AMR E. coli of animal origin and their AMR genes through the food chain, direct contact with animals, and via the environment. For this reason, AMR in E. coli from food producing animals is included in most national and international AMR monitoring programmes and is the subject of a large body of research. As pig farming is one of the largest livestock sectors and the one with the highest antimicrobial use, there is considerable interest in the epidemiology of AMR in E. coli of porcine origin. This literature review presents an overview and appraisal of current knowledge of AMR in commensal E. coli of the porcine gastrointestinal tract with a focus on its evolution during the pig lifecycle and the relationship with antimicrobial use. It also presents an overview of the epidemiology of resistance to extended spectrum cephalosporins, fluoroquinolones, and colistin in pig production. The review highlights the widespread nature of AMR in the porcine commensal E. coli population, especially to the most-used classes in pig farming and discusses the complex interplay between age and antimicrobial use during the pig lifecycle.
Collapse
Affiliation(s)
- Lorcan O’Neill
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| | - Edgar García Manzanilla
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| | - Daniel Ekhlas
- Pig Development Department, Teagasc, The Irish Food and Agriculture Authority, Moorepark, Fermoy, Co Cork P61 C996, Ireland; (E.G.M.); (D.E.)
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin D15 DY05, Ireland
| | - Finola C. Leonard
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin D04 V1W8, Ireland;
| |
Collapse
|
2
|
Zhao X, Zhao H, Zhou Z, Miao Y, Li R, Yang B, Cao C, Xiao S, Wang X, Liu H, Wang J, Yang Z. Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates That Cause Diarrhea in Sheep in Northwest China. Microbiol Spectr 2022; 10:e0159522. [PMID: 35943154 PMCID: PMC9431196 DOI: 10.1128/spectrum.01595-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Development of extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli is one the greatest threats faced by mankind. Among animals, chickens, pigs, and cattle are reservoirs of these pathogens worldwide. Nevertheless, there is a knowledge gap on ESBL-producing E. coli from small ruminants (i.e., sheep and goats) in China. The aim of this study was to identify and characterize the resistance profiles, resistomes, and sequence features of 67 ESBL-producing E. coli isolates from sheep in northwest China. The findings showed that blaCTX-M and blaTEM were the most prevalent. Interestingly, we found that the resistance gene mcr-1 was widespread in sheep merely from Shaanxi areas, accounting for 19.2% (5/26). The highly prevalent serotypes and FumC-FimH (CH) typing isolates were O8 and C4H32, respectively. High-risk E. coli clones, such as sequence type 10 (ST10), ST23, ST44, and ST58, were also found in China's sheep population. A total of 67 ESBL-producing isolates were divided into five phylogenetic groups, namely, B1 (n = 47, 70.1%), B2 (n = 1, 1.5%), C (n = 14, 20.9%), E (n = 1, 1.5%), and F (n = 1, 1.5%), with the phylogenetic groups for 3 isolates (4.5%) remaining unknown. Moreover, ESBL-producing E. coli isolates were also characterized by the abundance and diversity of biocide/metal resistance genes and insert sequences. We found that in ESBL-producing E. coli isolates, there were two different types of isolates, those containing ESBL genes or not, which led to large discrepancies between resistance phenotypes and resistomes. In summary, our study provides a comprehensive overview of resistance profiles and genome sequence features in ESBL-producing E. coli and highlights the possible role of sheep as antibiotic resistance gene disseminators into humans. IMPORTANCE Antimicrobial resistance (AMR), especially the simultaneous resistance to several antibiotics (multidrug resistance [MDR]), is one of the greatest threats to global public health in the 21st century. Among animals, chickens, pigs, and cattle are reservoirs of these pathogens worldwide. Nevertheless, there is a knowledge gap on ESBL-producing E. coli from small ruminants in China. This study is the largest and most comprehensive analysis of ESBL-producing E. coli isolates from sheep, including antibiotic resistance profiles, phylogenetic groups, serotypes, multilocus sequence types (MLST), insert sequences (IS), antibiotic resistance genes, disinfectant resistance genes, and heavy metal resistance genes. We recommend extending the surveillance of AMR of sheep-origin E. coli to prevent future public health risks.
Collapse
Affiliation(s)
- Xueliang Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zilian Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yongqiang Miao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Dias D, Fonseca C, Mendo S, Caetano T. A closer look on the variety and abundance of the faecal resistome of wild boar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118406. [PMID: 34710519 DOI: 10.1016/j.envpol.2021.118406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance (AMR) is a serious problem for public and animal health, and also for the environment. Monitoring and reporting the occurrence of AMR determinants and bacteria with the potential to disseminate is a priority for health surveillance programs around the world and critical to the One Health concept. Wildlife is a reservoir of AMR, and human activities can strongly influence their resistome. The main goal of this work was to study the resistome of wild boar faecal microbiome, one of the most important game species in Europe using metagenomic and culturing approaches. The most abundant genes identified by the high-throughput qPCR array encode mobile genetic elements, including integrons, which can promote the dissemination of AMR determinants. A diverse set of genes (n = 62) conferring resistance to several classes of antibiotics (ARGs), some of them included in the WHO list of critically important antimicrobials were also detected. The most abundant ARGs confer resistance to tetracyclines and aminoglycosides. The phenotypic resistance of E. coli and Enterococcus spp. were also investigated, and together supported the metagenomic results. As the wild boar is an omnivorous animal, it can be a disseminator of AMR bacteria and ARGs to livestock, humans, and the environment. This study supports that wild boar can be a key sentinel species in ecosystems surveillance and should be included in National Action Plans to fight AMR, adopting a One Health approach.
Collapse
Affiliation(s)
- Diana Dias
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Carlos Fonseca
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; ForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Sónia Mendo
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Tânia Caetano
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
4
|
Atlaw NA, Keelara S, Correa M, Foster D, Gebreyes W, Aidara-Kane A, Harden L, Thakur S, Cray PJF. Identification of CTX-M Type ESBL E. coli from Sheep and Their Abattoir Environment Using Whole-Genome Sequencing. Pathogens 2021; 10:1480. [PMID: 34832635 PMCID: PMC8618867 DOI: 10.3390/pathogens10111480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Widespread dissemination of extended-spectrum beta-lactamase (ESBL) Escherichia coli (E. coli) in animals, retail meats, and patients has been reported worldwide except for limited information on small ruminants. Our study focused on the genotypic characterization of ESBL E. coli from healthy sheep and their abattoir environment in North Carolina, USA. A total of 113 ESBL E. coli isolates from sheep (n = 65) and their abattoir environment (n = 48) were subjected to whole-genome sequencing (WGS). Bioinformatics tools were used to analyze the WGS data. Multiple CTX-M-type beta-lactamase genes were detected, namely blaCTX-M-1, blaCTX-M-14, blaCTX-M-15, blaCTX-M-27, blaCTX-M-32, blaCTX-M-55, and blaCTX-M-65. Other beta-lactamase genes detected included blaCMY-2, blaTEM-1A/B/C, and blaCARB-2. In addition, antimicrobial resistance (AMR) genes and/or point mutations that confer resistance to quinolones, aminoglycosides, phenicols, tetracyclines, macrolides, lincosamides, and folate-pathway antagonists were identified. The majority of the detected plasmids were shared between isolates from sheep and the abattoir environment. Sequence types were more clustered around seasonal sampling but dispersed across sample types. In conclusion, our study reported wide dissemination of ESBL E. coli in sheep and the abattoir environment and associated AMR genes, point mutations, and plasmids. This is the first comprehensive AMR and WGS report on ESBL E. coli from sheep and abattoir environments in the United States.
Collapse
Affiliation(s)
- Nigatu Aklilu Atlaw
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.A.A.); (S.K.); (M.C.); (D.F.); (L.H.); (S.T.)
| | - Shivaramu Keelara
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.A.A.); (S.K.); (M.C.); (D.F.); (L.H.); (S.T.)
| | - Maria Correa
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.A.A.); (S.K.); (M.C.); (D.F.); (L.H.); (S.T.)
| | - Derek Foster
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.A.A.); (S.K.); (M.C.); (D.F.); (L.H.); (S.T.)
| | - Wondwossen Gebreyes
- Department of Veterinary Preventive Medicine, The Ohio State University, 1920 Coffey Rd., Columbus, OH 43210, USA;
| | - Awa Aidara-Kane
- Department Food Safety and Zoonoses, Foodborne Diseases, World Health Organization, 1202 Geneva, Switzerland;
| | - Lyndy Harden
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.A.A.); (S.K.); (M.C.); (D.F.); (L.H.); (S.T.)
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.A.A.); (S.K.); (M.C.); (D.F.); (L.H.); (S.T.)
| | - Paula J. Fedorka Cray
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA; (N.A.A.); (S.K.); (M.C.); (D.F.); (L.H.); (S.T.)
| |
Collapse
|
5
|
Lan T, Liu H, Meng L, Xing M, Dong L, Gu M, Wang J, Zheng N. Antimicrobial susceptibility, phylotypes, and virulence genes of Escherichia coli from clinical bovine mastitis in five provinces of China. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1736009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Tu Lan
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Huimin Liu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Lu Meng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Mengru Xing
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Lei Dong
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Mei Gu
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Longitudinal Shedding Patterns and Characterization of Antibiotic Resistant E. coli in Pastured Goats using a Cohort Study. Antibiotics (Basel) 2019; 8:antibiotics8030136. [PMID: 31480769 PMCID: PMC6783881 DOI: 10.3390/antibiotics8030136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/05/2019] [Accepted: 08/28/2019] [Indexed: 12/17/2022] Open
Abstract
There is a scarcity of information on antibiotic resistance in goats. To understand shedding of resistant Escherichia coli in pastured goats, we collected fecal samples from a mixed age cohort over a one-year period. No antibiotic had been used on the study animals one year prior to and during the study period. Resistant isolates were detected in all age groups and prevalence in goat kids was significantly higher than adults; 43–48% vs. 8–25% respectively. The proportion of resistant isolates was higher when animals were congregated near handling facility than on pasture. Most isolates were resistant to tetracycline (51%) and streptomycin (30%), but also to antibiotics that had never been used on the farm; ampicillin (19%). TetB, bla-TEM, (aadA and strpA/strpB) genes were detected in 70%, 43%, (44% and 24%) of tetracycline, ampicillin, and streptomycin resistant isolates respectively. Resistant isolates also harbored virulent genes and some belonged to D and B2 phylogenetic groups. Thus, pastured goats, despite minimal exposure to antibiotics, are reservoirs of resistant E. coli that may contaminate the environment and food chain and spread resistant genes to pathogenic bacteria and some that are potential animal and human pathogens. Environmental sources may play a role in acquisition of resistant bacteria in pastured goats.
Collapse
|
7
|
Gozi KS, Froes JR, Deus Ajude LPT, da Silva CR, Baptista RS, Peiró JR, Marinho M, Mendes LCN, Nogueira MCL, Casella T. Dissemination of Multidrug-Resistant Commensal Escherichia coli in Feedlot Lambs in Southeastern Brazil. Front Microbiol 2019; 10:1394. [PMID: 31293542 PMCID: PMC6603138 DOI: 10.3389/fmicb.2019.01394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial resistance (AR) is a public health issue since it limits the choices to treat infections by Escherichia coli in humans and animals. In Brazil, the ovine meat market has grown in recent years, but studies about AR in sheep are still scarce. Thus, this study aims to investigate the presence of AR in E. coli isolated from lambs during feedlot. To this end, feces from 112 lambs with 2 months of age, after weaning, were collected on the first day of the animals in the feedlot (day 0), and on the last day before slaughtering (day 42). Isolates were selected in MacConkey agar supplemented with 4 mg/L of ceftiofur and identified by biochemical methods. Isolates were submitted to an antimicrobial susceptibility test by disc-diffusion and PCR to investigate genes for phylogenetic group, virulence determinants and resistance to the several antimicrobial classes tested. The genetic localization of the bla genes detected was elucidated by S1-PFGE followed by Southern blot-hybridizations. The isolates were typed by XbaI-PFGE and MLST methods. Seventy-eight E. coli were isolated from 8/112 (7.1%) animals on day 0, and from 55/112 (49.1%) animals on day 42. Since only fimH was present in almost all E. coli (97.4%) as a virulence gene, and also 88.5% belonged to phylogroups B1 or A, we consider that isolates represent intestinal commensal bacteria. The dendrogram separated the 78 non-virulent isolates in seven clusters, two of which comprised 50 E. coli belonging to ST/CC 1727/446 or ST 3994 recovered on day 42 commonly harboring the genotype bla CMY -2-aac(3)-IIa -tetA-sul1-sul2-floR-cmlA. Special attention should be given to the presence of bla CTX-M-15, a worldwide gene spread, and bla CTX-M-14, a hitherto undetected gene in Enterobacteriaceae from food-producing animals in Brazil. Importantly, E. coli lineages and plasmids carrying bla genes detected here have already been reported as sources of infection in humans either from animals, food, or the environment, which raises public health concerns. Hence, two types of commensal E. coli carrying important AR genes clearly prevailed during feedlot, but lambs are also reservoirs of bacteria carrying important AR genes such as bla CTX-M-14 and bla CTX-M-15, mostly related to antimicrobial treatment failure.
Collapse
Affiliation(s)
- Katia Suemi Gozi
- Centro de Investigação e Microrganismos, FAMERP, São José do Rio Preto, Brazil
| | | | | | | | | | - Juliana Regina Peiró
- Faculdade de Medicina Veterinária, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Marcia Marinho
- Faculdade de Medicina Veterinária, São Paulo State University (UNESP), Araçatuba, Brazil
| | | | | | - Tiago Casella
- Centro de Investigação e Microrganismos, FAMERP, São José do Rio Preto, Brazil
- Hospital de Base, São José do Rio Preto, Brazil
| |
Collapse
|
8
|
Hille K, Felski M, Ruddat I, Woydt J, Schmid A, Friese A, Fischer J, Sharp H, Valentin L, Michael GB, Hörmansdorfer S, Messelhäußer U, Seibt U, Honscha W, Guerra B, Schwarz S, Rösler U, Käsbohrer A, Kreienbrock L. Association of farm-related factors with characteristics profiles of extended-spectrum β-lactamase- / plasmid-mediated AmpC β-lactamase-producing Escherichia coli isolates from German livestock farms. Vet Microbiol 2018; 223:93-99. [DOI: 10.1016/j.vetmic.2018.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 06/15/2018] [Accepted: 07/25/2018] [Indexed: 01/05/2023]
|
9
|
Santos A, Lima D, Fernandes E, Albuquerque P, Gouveia G, Sá M, Costa M, Pinheiro Júnior J, Mota R. Phylogenetic analysis, biofilm production, and antimicrobial resistance profile of Escherichia coli isolated from slaughtered pigs. ARQ BRAS MED VET ZOO 2018. [DOI: 10.1590/1678-4162-9926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Enteric diseases of bacterial origin are frequent in the pig industry, of particular notoriety are the colibacillosis that mainly affect piglets and cause great damage to the swine industry worldwide. The aim of the study was to analyze phylogenetics, to detect biofilm production, and to determine antimicrobial resistance profile in 126 strains of Escherichia coli isolated from swabs obtained from fragments of the small intestines of 235 healthy pigs killed in slaughterhouses in Pernambuco (Brazil) using polymerase chain reaction (PCR), adherence to microplates test and disc diffusion technique. Of the analyzed samples, 88.10% (111/126) were classified in phylogenetic group B1; 4.76% (6/126) in group D; 3.97% (5/126) in group B2 and, 3.17% (4/126) in group A. Antimicrobial resistance rates observed were: lincomycin 100% (126/126), erythromycin 100% (126/126), chlortetracycline 94.44% (119/126), cephalothin 51.59% (65/126), ampicillin 38.89% (49/126), sulfamethoxazole + trimethoprim 37.3% (47/126), ciprofloxacin 19.84% (25/126), norfloxacin 14.29% (18/126), gentamicin 8.73% (11/126) and, chloramphenicol 5.55% (7/126). Multiple antibiotic resistance (MAR) ranged from 0.2 to 0.9. Of the strains tested 46.03% (58/126) produced biofilm, and 99.21% (125/126) of the strains exhibited multi-resistance. Further studies are required to elucidate the importance of each phylogenetic group in pigs and to prevent the propagation of multi-resistant E. coli strains.
Collapse
Affiliation(s)
- A.S. Santos
- Universidade Federal Rural de Pernambuco, Brazil
| | - D.C.V. Lima
- Universidade Federal Rural de Pernambuco, Brazil
| | | | | | - G.V. Gouveia
- Universidade Federal do Vale do São Francisco, Brazil
| | - M.C.A. Sá
- Universidade Federal do Vale do São Francisco, Brazil
| | - M.M. Costa
- Universidade Federal do Vale do São Francisco, Brazil
| | | | - R.A. Mota
- Universidade Federal Rural de Pernambuco, Brazil
| |
Collapse
|
10
|
Ramos S, Silva N, Hébraud M, Santos HM, Nunes-Miranda JD, Pinto L, Pereira JE, Capelo JL, Poeta P, Igrejas G. Proteomics for Drug Resistance on the Food Chain? Multidrug-Resistant Escherichia coli Proteomes from Slaughtered Pigs. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 20:362-74. [PMID: 27310477 DOI: 10.1089/omi.2016.0044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding global drug resistance demands an integrated vision, focusing on both human and veterinary medicine. Omics technologies offer new vistas to decipher mechanisms of drug resistance in the food chain. For example, Escherichia coli resistance to major antibiotics is increasing whereas multidrug resistance (MDR) strains are now commonly found in humans and animals. Little is known about the structural and metabolic changes in the cell that trigger resistance to antimicrobial agents. Proteomics is an emerging field that is used to advance our knowledge in global health and drug resistance in the food chain. In the present proteomic analysis, we offer an overview of the global protein expression of different MDR E. coli strains from fecal samples of pigs slaughtered for human consumption. A full proteomic survey of the drug-resistant strains SU60, SU62, SU76, and SU23, under normal growth conditions, was made by two-dimensional electrophoresis, identifying proteins by MALDI-TOF/MS. The proteomes of these four E. coli strains with different genetic profiles were compared in detail. Identical transport, stress response, or metabolic proteins were discovered in the four strains. Several of the identified proteins are essential in bacterial pathogenesis (GAPDH, LuxS, FKBPs), development of bacterial resistance (Omp's, TolC, GroEL, ClpB, or SOD), and potential antibacterial targets (FBPA, FabB, ACC's, or Fab1). Effective therapies against resistant bacteria are crucial and, to accomplish this, a comprehensive understanding of putative resistance mechanisms is essential. Moving forward, we suggest that multi-omics research will further improve our knowledge about bacterial growth and virulence on the food chain, especially under antibiotic stress.
Collapse
Affiliation(s)
- Sónia Ramos
- 1 Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,2 Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,3 Centre for Animal and Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,4 Department of Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal
| | - Nuno Silva
- 3 Centre for Animal and Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,4 Department of Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal
| | - Michel Hébraud
- 5 INRA (Institut National de la Recherche Agronomique), Centre Auvergne-Rhône-Alpes , UR454 Microbiologie, Saint-Genès Champanelle, France .,6 Plate-Forme d'Exploration du Métabolisme Composante Protéomique, UR370 QuaPA, Institut National de la Recherche Agronomique (INRA) , Centre Auvergne-Rhône-Alpes, Saint-Genès Champanelle, France
| | - Hugo M Santos
- 7 UCIBIO-REQUIMTE, Faculty of Technology and Science, University Nova de Lisboa , Caparica, Portugal
| | - Júlio Dinis Nunes-Miranda
- 1 Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,2 Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal
| | - Luís Pinto
- 1 Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,2 Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,3 Centre for Animal and Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,4 Department of Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal
| | - José E Pereira
- 4 Department of Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal
| | - José-Luis Capelo
- 8 ProteoMass Scientific Society , Faculty of Sciences and Technology, Caparica, Portugal
| | - Patrícia Poeta
- 4 Department of Veterinary Science, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,7 UCIBIO-REQUIMTE, Faculty of Technology and Science, University Nova de Lisboa , Caparica, Portugal
| | - Gilberto Igrejas
- 1 Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,2 Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro , Vila Real, Portugal .,7 UCIBIO-REQUIMTE, Faculty of Technology and Science, University Nova de Lisboa , Caparica, Portugal
| |
Collapse
|
11
|
Lhermie G, Dupouy V, El Garch F, Ravinet N, Toutain PL, Bousquet-Mélou A, Seegers H, Assié S. Impact of Low and High Doses of Marbofloxacin on the Selection of Resistant Enterobacteriaceae in the Commensal Gut Flora of Young Cattle: Discussion of Data from 2 Study Populations. Foodborne Pathog Dis 2017; 14:152-159. [PMID: 28072925 DOI: 10.1089/fpd.2016.2176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In the context of requested decrease of antimicrobial use in veterinary medicine, our objective was to assess the impact of two doses of marbofloxacin administered on young bulls (YBs) and veal calves (VCs) treated for bovine respiratory disease, on the total population of Enterobacteriaceae in gut flora and on the emergence of resistant Enterobacteriaceae. In two independent experiments, 48 YBs from 6 commercial farms and 33 VCs previously colostrum deprived and exposed to cefquinome were randomly assigned to one of the three groups LOW, HIGH, and Control. In LOW and HIGH groups, animals received a single injection of, respectively, 2 and 10 mg/kg marbofloxacin. Feces were sampled before treatment, and at several times after treatment. Total and resistant Enterobacteriaceae enumerating were performed by plating dilutions of fecal samples on MacConkey agar plates that were supplemented or not with quinolone. In YBs, marbofloxacin treatment was associated with a transient decrease in total Enterobacteriaceae count between day (D)1 and D3 after treatment. Total Enterobacteriaceae count returned to baseline between D5 and D7 in all groups. None of the 48 YBs harbored marbofloxacin-resistant Enterobacteriaceae before treatment. After treatment, 1 out of 20 YBs from the Control group and 1 out of 14 YBs from the HIGH group exhibited marbofloxacin-resistant Enterobacteriaceae. In VCs, the rate of fluoroquinolone-resistant Enterobacteriaceae significantly increased after low and high doses of marbofloxacin treatment. However, the effect was similar for the two doses, which was probably related to the high level of resistant Enterobacteriaceae exhibited before treatment. Our results suggest that a single treatment with 2 or 10 mg/kg marbofloxacin exerts a moderate selective pressure on commensal Enterobacteriaceae in YBs and in VCs. A fivefold decrease of marbofloxacin regimen did not affect the selection of resistances among commensal bacteria.
Collapse
Affiliation(s)
- Guillaume Lhermie
- 1 Global Drug Development, Vétoquinol SA , Lure, France .,2 BioEpar, Oniris, INRA , Nantes, France .,3 Toxalim, Université de Toulouse, INPT, ENVT, INP-Purpan, UPS , Toulouse, France
| | - Véronique Dupouy
- 3 Toxalim, Université de Toulouse, INPT, ENVT, INP-Purpan, UPS , Toulouse, France
| | | | | | - Pierre-Louis Toutain
- 3 Toxalim, Université de Toulouse, INPT, ENVT, INP-Purpan, UPS , Toulouse, France
| | - Alain Bousquet-Mélou
- 3 Toxalim, Université de Toulouse, INPT, ENVT, INP-Purpan, UPS , Toulouse, France
| | | | | |
Collapse
|
12
|
Cameron-Veas K, Moreno MA, Fraile L, Migura-Garcia L. Shedding of cephalosporin resistant Escherichia coli in pigs from conventional farms after early treatment with antimicrobials. Vet J 2016; 211:21-5. [PMID: 27053016 DOI: 10.1016/j.tvjl.2016.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/25/2016] [Accepted: 02/27/2016] [Indexed: 10/22/2022]
Abstract
This study assessed the dynamics of cephalosporin resistant (CR) E. coli populations during the life cycle of pigs treated early in life with ceftiofur or tulathromycin. The study was conducted at eight conventional pig farms; four for each treatment with ceftiofur or tulathromycin. At each farm, 70 7-day-old piglets were divided into two groups: a control group (n = 30) and a treatment group (n = 40). Faecal samples were collected on day 0 and on days 2, 7 and 180 post-treatment. Sows were also sampled on day 0. CR E. coli were selected on MacConkey agar with ceftriaxone. On five farms, 7-day-old piglets excreted CR E. coli before treatment associated with the presence of CR E. coli in sows. The occurrence of CR E. coli positive animals decreased with increasing piglet age. The remaining three farms tested negative for CR E. coli during the study period. Results demonstrated great variability in the frequency of CR E. coli positive animals between farms, independent of treatment. Treatment with ceftiofur resulted in a transitory increase in the counts of CR E. coli after 48 h. However, other risk factors including the presence of CR E. coli in sows and animal age were more important than antimicrobial treatment. Accordingly, intervention strategies targeting sows would likely have a beneficial effect in reducing the occurrence of antimicrobial resistance in primary pig production.
Collapse
Affiliation(s)
- Karla Cameron-Veas
- Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Barcelona, Spain
| | - Miguel A Moreno
- Centro de Vigilancia Sanitaria Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Lorenzo Fraile
- Departamento de Producción Animal, Universidad de Lleida, 25003 Lleida, Spain
| | - Lourdes Migura-Garcia
- Centre de Recerca en Sanitat Animal (CReSA) - Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus UAB, 08193 Barcelona, Spain.
| |
Collapse
|
13
|
Chi Z, Rong YJ, Li Y, Tang MJ, Chi ZM. Biosurfactins production by Bacillus amyloliquefaciens R3 and their antibacterial activity against multi-drug resistant pathogenic E. coli. Bioprocess Biosyst Eng 2015; 38:853-61. [PMID: 25407729 DOI: 10.1007/s00449-014-1328-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/09/2014] [Indexed: 10/24/2022]
Abstract
In this work, the anti-Escherichia coli activity of the bioactive substances produced by Bacillus amyloliquefaciens R3 was examined. A new and cheap medium for production of the anti-E. coli substances which contained 20.0 g L(-1) soybean powder, 20.0 g L(-1) wheat flour, pH 6.0 was developed. A crude surfactant concentration of 0.48 mg mL(-1) was obtained after 27 h of 10-L fermentation, and the diameter of the clear zone on the plate seeded with the pathogenic E. coli 2# was 23.3 mm. A preliminary characterization suggested that the anti-E. coli substances produced by B. amyloliquefaciens R3 were the biosurfactins (F1, F2, F3, F4, and F5) with amino acids (GLLVDLL) and hydroxy fatty acids (of 12-15 carbons in length). It was found that all the strains of the pathogenic E. coli showed resistance to several different antibiotics, suggesting that they were the multi-drug resistance and all the strains of the pathogenic E. coli were sensitive to the biosurfactins, indicating that the biosurfactins produced by B. amyloliquefaciens R3 had a broad spectrum of antibacterial activity against the pathogenic E. coli with multi-drug resistant profiles. After the treatment with the purified biosurfactin (F1), the cell membrane of both the whole cells and protoplasts of the E. coli 2# was damaged and the whole cells of the bacterium were broken.
Collapse
Affiliation(s)
- Zhe Chi
- Unesco Chinese Center of Marine Biotechnology, Ocean University of China, Yushan Road, No. 5, Qingdao, 266003, China
| | | | | | | | | |
Collapse
|
14
|
Pavlickova S, Dolezalova M, Holko I. Resistance and virulence factors of Escherichia coli isolated from chicken. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2015; 50:417-421. [PMID: 25844863 DOI: 10.1080/03601234.2015.1011959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chicken meat has become an important part of the human diet and besides contamination by pathogenic Escherichia coli there is a risk of antibiotic resistance spreading via the food chain. The purpose of this study was to examine the prevalence of resistance against eight antibiotics and the presence of 14 virulence factors among 75 Escherichia coli strains isolated from chicken meat in the Czech Republic after classification into phylogenetic groups by the multiplex PCR method. More than half of strains belonged to A phylogroup, next frequently represented was B1 phylogroup, which suggests the commensal strains. The other strains were classified into phylogroups B2 and D, which had more virulence factors. Almost half of all E. coli strains were resistant to at least one of eight-tested antibiotics. A multidrug resistance was observed in 13% of strains. The most prevalent virulence genes were iucD, iss and tsh. None of genes encoding toxins was detected. Most of E. coli strains isolated from chicken meat can be considered as nonpathogenic on the basis of analysis of virulence factors, antibiotic resistance and phylogroups assignment. It can provide a useful tool for prediction of a potential risk from food contaminated by E. coli.
Collapse
Affiliation(s)
- Silvie Pavlickova
- a Faculty of Technology , Department of Environmental Protection Engineering , Tomas Bata University in Zlin , Zlin , Czech Republic
| | | | | |
Collapse
|