1
|
Zhou W, Geng Q, Zhang Y, Zhou X, Wu Z, Chen H, El-Sohaimy S. The flavonoid-allergen interaction and its influence on allergenicity. FOOD BIOSCI 2024; 61:104939. [DOI: 10.1016/j.fbio.2024.104939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Lokya V, Parmar S, Pandey AK, Sudini HK, Huai D, Ozias-Akins P, Foyer CH, Nwosu CV, Karpinska B, Baker A, Xu P, Liao B, Mir RR, Chen X, Guo B, Nguyen HT, Kumar R, Bera SK, Singam P, Kumar A, Varshney RK, Pandey MK. Prospects for developing allergen-depleted food crops. THE PLANT GENOME 2023; 16:e20375. [PMID: 37641460 DOI: 10.1002/tpg2.20375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/08/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023]
Abstract
In addition to the challenge of meeting global demand for food production, there are increasing concerns about food safety and the need to protect consumer health from the negative effects of foodborne allergies. Certain bio-molecules (usually proteins) present in food can act as allergens that trigger unusual immunological reactions, with potentially life-threatening consequences. The relentless working lifestyles of the modern era often incorporate poor eating habits that include readymade prepackaged and processed foods, which contain additives such as peanuts, tree nuts, wheat, and soy-based products, rather than traditional home cooking. Of the predominant allergenic foods (soybean, wheat, fish, peanut, shellfish, tree nuts, eggs, and milk), peanuts (Arachis hypogaea) are the best characterized source of allergens, followed by tree nuts (Juglans regia, Prunus amygdalus, Corylus avellana, Carya illinoinensis, Anacardium occidentale, Pistacia vera, Bertholletia excels), wheat (Triticum aestivum), soybeans (Glycine max), and kidney beans (Phaseolus vulgaris). The prevalence of food allergies has risen significantly in recent years including chance of accidental exposure to such foods. In contrast, the standards of detection, diagnosis, and cure have not kept pace and unfortunately are often suboptimal. In this review, we mainly focus on the prevalence of allergies associated with peanut, tree nuts, wheat, soybean, and kidney bean, highlighting their physiological properties and functions as well as considering research directions for tailoring allergen gene expression. In particular, we discuss how recent advances in molecular breeding, genetic engineering, and genome editing can be used to develop potential low allergen food crops that protect consumer health.
Collapse
Affiliation(s)
- Vadthya Lokya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sejal Parmar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Arun K Pandey
- College of Life Science of China Jiliang University (CJLU), Hangzhou, China
| | - Hari K Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Peggy Ozias-Akins
- Horticulture Department, The University of Georgia Tifton Campus, Tifton, GA, USA
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | | | - Barbara Karpinska
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, UK
| | - Alison Baker
- Centre for Plant Sciences and School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Pei Xu
- College of Life Science of China Jiliang University (CJLU), Hangzhou, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, India
| | - Xiaoping Chen
- Guangdong Provincial Key Laboratory for Crops Genetic Improvement, Crops Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Baozhu Guo
- USDA-ARS, Crop Genetics and Breeding Research Unit, Tifton, GA, USA
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, USA
| | - Rakesh Kumar
- Department of Life Sciences, Central University of Karnataka, Gulbarga, India
| | | | - Prashant Singam
- Department of Genetics, Osmania University, Hyderabad, India
| | - Anirudh Kumar
- Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Crop Research Innovation Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
3
|
Teixeira RF, Balbinot Filho CA, Oliveira DD, Zielinski AAF. Prospects on emerging eco-friendly and innovative technologies to add value to dry bean proteins. Crit Rev Food Sci Nutr 2023; 64:10256-10280. [PMID: 37341113 DOI: 10.1080/10408398.2023.2222179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The world's growing population and evolving food habits have created a need for alternative plant protein sources, with pulses playing a crucial role as healthy staple foods. Dry beans are high-protein pulses rich in essential amino acids like lysine and bioactive peptides. They have gathered attention for their nutritional quality and potential health benefits concerning metabolic syndrome. This review highlights dry bean proteins' nutritional quality, health benefits, and limitations, focusing on recent eco-friendly emerging technologies for their obtaining and functionalization. Antinutritional factors (ANFs) in bean proteins can affect their in vitro protein digestibility (IVPD), and lectins have been identified as potential allergens. Recently, eco-friendly emerging technologies such as ultrasound, microwaves, subcritical fluids, high-hydrostatic pressure, enzyme technology, and dry fractionation methods have been explored for extracting and functionalizing dry bean proteins. These technologies have shown promise in reducing ANFs, improving IVPD, and modifying allergen epitopes. Additionally, they enhance the techno-functional properties of bean proteins, making them more soluble, emulsifying, foaming, and gel-forming, with enhanced water and oil-holding capacities. By utilizing emerging innovative technologies, protein recovery from dry beans and the development of protein isolates can meet the demand for alternative protein sources while being eco-friendly, safe, and efficient.
Collapse
Affiliation(s)
- Renata Fialho Teixeira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering, UFSC, Florianópolis, SC, Brazil
| | | |
Collapse
|
4
|
Astuti RM, Palupi NS, Suhartono MT, Kusumaningtyas E, Lioe HN. Effect of processing treatments on the allergenicity of nuts and legumes: A meta-analysis. J Food Sci 2023; 88:28-56. [PMID: 36444520 DOI: 10.1111/1750-3841.16381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
The effective food processing to reduce nuts and legumes allergenicity could not be easily and directly concluded from reading a few published reports. Therefore, we conducted a meta-analysis to investigate this issue. A literature search was conducted in eight electronic databases from January 2000 to June 11, 2021. The primary outcome of interest was the allergenicity of processed nuts or legumes determined by enzyme-linked immunosorbent assay from in vitro studies. Data with the standardized mean difference (SMD) of 95% confidence interval (CI) were pooled using a random-effect model by RevMan 5.4 software. Heterogeneity was assessed using Cochran's Q (PQ ) and I2 tests. The search strategy identified 18,793 articles. However, only 61 studies met the inclusion criteria and were included in this meta-analysis. There were 21 and 15 types of respective single and combined food processing treatments analyzed for their effects on reducing allergenicity. In single processing treatment, the extrusion and fermentation had the largest reduction in allergenicity, considering their SMD value, that is, -20.19 (95% CI: -22.22 to -18.17; the certainty of evidence: moderate) and -20.8 (95% CI: -24.10 to -17.50; the certainty of evidence: moderate), respectively. Whereas in the combination, the treatment of fermentation followed by proteolytic hydrolysis showed the most significant reduction (SMD: -53.34; 95% CI: -70.18 to -36.5) and the evidence quality of this treatment was considered moderate. In conclusion, these three food processing methods showed a desirable impact in reducing nuts or legumes allergenicity. PRACTICAL APPLICATION: Nuts and legumes play an essential role as protein sources in food consumption worldwide, but they usually contain allergens. Our study has investigated the food processing methods that effectively reduce their allergenicity by meta-analysis. The result gives valuable information for further laboratory investigation on allergens and can be used by food industries in providing foods from nuts and legumes with lower allergenicity.
Collapse
Affiliation(s)
- Rizki Maryam Astuti
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia.,Department of Food Science and Technology, Bakrie University, Jakarta Selatan, Indonesia
| | - Nurheni Sri Palupi
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia.,Southeast Asian Food and Agricultural Science and Technology Center, IPB University, Bogor, Indonesia
| | - Maggy Thenawidjaja Suhartono
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| | - Eni Kusumaningtyas
- Research Center for Veterinary Science, Research Organization for Health, National Research and Innovation Agency, Bogor, Indonesia
| | - Hanifah Nuryani Lioe
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University, Bogor, Indonesia
| |
Collapse
|
5
|
Pi X, Fu G, Yang Y, Wan Y, Xie M. Changes in IgE binding capacity, structure, physicochemical properties of peanuts through fermentation with Bacillus natto and Lactobacillus plantarum along with autoclave pretreatment. Food Chem 2022; 392:133208. [PMID: 35659698 DOI: 10.1016/j.foodchem.2022.133208] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
This study investigated the immunoglobulin E (IgE) binding capacity, structure, and physicochemical properties of raw crushed peanut (RCP) after fermentation with Lactobacillus plantarum and Bacillus natto along with autoclaved pretreatment. SDS-PAGE showed the disappearance of partial protein (>45 kDa) in autoclaved peanuts (ACP) and fermented autoclaved peanuts with L. plantarum (LP), and of majority protein (>14.4 kDa) in fermented autoclaved peanuts with B. natto (BN) or a mixture of L. plantarum and B. natto (LPBN). Structural analysis revealed protein-aggregation and protein-unfolding in autoclaved and fermented peanuts, respectively. Indirect ELISA demonstrated that the IgE binding capacities in ACP, LP, BN and LPBN were reduced by 11.3%, 20.6%, 78.7% and 90.2%, respectively, compared to RCP. LPBN showed the lowest IgE binding capacity due to the highest masking and destruction of epitopes and exhibited the desirable physicochemical properties simultaneously. Mixed strain fermentation has the potential to produce hypoallergenic peanut products.
Collapse
Affiliation(s)
- Xiaowen Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Yili Yang
- Suzhou Institute of Systems Medicine, Center for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou 215123, Jiangsu, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| |
Collapse
|
6
|
Liang X, Wang Z, Yang H, Luo X, Sun J, Yang M, Shi X, Yue X, Zheng Y. Evaluation of allergenicity of cow milk treated with enzymatic hydrolysis through a mouse model of allergy. J Dairy Sci 2022; 105:1039-1050. [PMID: 34955271 DOI: 10.3168/jds.2021-20686] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023]
Abstract
Cow milk (CM) allergy is a worldwide concern. Currently, few studies have been performed on the immunoreactivity of CM and fewer still on the antigenicity of CM in vivo and in vitro. In this study, we assessed the potential allergenicity of enzymatically hydrolyzed CM using in vitro ELISA and oral sensitization and challenge of BALB/c mice. Alcalase-, Protamex-, and Flavourzyme-treated CM (all from Novozymes) diminished IgE binding capacity, with greatest reductions of 56.31%, 50.62%, and 56.45%, respectively. Allergic symptoms and levels of total IgG1 were reduced, and allergic inflammation of the lung, jejunum, and spleen was relieved. Moreover, the numbers of CD8+ T and B220+ cells decreased, and the balance of CD4+ T/CD8+ T cells was effectively regulated. These findings suggest that the potential allergenicity of CM was reduced by enzymatic hydrolysis, and our research will lay a solid foundation for developing high-quality hypoallergenic CM products.
Collapse
Affiliation(s)
- Xiaona Liang
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China
| | - Zongzhou Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China
| | - Hui Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China
| | - Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China
| | - Jing Sun
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China
| | - Mei Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China
| | - Xinyang Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China.
| | - Yan Zheng
- College of Food Science, Shenyang Agricultural University, Shenyang 100866, P. R. China.
| |
Collapse
|
7
|
Ahmed I, Chen H, Li J, Wang B, Li Z, Huang G. Enzymatic crosslinking and food allergenicity: A comprehensive review. Compr Rev Food Sci Food Saf 2021; 20:5856-5879. [PMID: 34653307 DOI: 10.1111/1541-4337.12855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/19/2022]
Abstract
Food allergy has become a major global public health concern. In the past decades, enzymatic crosslinking technique has been employed to mitigate the immunoreactivity of food allergens. It is an emerging non-thermal technique that can serve as a great alternative to conventional food processing approaches in developing hypoallergenic food products, owing to their benefits of high specificity and selectivity. Enzymatic crosslinking via tyrosinase (TYR), laccase (LAC), peroxidase (PO), and transglutaminase (TG) modifies the structural and biochemical properties of food allergens that subsequently cause denaturation and masking of the antigenic epitopes. LAC, TYR, and PO catalyze the oxidation of tyrosine side chains to initiate protein crosslinking, while TG initiates isopeptide bonding between lysine and glutamine residues. Enzymatic treatment produces a high molecular weight crosslinked polymer with reduced immunoreactivity and IgE-binding potential. Crosslinked allergens further inhibit mast cell degranulation due to the lower immunostimulatory potential that assists in the equilibration of T-helper (Th)1/Th2 immunobalance. This review provides an updated overview of the studies carried out in the last decade on the potential application of enzymatic crosslinking for mitigating food allergenicity that can be of importance in the context of developing hypoallergenic/non-allergenic food products.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Huan Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Jiale Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Gonghua Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, P. R. China
| |
Collapse
|
8
|
Lu Q, Zuo L, Wu Z, Li X, Tong P, Wu Y, Fan Q, Chen H, Yang A. Characterization of the protein structure of soymilk fermented by Lactobacillus and evaluation of its potential allergenicity based on the sensitized-cell model. Food Chem 2021; 366:130569. [PMID: 34298394 DOI: 10.1016/j.foodchem.2021.130569] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to investigate the effects of fermented soymilk (FSM) with Lactobacillus brevis CICC 23,474 and L. brevis CICC 23,470 on the structural changes and allergenicity of major allergenic proteins in soymilk (SM). Spectroscopy and liquid chromatograph-tandem mass spectrometer (LC-MS/MS) were used to characterize changes in protein spatial structure and epitopes. The antigenicity and potential allergenicity were evaluated by immunoblotting, enzyme-linked immunosorbent assay (ELISA) and KU812 cell degranulation assay. Results suggested that the advanced structure of proteins was destroyed. Antigenicity was also significantly reduced, and five human IgE-binding linear epitopes (i.e., E5-E33, R27-S41, D414-A437, G253-I265 and V449-S471) were destroyed by fermentation. Furthermore, after in vitro simulated gastrointestinal digestion, FSM showed lower IgG/IgE-binding capacity and weaker degranulation ability of KU812 cells. All these findings demonstrated that fermentation with Lactobacillus can destroy the conformational and linear epitopes of proteins and reduce the potential allergenicity of SM.
Collapse
Affiliation(s)
- Qiaoling Lu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - LingLing Zuo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; School of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Qingsheng Fan
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
9
|
Groth S, Budke C, Weber T, Neugart S, Brockmann S, Holz M, Sawadski BC, Daum D, Rohn S. Relationship between Phenolic Compounds, Antioxidant Properties, and the Allergenic Protein Mal d 1 in Different Selenium-Biofortified Apple Cultivars ( Malus domestica). Molecules 2021; 26:2647. [PMID: 33946582 PMCID: PMC8124677 DOI: 10.3390/molecules26092647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Notable parts of the population in Europe suffer from allergies towards apples. To address this health problem, the analysis of the interactions of relevant allergens with other substances such as phenolic compounds is of particular importance. The aim of this study was to evaluate the correlations between the total phenolic content (TPC), polyphenol oxidase (PPO) activity, antioxidant activity (AOA), and the phenolic compound profile and the content of the allergenic protein Mal d 1 in six apple cultivars. It was found that the PPO activity and the content of individual phenolic compounds had an influence on the Mal d 1 content. With regard to the important constituents, flavan-3-ols and phenolic acids, it was found that apples with a higher content of chlorogenic acid and a low content of procyanidin trimers and/or epicatechin had a lower allergenic potential. This is probably based on the reaction of phenolic compounds (when oxidized by the endogenous PPO) with proteins, thus being able to change the conformation of the (allergenic) proteins, which further corresponds to a loss of antibody recognition. When apples were additionally biofortified with selenium, the composition of the apples, with regard to TPC, phenolic profile, AOA, and PPO, was significantly affected. Consequently, this innovative agronomic practice seems to be promising for reducing the allergenic potential of apples.
Collapse
Affiliation(s)
- Sabrina Groth
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.G.); (S.B.); (M.H.); (B.C.S.)
| | - Christoph Budke
- Department of Plant Nutrition, Osnabrück University of Applied Sciences, 49090 Osnabrück, Germany; (C.B.); (T.W.); (D.D.)
| | - Timo Weber
- Department of Plant Nutrition, Osnabrück University of Applied Sciences, 49090 Osnabrück, Germany; (C.B.); (T.W.); (D.D.)
| | - Susanne Neugart
- Department of Crop Sciences, Division Quality and Sensory of Plant Products, Georg-August-Universität Göttingen, 37075 Göttingen, Germany;
| | - Sven Brockmann
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.G.); (S.B.); (M.H.); (B.C.S.)
| | - Martina Holz
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.G.); (S.B.); (M.H.); (B.C.S.)
| | - Bao Chau Sawadski
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.G.); (S.B.); (M.H.); (B.C.S.)
| | - Diemo Daum
- Department of Plant Nutrition, Osnabrück University of Applied Sciences, 49090 Osnabrück, Germany; (C.B.); (T.W.); (D.D.)
| | - Sascha Rohn
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (S.G.); (S.B.); (M.H.); (B.C.S.)
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, TIB 4/3-1, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
10
|
Liu M, Huan F, Han TJ, Liu SH, Li MS, Yang Y, Wu YH, Chen GX, Cao MJ, Liu GM. Combination Processing Method Reduced IgE-Binding Activity of Litopenaeus vannamei by Modifying Lysine, Arginine, and Cysteine on Multiple Allergen Epitopes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4865-4873. [PMID: 33870691 DOI: 10.1021/acs.jafc.1c00718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Allergic reactions occur after the whole food is ingested, rather than the purified allergen. The present study explores the low-allergenic food processing for Litopenaeus vannamei by analysis of macrostructure, digestibility, and immunoreactivity. Furthermore, the presence of modified amino acids on the reported IgE epitopes was analyzed by mass spectrometry. Results showed that the combination processing of Maillard reaction (shrimp meat with galactose) with high temperature-pressure at 115 °C obviously changed the macrostructure and increased the digestibility for the shrimp meat. Meanwhile, the processing significantly reduced the IgG/IgE-binding activity of the shrimp meat. The hypo-IgE-binding activity in processed shrimp may be due to the modification of lysine, arginine, and cysteine residues in antigen epitopes. This is a comprehensive assessment of the specific amino acid residues modified by glycation of multiple allergens in processed L. vannamei, which provides a new research method to explore the hypo-IgE-binding activity in food.
Collapse
Affiliation(s)
- Meng Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Fei Huan
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Tian-Jiao Han
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Si-Han Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Meng-Si Li
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yang Yang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Yun-Hui Wu
- College of Marine Biology, Xiamen Ocean Vocational College, Xiamen, Fujian 361102, China
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China
| |
Collapse
|
11
|
Tiered approach for the identification of Mal d 1 reduced, well tolerated apple genotypes. Sci Rep 2020; 10:9144. [PMID: 32499528 PMCID: PMC7272412 DOI: 10.1038/s41598-020-66051-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/06/2020] [Indexed: 12/02/2022] Open
Abstract
A rising proportion of the world population suffers from food-related allergies, including incompatibilities to apples. Although several allergenic proteins have been found in apples, the most important proteins that cause allergic reactions to apples in Central-Northern Europe, and North America are the Mal d 1 proteins, which are homologues of the birch pollen allergen Bet v 1. As the demand for hypoallergenic fruits is constantly increasing, we selected apple genotypes with a low total content of Mal d 1 by enzyme-linked immunosorbent assay analysis from segregating populations and tested the tolerability of these fruits through a human provocation study. This tiered approach, which exploited the natural diversity of apples, led to the identification of fruits, which were tolerated by allergic patients. In addition, we found a significant correlation (coefficient >0.76) between the total Mal d 1 content and flavan-3-ol amount and show that the isoform composition of the Mal d 1 proteins, which was determined by LC-MS/MS has a decisive effect on the tolerability of apple genotypes. The approach presented can be applied to other types of fruit and to other allergenic proteins. Therefore, the strategy can be used to reduce the allergen content of other plant foods, thereby improving food safety for allergy subjects.
Collapse
|
12
|
Ren L, Wu Z, Zhang Y, Li K, Yuan J, Li X, Yang A, Tong P, Chen H. Polyphenol-oxidase-catalyzed cross-linking of Ara h 2: reaction sites and effect on structure and allergenicity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:308-314. [PMID: 31525267 DOI: 10.1002/jsfa.10040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/25/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Peanut is among the most common of food allergies, and one of its allergens is Ara h 2. A previous study revealed that this allergen was recognized by serum immunoglobulin E (IgE) in over 90% of a peanut-allergic patient population. Enzymatic cross-linking is a popular processing method used to tailor food functionality, such as antigenicity. RESULT The cross-linking reactions of Ara h 2 were catalyzed by polyphenol oxidase (PPO), and the relevant reaction sites were identified using mass spectrometry and StavroX software. Two pairs of intramolecular cross-linking peptides and two intermolecular cross-linking peptides were found. Intramolecular cross-linking was speculated to occur between ARG131 (amino acids 116-131) and TYR65 (amino acids 63-80) and between TYR60 (amino acids 56-62) and ARG92 (amino acids 92-102); the intermolecular cross-linking sites were ARG31 with TYR84 or TYR89 and TYR65 or TYR72 with ARG92 or ARG102 . Three out of four cross-linking peptides were found in α-helices, and destruction of this secondary structure resulted in a loose tertiary structure. Although seven linear allergen epitopes were involved in cross-linking, the IgE binding capacity of protein changed slightly, while its sensitization potential decreased in mouse model. CONCLUSION Exploring the structural change of Ara h 2 after cross-linking is beneficial in further understanding the influence of structure on sensitization. This result indicated the future possibility of precision processing on structure of proteins to improve their properties. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linmei Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- School of Environment and Chemical Engineering, Nanchang University, Nanchang, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Ying Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Kun Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Hubei Provincial Key Lab for Quality and Safety of Traditional Chinese Medicine Health Food Jing Brand Bio-medicine Co Ltd, Huangshi, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Li X, Bai H, Wu Y, Cheng W, Wu Y, Wu Z, Yang A, Tong P, Chen H. Structural analysis and allergenicity assessment of an enzymatically cross-linked bovine α-lactalbumin polymer. Food Funct 2020; 11:628-639. [DOI: 10.1039/c9fo02238d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic cross-linking is frequently used in bio-processing of dairy products since it could change the physiochemical and functional characterization.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- School of Food Science and Technology
| | - Hao Bai
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- School of Food Science and Technology
| | - Yuanyuan Wu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- School of Food Science and Technology
| | - Wei Cheng
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- School of Food Science and Technology
| | - Yong Wu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- Sino-German Joint Research Institute
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- Sino-German Joint Research Institute
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- Sino-German Joint Research Institute
| | - Ping Tong
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P.R. China
- Sino-German Joint Research Institute
| |
Collapse
|
14
|
Kschonsek J, Dietz A, Wiegand C, Hipler UC, Böhm V. Allergenicity of apple allergen Mal d 1 as effected by polyphenols and polyphenol oxidase due to enzymatic browning. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Zhu J, Deng H, Yang A, Wu Z, Li X, Tong P, Chen H. Effect of microbial transglutaminase cross-linking on the quality characteristics and potential allergenicity of tofu. Food Funct 2019; 10:5485-5497. [PMID: 31411222 DOI: 10.1039/c9fo01118h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Microbial transglutaminase (MTGase) has been developed as a new tofu coagulant in recent years due to its good hydrophilicity, high catalytic activity, and strong thermal stability. This study aimed to investigate the effect of MTGase on the physicochemical properties and immunoreactivity of tofu relative to conventional coagulants [brine and glucono-δ-lactone (GDL)]. Structural changes of the MTGase cross-linked soymilk protein were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD) spectroscopy, ultraviolet (UV) absorption spectroscopy, and fluorescence spectroscopy. The IgE-binding capacity of MTGase cross-linked proteins was tested by enzyme-linked immunosorbent assay (ELISA). The physicochemical properties, quality characteristics, and surface microstructures of five different types of tofu were determined by the Kjeldahl nitrogen method, texture analysis, and scanning electron microscopy (SEM). The digestibility of tofu was evaluated in vitro by simulated gastrointestinal (GIS) digestion. A cell sensitization experiment was performed in vitro to evaluate the capability of tofu digestion products to induce the release of bioactive mediators from human basophil leukemia (KU812) cells. Results indicated that MTGase significantly changed the advanced structure of the soymilk protein. Compared with tofu without MTGase, the composite coagulant tofu containing MTGase exhibited better quality. MTGase improved the water-holding capacity (WHC) of the internal mesh structure and increased the yield of tofu. The digestion products of the composite coagulant tofu, especially the GDL plus MTGase tofu, induced KU812 cells to release fewer bioactive mediators compared with those of MTGase-free tofu. MTGase can not only improve the quality of conventional coagulant tofu but also reduce the potential allergenicity of tofu to a certain extent.
Collapse
Affiliation(s)
- Jierui Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China. and Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Han Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China. and Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China. and Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China. and Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China.
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China.
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China. and Sino-German Joint Research Institute, Nanchang University, Nanjing Dong Lu 235, Nanchang 330047, China
| |
Collapse
|
16
|
Chang X, Wu Z, Zhao R, Zhang Y, Li X, Yang A, Tong P, Chen H. Analysis on MTGase catalysed cross-linked products of Ara h 2: structure and immunoreactivity. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1529739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Xuejiao Chang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
| | - Ruifang Zhao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Ying Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- School of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, People’s Republic of China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
17
|
Peanut flour aggregation with polyphenolic extracts derived from peanut skin inhibits IgE binding capacity and attenuates RBL-2H3 cells degranulation via MAPK signaling pathway. Food Chem 2018; 263:307-314. [DOI: 10.1016/j.foodchem.2018.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/03/2018] [Accepted: 05/01/2018] [Indexed: 02/08/2023]
|
18
|
Liu K, Chen S, Chen H, Tong P, Gao J. Cross-linked ovalbumin catalyzed by polyphenol oxidase: Preparation, structure and potential allergenicity. Int J Biol Macromol 2018; 107:2057-2064. [DOI: 10.1016/j.ijbiomac.2017.10.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/30/2017] [Accepted: 10/12/2017] [Indexed: 02/01/2023]
|
19
|
Isaschar-Ovdat S, Fishman A. Crosslinking of food proteins mediated by oxidative enzymes – A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2017.12.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Caffeic acid-assisted cross-linking catalyzed by polyphenol oxidase decreases the allergenicity of ovalbumin in a Balb/c mouse model. Food Chem Toxicol 2018; 111:275-283. [DOI: 10.1016/j.fct.2017.11.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 10/10/2017] [Accepted: 11/18/2017] [Indexed: 02/06/2023]
|
21
|
Hu MJ, Liu GY, Yang Y, Pan TM, Liu YX, Sun LC, Cao MJ, Liu GM. Cloning, Expression, and the Effects of Processing on Sarcoplasmic-Calcium-Binding Protein: An Important Allergen in Mud Crab. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6247-6257. [PMID: 28692255 DOI: 10.1021/acs.jafc.7b02381] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Shellfish allergy is a prevalent, long-lasting disorder usually persisting throughout life. However, the allergen information is incomprehensive in crab. This study aimed to identify a novel allergen in crab, show its potential in diagnosis and reduce the allergenicity by food processing. A 21-kDa protein was purified from Scylla paramamosain and confirmed as sarcoplasmic calcium binding protein (SCP) by matrix-assisted laser desorption ionization-time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF-MS). Total RNA was isolated from crab muscle, and a rapid amplification of cDNA was performed to obtain an ORF of 579 bp that coded for 193 amino acid residues. According to the results of circular dichroism analysis and ELISA assay, the recombinant SCP (rSCP) expressed in Escherichia coli showed similar physicochemical and immunoreactive properties to native SCP (nSCP). Additionally, the extensive cross reactivity of SCP among different species and the bidirectional IgE cross-reactivity between nSCP and rSCP were detected by iELISA. The allergenicity of rSCP was reduced via Maillard reaction or enzymatic cross-linking reaction, which was confirmed by the results of scanning electron microscopy, dot blot, and digestion assay. A straightforward and reproducible way was developed to obtain high yields of rSCP that maintains structural integrity and full IgE reactivity, which could compensate the low specific IgE-titers of most patient sera for future diagnosis. Furthermore, the Maillard reaction and enzymatic cross-linking reaction were effective approaches for the production of hypoallergenic seafood.
Collapse
Affiliation(s)
- Meng-Jun Hu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China
| | - Guang-Yu Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China
| | - Yang Yang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China
| | - Tzu-Ming Pan
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University , No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yi-Xiang Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China
| | - Le-Chang Sun
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021, Fujian, P.R. China
| |
Collapse
|
22
|
Wu Z, Zhao R, Ren L, Li X, Yang A, Tong P, Chen H. Modification of the reaction system of Ara h 2 catalyzed by MTGase: Products and reaction conditions analysis. J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhihua Wu
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchang, 330047 China
- Sino‐German Joint Research InstituteNanchang UniversityNanchang, 330047 China
| | - Ruifang Zhao
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchang, 330047 China
- School of Food Science and TechnologyNanchang UniversityNanchang, 330031 China
| | - Linmei Ren
- School of Food Science and TechnologyNanchang UniversityNanchang, 330031 China
| | - Xin Li
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchang, 330047 China
- School of Food Science and TechnologyNanchang UniversityNanchang, 330031 China
| | - Anshu Yang
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchang, 330047 China
- Sino‐German Joint Research InstituteNanchang UniversityNanchang, 330047 China
| | - Ping Tong
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchang, 330047 China
| | - Hongbing Chen
- State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchang, 330047 China
- Sino‐German Joint Research InstituteNanchang UniversityNanchang, 330047 China
| |
Collapse
|
23
|
Zimmer J, Vieths S, Kaul S. Standardization and Regulation of Allergen Products in the European Union. Curr Allergy Asthma Rep 2016; 16:21. [PMID: 26874849 DOI: 10.1007/s11882-016-0599-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Product-specific standardization is of prime importance to ensure persistent quality, safety, and efficacy of allergen products. The regulatory framework in the EU has induced great advancements in the field in the last years although national implementation still remains heterogeneous. Scores of methods for quantification of individual allergen molecules are developed each year and also the challenging characterization of chemically modified allergen products is progressing. However, despite the unquestionable increase in knowledge and the subsequent improvements in control of quality parameters of allergen products, an important aim has not been reached yet, namely cross-product comparability. Still, comparison of allergen product potency, either based on total allergenic activity or individual allergen molecule content, is not possible due to a lack of standard reference preparations in conjunction with validated standard methods. This review aims at presenting the most recent developments in product-specific standardization as well as activities to facilitate cross-product comparability in the EU.
Collapse
Affiliation(s)
- Julia Zimmer
- Division of Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany.
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany.
| | - Susanne Kaul
- Division of Allergology, Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen, Germany.
| |
Collapse
|