1
|
Lin ZM, Wen JX, Lin DQ, Liu K, Chen YL, Miao S, Cao MJ, Sun LC. Physicochemical and Rheological Properties of Degraded Konjac Gum by Abalone ( Haliotis discus hannai) Viscera Enzyme. Foods 2024; 13:2158. [PMID: 38998663 PMCID: PMC11241667 DOI: 10.3390/foods13132158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
In the present study, a new degraded konjac glucomannan (DKGM) was prepared using a crude enzyme from abalone (Haliotis discus hannai) viscera, and its physicochemical properties were investigated. After enzymatic hydrolysis, the viscosity of KGM obviously decreased from 15,500 mPa·s to 398 mPa·s. The rheological properties analysis of KGM and DKGMs revealed that they were pseudoplastic fluids, and pseudoplasticity, viscoelasticity, melting temperature, and gelling temperature significantly decreased after enzymatic hydrolysis, especially for KGM-180 and KGM-240. In addition, the molecular weight of KGM decreased from 1.80 × 106 Da, to 0.45 × 106 Da and the polydispersity index increased from 1.17 to 1.83 after 240 min of degradation time. Compared with natural KGM, the smaller particle size distribution of DKGM further suggests enzyme hydrolysis reduces the aggregation of molecular chains with low molecular weight. FT-IR and FESEM analyses showed that the fragmented KMG chain did not affect the structural characteristics of molecular monomers; however, the dense three-dimensional network microstructure formed by intermolecular interaction changed to fragment microstructure after enzyme hydrolysis. These results revealed that the viscosity and rheological properties of KGM could be controlled and effectively changed using crude enzymes from abalone viscera. This work provides theoretical guidance for the promising application of DKGM in the food industry.
Collapse
Affiliation(s)
- Zhao-Ming Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Z.-M.L.); (J.-X.W.); (D.-Q.L.); (K.L.); (Y.-L.C.); (M.-J.C.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen 361021, China
| | - Jia-Xin Wen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Z.-M.L.); (J.-X.W.); (D.-Q.L.); (K.L.); (Y.-L.C.); (M.-J.C.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen 361021, China
| | - Duan-Quan Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Z.-M.L.); (J.-X.W.); (D.-Q.L.); (K.L.); (Y.-L.C.); (M.-J.C.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| | - Kang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Z.-M.L.); (J.-X.W.); (D.-Q.L.); (K.L.); (Y.-L.C.); (M.-J.C.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Z.-M.L.); (J.-X.W.); (D.-Q.L.); (K.L.); (Y.-L.C.); (M.-J.C.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
| | - Min-Jie Cao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Z.-M.L.); (J.-X.W.); (D.-Q.L.); (K.L.); (Y.-L.C.); (M.-J.C.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| | - Le-Chang Sun
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; (Z.-M.L.); (J.-X.W.); (D.-Q.L.); (K.L.); (Y.-L.C.); (M.-J.C.)
- National & Local Joint Engineering Research Center of Deep Processing Technology for Aquatic Products, Jimei University, Xiamen 361021, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian 116034, China
| |
Collapse
|
2
|
Hernández-Benítez LJ, Ramírez-Rodríguez MA, Hernández-Santoyo A, Rodríguez-Romero A. A trimeric glycosylated GH45 cellulase from the red abalone (Haliotis rufescens) exhibits endo and exoactivity. PLoS One 2024; 19:e0301604. [PMID: 38635649 PMCID: PMC11025796 DOI: 10.1371/journal.pone.0301604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
The red abalone (Haliotis rufescens) represents North America's most important aquaculture species. Its hepatopancreas is rich in cellulases and other polysaccharide-degrading enzymes, which provide it the remarkable ability to digest cellulose-rich macroalgae; nevertheless, its cellulolytic systems are poorly explored. This manuscript describes some functional and structural properties of an endogenous trimeric glycosylated endoglucanase from H. rufescens. The purified enzyme showed a molecular mass of 23.4 kDa determined by MALDI-TOF mass spectrometry, which behaved as a homotrimer in gel filtration chromatography and zymograms. According to the periodic acid-Schiff reagent staining, detecting sugar moieties in SDS-PAGE gel confirmed that abalone cellulase is a glycoprotein. Hydrolysis of cello-oligosaccharides and p-nitrophenyl-β-D-glucopyranosides confirmed its endo/exoactivity. A maximum enzyme activity toward 0.5% (w/v) carboxymethylcellulose of 53.9 ± 1.0 U/mg was achieved at 45°C and pH 6.0. We elucidated the abalone cellulase primary structure using proteases and mass spectrometry methods. Based on these results and using a bioinformatic approach, we identified the gene encoding this enzyme and deduced its full-length amino acid sequence; the mature protein comprised 177 residues with a calculated molecular mass of 19.1 kDa and, according to sequence similarity, it was classified into the glycosyl-hydrolase family 45 subfamily B. An AlphaFold theoretical model and docking simulations with cellopentaose confirmed that abalone cellulase is a β-sheet rich protein, as also observed by circular dichroism experiments, with conserved catalytic residues: Asp26, Asn109, and Asp134. Interestingly, the AlphaFold-Multimer analysis indicated a trimeric assembly for abalone cellulase, which supported our experimental findings. The discovery and characterization of these enzymes may contribute to developing efficient cellulose bioconversion processes for biofuels and sustainable bioproducts.
Collapse
|
3
|
Yan LJ, Jin T, Chen YL, Zhan CL, Zhang LJ, Weng L, Liu GM, Cao MJ. Characterization of a recombinant matrix metalloproteinase-2 from sea cucumber ( Stichopus japonicas ) and its application to prepare bioactive collagen hydrolysate. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|