1
|
Zhao K, Wang T, Zhao BB, Yang J. Optimization of Plant Oxalate Quantification and Generation of Low-Oxalate Maize ( Zea mays L.) through O7 Overexpression. PLANTS (BASEL, SWITZERLAND) 2024; 13:2950. [PMID: 39519867 PMCID: PMC11547668 DOI: 10.3390/plants13212950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Oxalate, the simplest dicarboxylic acid, is a prevalent antinutrient that chelates with various metals and can lead to the formation of kidney stones in humans. The accurate detection of the oxalate concentration in food and the cultivation of low-oxalate crops are important for enhancing public health. In this study, we established a high-throughput and highly sensitive technique for oxalate detection using ultra-high-performance liquid chromatographic-triple quadrupole tandem mass spectrometry (UPLC-QqQ-MS/MS). Additionally, we overexpressed the gene O7, which encodes oxalyl-CoA synthetase in the maize oxalate degradation pathway, resulting in O7-OE lines. By employing the UPLC-QqQ-MS/MS method to measure oxalate levels in these transgenic lines, we observed that the oxalate content in the kernels of O7-OE lines was reduced by approximately 43%, with a concurrent increase in some micronutrients such as zinc. Importantly, the transgenic maize showed normal seed storage compound accumulation or other agronomic characteristics. In summary, we developed a high-throughput detection method that advances oxalate measurement. Furthermore, by generating new maize germplasm with diminished oxalate, our work offers potential health advantages to consumers.
Collapse
Affiliation(s)
- Kai Zhao
- National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei 230036, China; (K.Z.); (B.-B.Z.)
| | - Tao Wang
- Department of Biology and Food Engineering, Bozhou University, Bozhou 236800, China;
| | - Bin-Bin Zhao
- National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei 230036, China; (K.Z.); (B.-B.Z.)
| | - Jun Yang
- National Engineering Laboratory of Crop Stress Resistance, College of Life Science, Anhui Agricultural University, Hefei 230036, China; (K.Z.); (B.-B.Z.)
| |
Collapse
|
2
|
Xing Y, Feng ZQ, Zhang X, Cao HX, Liu CL, Qin HH, Jiang H, Zhu ZL, Ge SF, Jiang YM. Nitrogen reduces calcium availability by promoting oxalate biosynthesis in apple leaves. HORTICULTURE RESEARCH 2024; 11:uhae208. [PMID: 39372287 PMCID: PMC11450213 DOI: 10.1093/hr/uhae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/18/2024] [Indexed: 10/08/2024]
Abstract
N and Ca are essential nutrients for apple growth and development. Studies have found that Ca content was not low under high N conditions but was poorly available. However, the underlying physiological mechanism through which N regulates Ca availability remains unclear. In this study, apple plants were supplied with N and Ca to analyse the content, in situ distribution, and forms of Ca using noninvasive micro-test technique, electron probe microanalysis, Fourier transform infrared spectroscopy, and transcriptome analysis. A potential interaction was observed between N and Ca in apple leaves. The application of high N and Ca concentration led to a CaOx content of 12.51 g/kg, representing 93.54% of the total Ca in the apple leaves. Electron probe microanalysis revealed that Ca deposited in the phloem primarily existed as CaOx rhombus-shaped crystals. Additionally, high N positively regulated oxalate accumulation in the leaves, increasing it by 40.79 times compared with low N concentration. Specifically, N induced oxalate synthesis in apple leaves by upregulating the MdICL, MdOXAC, and MdMDH genes, while simultaneously inhibiting degradation through downregulation of the MdAAE3 gene. Transcriptome and correlation analyses further confirmed oxaloacetate as the precursor for the synthesis of CaOx crystals in the apple leaves, which were produced via the 'photosynthesis/glycolysis -oxaloacetate -oxalate -CaOx' pathway. WGCNA identified potential regulators of the CaOx biosynthesis pathway triggered by N. Overall, the results provide insights into the regulation of Ca availability by N in apple leaves and support the development of Ca efficient cultivation technique.
Collapse
Affiliation(s)
- Yue Xing
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Zi-Quan Feng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Xin Zhang
- 421 laboratory, Xinlianxin Chemical Group Co., Ltd, Henan, China
| | - Hong-Xing Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Chun-Ling Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Han-Han Qin
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Han Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Zhan-Ling Zhu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Shun-Feng Ge
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| | - Yuan-Mao Jiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, Shandong, China
- Apple Technology Innovation Center of Shandong Province, Tai’an, 271018, Shandong, China
| |
Collapse
|
3
|
Salgado N, Silva MA, Figueira ME, Costa HS, Albuquerque TG. Oxalate in Foods: Extraction Conditions, Analytical Methods, Occurrence, and Health Implications. Foods 2023; 12:3201. [PMID: 37685134 PMCID: PMC10486698 DOI: 10.3390/foods12173201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Oxalate is an antinutrient present in a wide range of foods, with plant products, especially green leafy vegetables, being the main sources of dietary oxalates. This compound has been largely associated with hyperoxaluria, kidney stone formation, and, in more severe cases, systematic oxalosis. Due to its impact on human health, it is extremely important to control the amount of oxalate present in foods, particularly for patients with kidney stone issues. In this review, a summary and discussion of the current knowledge on oxalate analysis, its extraction conditions, specific features of analytical methods, reported occurrence in foods, and its health implications are presented. In addition, a brief conclusion and further perspectives on whether high-oxalate foods are truly problematic and can be seen as health threats are shown.
Collapse
Affiliation(s)
- Neuza Salgado
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal (T.G.A.)
- Faculty of Pharmacy, University of Lisbon, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Mafalda Alexandra Silva
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal (T.G.A.)
- REQUIMTE-LAQV/Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Maria Eduardo Figueira
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
| | - Helena S. Costa
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal (T.G.A.)
- REQUIMTE-LAQV/Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tânia Gonçalves Albuquerque
- Research and Development Unit, Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal (T.G.A.)
- REQUIMTE-LAQV/Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Raven JA, Andrews M. Photon costs of shoot and root NO 3-, and root NH 4+, assimilation in terrestrial vascular plants considering associated pH regulation, osmotic and ontogenetic effects. PHOTOSYNTHESIS RESEARCH 2023; 155:127-137. [PMID: 36418758 DOI: 10.1007/s11120-022-00975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The photon costs of photoreduction/assimilation of nitrate (NO3-) into organic nitrogen in shoots and respiratory driven NO3- and NH4+ assimilation in roots are compared for terrestrial vascular plants, considering associated pH regulation, osmotic and ontogenetic effects. Different mechanisms of neutralisation of the hydroxyl (OH-) ion necessarily generated in shoot NO3- assimilation are considered. Photoreduction/assimilation of NO3- in shoots with malic acid synthesis and either accumulation of malate in leaf vacuoles or transport of malate to roots and catabolism there have a similar cost which is around 35% less than that for root NO3- assimilation and around 20% less than that for photoreduction/assimilation of NO3-, oxalate production and storage of Ca oxalate in leaf vacuoles. The photon cost of root NH4+ assimilation with H+ efflux to the root medium is around 70% less than that of root NO3- assimilation. These differences in photon cost must be considered in the context of the use of a combination of locations of NO3- assimilation and mechanisms of acid-base regulation, and a maximum of 4.9-9.1% of total photon absorption needed for growth and maintenance that is devoted to NO3- assimilation and acid-base regulation.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
- School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
- Climate Change Cluster, Faculty of Science, University of Technology, Sydney, Ultimo, NSW, 2007, Australia.
| | - Mitchell Andrews
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, Canterbury, 7647, New Zealand
| |
Collapse
|
5
|
Li P, Liu C, Luo Y, Shi H, Li Q, PinChu C, Li X, Yang J, Fan W. Oxalate in Plants: Metabolism, Function, Regulation, and Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16037-16049. [PMID: 36511327 DOI: 10.1021/acs.jafc.2c04787] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Characterized by strong acidity, chelating ability, and reducing ability, oxalic acid, a low molecular weight dicarboxylic organic acid, plays important roles in the regulation of plant growth and development, the response to both biotic and abiotic stresses such as plant defense and heavy metals detoxification, and food quality. The metabolism of oxalic acid has been well-studied in microorganisms, fungi, and animals but remains less understood in plants. However, excessive accumulation of oxalic acid is detrimental to plants. Therefore, the level of oxalic acid has to be precisely controlled in plant tissues. In this review, we summarize the metabolism, function, and regulation of oxalic acid in plants, and we discuss solutions such as agricultural practices and plant biotechnology to manipulate oxalic acid metabolism to regulate plant responses to both external stimuli and internal developmental cues.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlan Liu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Yu Luo
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Huineng Shi
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Qi Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Cier PinChu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, 650201, China
| | - Xuejiao Li
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Fan
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
6
|
Addition of calcium compounds to reduce soluble oxalate in a high oxalate food system. Food Chem 2016; 221:54-57. [PMID: 27979238 DOI: 10.1016/j.foodchem.2016.10.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 11/22/2022]
Abstract
Spinach (Spinacia oleracea L.) is often used as a base vegetable to make green juices that are promoted as healthy dietary alternatives. Spinach is known to contain significant amounts of oxalates, which are toxic and, if consumed regularly, can lead to the development of kidney stones. This research investigates adding 50-500mg increments of calcium carbonate, calcium chloride, calcium citrate and calcium sulphate to 100g of raw homogenates of spinach to determine whether calcium would combine with the soluble oxalate present in the spinach. Calcium chloride was the most effective additive while calcium carbonate was the least effective. The formation of insoluble oxalate after incubation at 25°C for 30min is a simple practical step that can be incorporated into the juicing process. This would make the juice considerably safer to consume on a regular basis.
Collapse
|
7
|
Kusuma DS, Vanhanen LP, Savage GP. Evaluation of extraction parameters for total oxalate determination in spinach using Design of Experiment analysis. J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2016.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|