1
|
Farooq S, Xu L, Ostovan A, Qin C, Liu Y, Pan Y, Ping J, Ying Y. Assessing the greenification potential of cyclodextrin-based molecularly imprinted polymers for pesticides detection. Food Chem 2023; 429:136822. [PMID: 37450994 DOI: 10.1016/j.foodchem.2023.136822] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Cyclodextrins, with their unparalleled attributes of eco-friendliness, natural abundance, versatile utility, and facile functionalization, make a paramount contribution to the field of molecular imprinting. Leveraging the unique properties of cyclodextrins in molecularly imprinted polymers synthesis has revolutionized the performance of molecularly imprinted polymers, resulting in enhanced adsorption selectivity, capacity, and rapid extraction of pesticides, while also circumventing conventional limitations. As the concern for food quality and safety continues to grow, the need for standard analytical methods to detect pesticides in food and environmental samples has become paramount. Cyclodextrins, being non-toxic and biodegradable, present an attractive option for greener reagents in imprinting polymers that can also ensure environmental safety post-application. This review provides a comprehensive summary of the significance of cyclodextrins in molecular imprinting for pesticide detection in food and environmental samples. The recent advancements in the synthesis and application of molecularly imprinted polymers using cyclodextrins have been critically analyzed. Furthermore, the current limitations have been meticulously examined, and potential opportunities for greenification with cyclodextrin applications in this field have been discussed. By harnessing the advantages of cyclodextrins in molecular imprinting, it is possible to develop highly selective and efficient methods for detecting pesticides in food and environmental samples while also addressing the challenges of sustainability and environmental impact.
Collapse
Affiliation(s)
- Saqib Farooq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Lizhou Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chunlian Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yingjia Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yuxiang Pan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China.
| |
Collapse
|
2
|
Shet H, Patel M, Waikar JM, More PM, Sanghvi YS, Kapdi AR. Room-Temperature Dialkylamination of Chloroheteroarenes Using a Cu(II)/PTABS Catalytic System. Chem Asian J 2023; 18:e202201006. [PMID: 36355632 DOI: 10.1002/asia.202201006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Indexed: 11/12/2022]
Abstract
The dimethylamino functionality has significant importance in industrially relevant molecules and methodologies to install these efficiently are highly desirable. We report herein a highly efficient, room-temperature dimethylamination of chloroheteroarenes performed via the in-situ generation of dimethylamine using N,N-dimethylformamide (DMF) as precursor wiith a large substrate scope that includes various heteroarenes, purines as well as commercially relevant drugs such as altretamine, ampyzine and puromycin precursor.
Collapse
Affiliation(s)
- Harshita Shet
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India.,Department of Chemistry, Institute of Chemical Technology-Indian Oil Odisha Campus, IIT Kharagpur Extension Centre, Mouza Samantpuri, Bhubaneswar, 751013, Odisha, India
| | - Manisha Patel
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Jyoti M Waikar
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Pavan M More
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| | - Yogesh S Sanghvi
- Rasayan Inc., 2802 Crystal Ridge road, Encinitas, CA 92024-6615, U.S.A
| | - Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, Nathalal Parekh Road, Matunga, Mumbai, 400019, India
| |
Collapse
|
3
|
Shan PH, Hu JH, Liu M, Tao Z, Xiao X, Redshaw C. Progress in host–guest macrocycle/pesticide research: Recognition, detection, release and application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
4
|
Zhang X, Yang J, Liu Z, Huang Y, Akber Aisa H. Preparation of arctiin moleculary imprinted polymers with 4-vinylpyridine and Allyl-β-cyclodextrin as binary monomers under molecular crowding conditions. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1193:123172. [PMID: 35196624 DOI: 10.1016/j.jchromb.2022.123172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 02/10/2022] [Indexed: 11/18/2022]
Abstract
This paper reported a feasible method to prepare molecularly imprinted polymer (MIPs) using 4-vinylpyridine (4-VP) and Allyl-β-cyclodextrin (β-CD) as binary functional monomer in the presence of polystyrene (PS). This is the first time that a surrounding of macromolecular crowding was established to improve the imprinting effect of cyclodextrins as monomer in organic solvents. The morphological and characteristics of the polymers with macromolecular crowding reagents were investigated by scanning electron microscope (SEM), fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and nitrogen adsorption experiments. The MIPs were synthesized with 4-VP and β-CD as binary functional monomers, a series of experiments were conducted to compare with the control groups. Furthermore, the selectivity of MIP for analogues experiment showed that the β-CD/4-VP MIP has higher specific recognition for arctiin than β-CD/4-VP NIP. A purification method by β-CD/4-VP MIPs coupled with macromolecular crowding reagents was developed for extraction arctiin from Arctium lappa L. In the MIP-SPE process, the optimal washing and eluting reagents are methanol/water (5:5) and methanol/acid (9:1), respectively. When using the β-CD/4-VP MIPs as SPE absorbent, the mean recoveries for arctiin were 87% with purity of 95%. All the results indicate that this synthetic method using 4-VP and β-CD as binary functional monomers in the presence of PS is a promising method for the preparation of selective adsorbents for arctiin analysis in Arctium lappa L.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jian Yang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China; Xinjiang Medical University, Urumqi 830011, Xinjiang, People's Republic of China
| | - Zhaosheng Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yanping Huang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
5
|
Xu X, Huo F, Zhu Y, Dong H, Wang Y, Liu L, Zhang C, Zhao F. A miniaturized analytical method based on molecularly imprinted absorbents for selective extraction of (S)-1,1'-binaphthyl-2,2'-diamine and combinatorial screening of polymer precursors by computational simulation. Chirality 2021; 34:147-159. [PMID: 34749430 DOI: 10.1002/chir.23388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/10/2021] [Accepted: 10/22/2021] [Indexed: 11/06/2022]
Abstract
Chiral resolution of binaphthylamine is often a toilful conundrum in the field of analytical chemistry and biomedicine. The work puts forward a selective, sensitive, and miniaturized analytical method based on molecularly imprinted polymers (MIPs) as adsorbent for miniaturized tip solid-phase extraction (MTSPE) in the separation of binaphthylamine enantiomer. This method combines the advantages of MIPs (high selectivity), MTSPE (low consumption), and high-performance liquid chromatography (HPLC, high sensitivity). A simple synthesis methodology of MIP (P2) was conducted through bulk polymerization with (S)-(-)-1,1'-binaphthyl-2,2'-diamine (S-DABN) as template together with methacrylic acid monomer, and ethylene glycol dimethacrylate as cross-linker in proper porogen, realizing a selective recognition and efficient enrichment for S-DABN. The method exhibited appreciable linearity (0.06-1.00 mg ml-1 ), low quantification limit (0.056 mg ml-1 ), good absolute recoveries (45.70%-69.29%), and high precision (relative standard deviations ≤ 3.54%), along with low consumption (0.50 ml sample solution and 25.0 mg adsorbent). Based on the density functional theory, computational simulation was used to make a preliminary prediction for rational design of MIPs and gave a reasonable elaboration involving the potential mechanism of templates interacting with functional monomers. The adsorption kinetics and thermodynamics were investigated to evaluate the recombination process of substrates. In addition, the selectivity of MIPs for S-DABN was obtained by MIP-MTSPE coupled with HPLC, which supports the feasibility of this convenient design process. The proposed method was employed for selective extraction of S-DABN and exhibited promising potential in the application of chiral analysis.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yongxia Zhu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Yanhui Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Lijia Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Fangbo Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| |
Collapse
|
6
|
Nicholls IA, Golker K, Olsson GD, Suriyanarayanan S, Wiklander JG. The Use of Computational Methods for the Development of Molecularly Imprinted Polymers. Polymers (Basel) 2021; 13:2841. [PMID: 34502881 PMCID: PMC8434026 DOI: 10.3390/polym13172841] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the use of theoretical and computational approaches in the study and development of molecular imprinting systems. These tools are being used to either improve understanding of the mechanisms underlying the function of molecular imprinting systems or for the design of new systems. Here, we present an overview of the literature describing the application of theoretical and computational techniques to the different stages of the molecular imprinting process (pre-polymerization mixture, polymerization process and ligand-molecularly imprinted polymer rebinding), along with an analysis of trends within and the current status of this aspect of the molecular imprinting field.
Collapse
Affiliation(s)
- Ian A. Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden; (K.G.); (G.D.O.); (S.S.); (J.G.W.)
| | | | | | | | | |
Collapse
|
7
|
A Review on Molecularly Imprinted Polymers Preparation by Computational Simulation-Aided Methods. Polymers (Basel) 2021; 13:polym13162657. [PMID: 34451196 PMCID: PMC8398116 DOI: 10.3390/polym13162657] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) are obtained by initiating the polymerization of functional monomers surrounding a template molecule in the presence of crosslinkers and porogens. The best adsorption performance can be achieved by optimizing the polymerization conditions, but this process is time consuming and labor-intensive. Theoretical calculation based on calculation simulations and intermolecular forces is an effective method to solve this problem because it is convenient, versatile, environmentally friendly, and inexpensive. In this article, computational simulation modeling methods are introduced, and the theoretical optimization methods of various molecular simulation calculation software for preparing molecularly imprinted polymers are proposed. The progress in research on and application of molecularly imprinted polymers prepared by computational simulations and computational software in the past two decades are reviewed. Computer molecular simulation methods, including molecular mechanics, molecular dynamics and quantum mechanics, are universally applicable for the MIP-based materials. Furthermore, the new role of computational simulation in the future development of molecular imprinting technology is explored.
Collapse
|
8
|
Zhao X, Wang Y, Zhang P, Lu Z, Xiao Y. Recent Advances of Molecularly Imprinted Polymers Based on Cyclodextrin. Macromol Rapid Commun 2021; 42:e2100004. [PMID: 33749077 DOI: 10.1002/marc.202100004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Molecular imprinting polymers (MIPs), generally considered as artificial mimics that are comparable to natural receptor, are polymers with tailor-made specific recognition sites complementary to the template molecules in shape and size. As a class of supramolecular compounds, cyclodextrins (CDs) are flourishing in the field of molecular imprinting with their unique structural properties. This review presents recent advances in application of MIPs based on CDs during the past five years. The discussion is grouped according to the different role of CDs in MIPs, that is, functional monomer, carrier modifier, etc. Main focus is the application of CD-based MIP on sample preparation, detection, and sensing. Additionally, drug delivery with CD-based MIP is also briefly discussed. Finally, challenges and future prospects of application of CDs in MIP are elaborated.
Collapse
Affiliation(s)
- Xiaoyue Zhao
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Pan Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhemiao Lu
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yin Xiao
- Tianjin Engineering Research Center of Functional Fine Chemicals, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
9
|
ZHANG J, LI P, MA J, JIA Q. [Recent developments of pesticide adsorbents based on cyclodextrins]. Se Pu 2021; 39:173-183. [PMID: 34227350 PMCID: PMC9274844 DOI: 10.3724/sp.j.1123.2020.08018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 11/25/2022] Open
Abstract
The invention and application of pesticides have greatly increased the yield of crops, greatly contributing to ensuring people's basic livelihoods and gradually improving their livelihoods to a well-off level. However, foods, water sources, and soil, containing high levels of pesticide residues, result in increasingly serious pollution. Pesticide residues usually have the characteristics of micro toxicity, difficult biodegradation, and bioaccumulation, and thus pose serious threat to living organisms and ecosystems. In recent years, pesticide pollution has earned worldwide focus. Thus, methods for the efficient detection of trace pesticides and reduction of the harm caused by pesticide pollution are urgently required. Researchers have used catalysis, electrochemistry, membrane separation, adsorption, and other methods to enrich pesticides from complex matrices. Among these, adsorbents have attracted much attention owing to their advantages of simple operation steps, rapid treatment process, and low amounts of organic solvents required. Research on adsorption materials has always been a very active field, and is also the key to the success of separation and enrichment of pesticides from complex matrices. Development of adsorbents with the advantages of simple synthesis, environment-friendliness, high stability, and strong reusability is of great significance. There has been some progress in the field of pesticide adsorption using supramolecular compounds. Cyclodextrin is a macrocyclic compound with a cavity after crown ether, which can form inclusion complexes via host guest interactions as the main body. Cyclodextrin can also be modified by etherification, esterification, oxidation, and other chemical reactions to improve its adsorption performance. Pesticides can be classified into organic and inorganic substances. One of the most widely used inorganic fungicides is the Bordeaux solution, whose main component is Cu2+. Organic fungicides, insecticides, herbicides, and plant growth regulators are basically organic molecules, whose hydroxyl and carboxyl groups can form complexes with Cu2+. As a matrix, cyclodextrin not only increases the surface area of the materials, but also provides the binding sites of hydroxyl and carboxyl groups, which guarantees efficient enrichment of Cu2+. Organic pesticides with high polarity, high electron density, and strong hydrophobicity could be better adsorbed. In this paper, the application of cyclodextrin-based adsorbents in pesticide adsorption was reviewed, and on this basis, reference to future development directions and application prospects were provided. The adsorption capacity of individual pesticide adsorbents based on cyclodextrin, as reviewed in this paper, is not high enough. Therefore, improving the adsorption capacity is currently a major research target. Some of the above-mentioned adsorbents have unclear degradation mechanisms and can easily cause secondary pollution. Therefore, the development of environment-friendly pesticide adsorbents that are easy to regenerate is a promising research direction for the future. After adsorption, some detection methods are used to determine whether the pesticide residues are up to the standard; however, the detection instruments are expensive. Therefore, the development of a combined detection mechanism that can reduce workload and cost is a promising research direction. Finally, the development of smart cyclodextrin-based adsorbents is also an efficient and rapid method to reduce the cost of detecting residual pesticide concentrations and the risk of pesticide pollution. For example, intelligent materials, whose color changes can be observed by the naked eye, not only adsorb pesticides, but also respond according to the concentration of residual pesticides.
Collapse
Affiliation(s)
- Jinfeng ZHANG
- 吉林大学化学学院, 吉林 长春 130012
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Ping LI
- 吉林大学化学学院, 吉林 长春 130012
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Jiutong MA
- 吉林大学化学学院, 吉林 长春 130012
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong JIA
- 吉林大学化学学院, 吉林 长春 130012
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
10
|
Zhang L, He L, Wang Q, Tang Q, Liu F. Theoretical and experimental studies of a novel electrochemical sensor based on molecularly imprinted polymer and GQDs-PtNPs nanocomposite. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Eskandarpour M, Jamshidi P, Moghaddam MR, Ghasmei JB, Shemirani F. Developing a highly selective method for preconcentration and determination of cobalt in water and nut samples using 1-(2-pyridylazo)-2-naphthol and UV-visible spectroscopy. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2272-2279. [PMID: 31930504 DOI: 10.1002/jsfa.10257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Heavy metal contamination in water and agricultural products is a major concern that causes risks for human health. This article describes a highly selective approach to preconcentrate cobalt(II) (Co(II)) ions based on the standard UV-visible measurement of Co(II)-1-(2-pyridylazo)-2-naphthol complex at λ = 628 nm in water and nut samples. In this method, magnetic silica (mSiO2 ) was utilized as a practical sorbent and 1-(2-pyridylazo)-2-naphthol was employed as a complexing agent in the elution step. The adsorbent was characterized via X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy. The effects of the main variables (pH, adsorption time, sorbent amount, pH of eluent, ligand volume, and desorption time) were investigated and established. RESULTS The maximum recovery was achieved at pH 7 ± 0.3, adsorption time of 60 min, sorbent amount of 40 mg, eluent pH 8 ± 0.2, ligand volume of 2 mL (16.95 × 10-4 mol L-1 ) and desorption time of 30 min. The linearity of dynamic range (10-500 μg L-1 ), limit of detection (0.32 μg L-1 ), relative standard deviation (3.04%), and preconcentration factor (25) show the reliability of the method. The sorbent was reusable 12 times. Selectivity and the effect of interference ions were successfully examined. The adsorption process of Co(II) ions on mSiO2 was investigated based on Langmuir and Freundlich isotherms. The Freundlich model was fitted with the system and the maximum capacity adsorption of mSiO2 for Co(II) adsorption is 2.35 mg g-1 . Then, the kinetics study revealed that the adsorption process of Co(II) ions on the mSiO2 follows the pseudo-first-order model. The thermodynamics parameters ΔG, ΔS, and ΔH were calculated. CONCLUSION The method was fruitfully applied to preconcentrate Co(II) ions in water and nut samples. This method offers high selectivity and precision for determining Co(II) ions. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Parastoo Jamshidi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | - Jahan B Ghasmei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farzaneh Shemirani
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
He Z, Xu Y, Zhang Y, Liu B, Liu X. On the Use of In-Source Fragmentation in Ultrahigh-Performance Liquid Chromatography-Electrospray Ionization-High-Resolution Mass Spectrometry for Pesticide Residue Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10800-10812. [PMID: 31490681 DOI: 10.1021/acs.jafc.9b04583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, a highly efficient pesticide residue screening and quantification method was established using ultrahigh-performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry based on in-source fragmentation. Over 400 pesticides were tested, among which 96 pesticides displayed in-source fragmentation. A novel concept of in-source fragment fraction was proposed to evaluate the extent of in-source fragmentation, which was found to be chemical structure- and source parameter-dependent. A high-resolution MS/MS library containing 403 pesticides and 126 fragments was created and was applied for library searching of pesticide residues in vegetables and fruits. The introduction of in-source fragments effectively circumvented misannotation and occurrence of false negatives. The quantification ability for the fragments was validated in terms of recovery, linearity, and limit of quantification and its superiority to the parent pesticides was established. Finally, the proposed method was applied for the analysis of real samples and proficiency test samples, and false negative results were successfully avoided in the analysis.
Collapse
Affiliation(s)
- Zeying He
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety , Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs , Tianjin 300191 , P. R. China
| | - Yaping Xu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety , Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs , Tianjin 300191 , P. R. China
| | - Yanwei Zhang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety , Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs , Tianjin 300191 , P. R. China
| | - Bingjie Liu
- SCIEX, Analytical Instrument Trading Company, Limited , Beijing 100015 , China
| | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety , Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs , Tianjin 300191 , P. R. China
| |
Collapse
|
13
|
Liu X, Wang Y, Li L, Li R. Synthesis and characterization of azoxystrobin hydrophilic molecularly imprinted microspheres. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1607751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xinxin Liu
- College of resources and Environment Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yan Wang
- College of resources and Environment Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Ling Li
- College of resources and Environment Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Ranhong Li
- College of resources and Environment Science, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
14
|
Fernández MA, Silva OF, Vico RV, de Rossi RH. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 2019; 480:12-34. [PMID: 31158527 DOI: 10.1016/j.carres.2019.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) are a family of biodegradable cyclic hydrocarbons composed of α-(1,4) linked glucopyranose subunits, the more common containing 6, 7 or 8 glucose units are named α, β and γ-cyclodextrins respectively. Since the discovery of CDs, they have attracted interest among scientists and the first studies were about the properties of the native compounds and in particular their use as catalysts of organic reactions. Characteristics features of different types of cyclodextrins stimulated investigation in different areas of research, due to its non-toxic and non-inmunogenic properties and also to the development of an improved industrial production. In this way, many materials with important properties have been developed. This mini-review will focus on chemical systems that use cyclodextrins, whatever linked covalently or mediated by the non covalent interactions, to build complex systems developed mainly during the last five years.
Collapse
Affiliation(s)
- Mariana A Fernández
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - O Fernando Silva
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Raquel V Vico
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|