1
|
Deshmukh M, Pathan A. Transformations of bamboo into bioethanol through biorefinery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3343-3360. [PMID: 38103136 DOI: 10.1007/s11356-023-31510-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The increasing demand for energy has prompted scholars to research alternative energy sources. Bamboo is a species of woody perennial grass that belongs to the Gramineae family and the Bambuseae subfamily. It could be considered a possible lignocellulosic substrate for the production of bioethanol due to its favourable environmental effects and increased yearly biomass yield. Non-renewable fossil fuels cannot provide enough energy to meet the needs of contemporary societies. Among the various alternative energy sources, bioethanol has drawn a lot of attention from people all around the world. This paper reviews the cost and process parameters for the synthesis of bioethanol from bamboo. This review aims to increase the effectiveness of the entire ethanol production process by focusing on pretreatment, enzymatic hydrolysis, and fermentation. The emphasis of this review is on the efficient process for producing bioethanol while maintaining environmental sustainability. When compared to other NaOH pretreatment techniques, bamboo substrates prepared with NaOH and ultra-high-pressure explosion (UHPE) exhibit higher enzymatic hydrolyzability when processed under optimal conditions, such as 100 MPa, 121 °C, and 70 rpm for 2 h, yielding 89.7-95.1% ethanol after 24 h. The article lists the bamboo species responsible for creating each product, making it straightforward for producers to study and select the species based on whatever value-added product they wish to produce bioethanol with different parameters.
Collapse
Affiliation(s)
- Minal Deshmukh
- School of Petroleum Engineering, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India
| | - Aadil Pathan
- School of Petroleum Engineering, MIT World Peace University, Paud Road, Kothrud, Pune, 411038, India.
| |
Collapse
|
2
|
Culaba AB, Mayol AP, San Juan JLG, Vinoya CL, Concepcion RS, Bandala AA, Vicerra RRP, Ubando AT, Chen WH, Chang JS. Smart sustainable biorefineries for lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2022; 344:126215. [PMID: 34728355 DOI: 10.1016/j.biortech.2021.126215] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulosic biomass (LCB) is considered as a sustainable feedstock for a biorefinery to generate biofuels and other bio-chemicals. However, commercialization is one of the challenges that limits cost-effective operation of conventional LCB biorefinery. This article highlights some studies on the sustainability of LCB in terms of cost-competitiveness and environmental impact reduction. In addition, the development of computational intelligence methods such as Artificial Intelligence (AI) as a tool to aid the improvement of LCB biorefinery in terms of optimization, prediction, classification, and decision support systems. Lastly, this review examines the possible research gaps on the production and valorization in a smart sustainable biorefinery towards circular economy.
Collapse
Affiliation(s)
- Alvin B Culaba
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines.
| | - Andres Philip Mayol
- Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Manufacturing Engineering and Management, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Jayne Lois G San Juan
- Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Industrial and Systems Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Carlo L Vinoya
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; School of Sciences and Engineering, University of Asia and the Pacific, Pearl Dr, Ortigas Center, Pasig, 1605 Metro Manila, Philippines
| | - Ronnie S Concepcion
- Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Manufacturing Engineering and Management, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Argel A Bandala
- Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Electronics and Computer Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Ryan Rhay P Vicerra
- Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Department of Manufacturing Engineering and Management, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines
| | - Aristotle T Ubando
- Department of Mechanical Engineering, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Center for Engineering Sustainable Development Research, De La Salle University, 2401 Taft Avenue, 0922 Manila, Philippines; Thermomechanical Analysis Laboratory, De La Salle University, Laguna Campus, LTI Spine Road, Laguna Blvd, Biñan, Laguna 4024, Philippines
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
3
|
Developments and opportunities in fungal strain engineering for the production of novel enzymes and enzyme cocktails for plant biomass degradation. Biotechnol Adv 2019; 37:107361. [PMID: 30825514 DOI: 10.1016/j.biotechadv.2019.02.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/11/2019] [Accepted: 02/23/2019] [Indexed: 12/26/2022]
Abstract
Fungal strain engineering is commonly used in many areas of biotechnology, including the production of plant biomass degrading enzymes. Its aim varies from the production of specific enzymes to overall increased enzyme production levels and modification of the composition of the enzyme set that is produced by the fungus. Strain engineering involves a diverse range of methodologies, including classical mutagenesis, genetic engineering and genome editing. In this review, the main approaches for strain engineering of filamentous fungi in the field of plant biomass degradation will be discussed, including recent and not yet implemented methods, such as CRISPR/Cas9 genome editing and adaptive evolution.
Collapse
|