1
|
Yuan S, Jiang H, Wang Y, Zhang L, Shi Z, Jiao L, Meng D. A 3R-MYB transcription factor is involved in Methyl Jasmonate-Induced disease resistance in Agaricus bisporus and has implications for disease resistance in Arabidopsis. J Adv Res 2024:S2090-1232(24)00380-1. [PMID: 39233001 DOI: 10.1016/j.jare.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Methyl jasmonate (MeJA) and MYB transcription factors (TFs) play important roles in pathogen resistance in several plants, but MYB TFs in conjunction with MeJA-induced defense against Pseudomonas tolaasii in edible mushrooms remain unknown. OBJECTIVES To investigate the role of a novel 3R-MYB transcription factor (AbMYB11) in MeJA-induced disease resistance of Agaricus bisporus and in the resistance of transgenic Arabidopsis to P. tolaasii. METHODS Mushrooms were treated with MeJA alone or in combination with phenylpropanoid pathway inhibitors, and the effects of the treatments on the disease-related and physiological indicators of the mushrooms were determined to assess the role of MeJA in inducing resistance and the importance of the phenylpropanoid pathway involved. Subcellular localization, gene expression analysis, dual-luciferase reporter assay, electrophoretic mobility shift assay, and transgenic Arabidopsis experiments were performed to elucidate the molecular mechanism of AbMYB11 in regulating disease resistance. RESULTS MeJA application greatly improved mushroom resistance to P. tolaasii infection, and suppression of the phenylpropanoid pathway significantly weakened this effect. MeJA treatment stimulated the accumulation of phenylpropanoid metabolites, which was accompanied by increased the activities of biosynthetic enzymes and the expression of phenylpropanoid pathway-related genes (AbPAL1, Ab4CL1, AbC4H1) and an AbPR-like gene, further confirming the critical role of the phenylpropanoid pathway in MeJA-induced responses to P. tolaasii. Importantly, AbMYB11, localized in the nucleus, was rapidly induced by MeJA treatment under P. tolaasii infection; it transcriptionally activated the phenylpropanoid pathway-related and AbPR-like genes, and AbMYB11 overexpression in Arabidopsis significantly increased the transcription of phenylpropanoid-related genes, the accumulation of total phenolics and flavonoids, and improved resistance to P. tolaasii. CONCLUSION This study clarified the pivotal role of AbMYB11 as a regulator in disease resistance by modulating the phenylpropanoid pathway, providing a novel idea for the breeding of highly disease-resistant edible mushrooms and plants.
Collapse
Affiliation(s)
- Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Hanyue Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Yating Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lei Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Zixuan Shi
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Lu Jiao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Jiang H, Wang H, Wang X, Wang Y, Song R, Yuan S, Fan Z, Meng D. Methyl jasmonate differentially and tissue-specifically regulated the expression of arginine catabolism-related genes and proteins in Agaricus bisporus mushrooms during storage. Fungal Genet Biol 2024; 170:103864. [PMID: 38199492 DOI: 10.1016/j.fgb.2024.103864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
Methyl jasmonate (MeJA)-regulated postharvest quality retention of Agaricus bisporus fruiting bodies is associated with arginine catabolism. However, the mechanism of MeJA-regulated arginine catabolism in edible mushrooms is still unclear. This study aimed to investigate the regulatory modes of MeJA on the expression of arginine catabolism-related genes and proteins in intact and different tissues of A. bisporus mushrooms during storage. Results showed that exogenous MeJA treatment activated endogenous JA biosynthesis in A. bisporus mushrooms, and differentially and tissue-specifically regulated the expression of arginine catabolism-related genes (AbARG, AbODC, AbSPE-SDH, AbSPDS, AbSAMDC, and AbASL) and proteins (AbARG, AbSPE-SDH, AbASL, and AbASS). MeJA caused no significant change in AbASS expression but resulted in a dramatic increase in AbASS protein level. Neither the expression of the AbSAMS gene nor the AbSAMS protein was conspicuously altered upon MeJA treatment. Additionally, MeJA reduced the contents of arginine and ornithine and induced the accumulation of free putrescine and spermidine, which was closely correlated with MeJA-regulated arginine catabolism-related genes and proteins. Hence, the results suggested that the differential and tissue-specific regulation of arginine catabolism-related genes and proteins by MeJA contributed to their selective involvement in the postharvest continuing development and quality retention of button mushrooms.
Collapse
Affiliation(s)
- Hanyue Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Huadong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China; Shandong drug and food vocational college, Weihai 264200, People's Republic of China
| | - Xiuhong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Yating Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Rui Song
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Zhenchuan Fan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China; Tianjin Gasin-DH Preservation Technology Co., Ltd, Tianjin 300300, People's Republic of China.
| |
Collapse
|
3
|
Wang Y, Xi Z, Wang X, Zhang Y, Liu Y, Yuan S, Zhao S, Sheng J, Meng D. Identification of bHLH family genes in Agaricus bisporus and transcriptional regulation of arginine catabolism-related genes by AbbHLH1 after harvest. Int J Biol Macromol 2023; 226:496-509. [PMID: 36521696 DOI: 10.1016/j.ijbiomac.2022.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/23/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
Basic helix-loop-helix (bHLH) transcription factors (TFs) are widely distributed in eukaryotes and play an important role in biological growth and development. The identification and functional analyses of bHLH genes/proteins in edible mushrooms (Agaricus bisporus) have yet to be reported. In the present study, we identified 10 putative bHLH members carrying the conserved bHLH domains. Phylogenetic analyses revealed that the 10 AbbHLHs were the closest to sequences of species belonging to 7 different fungal subgroups, which was supported by loop length, intron patterns, and key amino acid residues. The substantial increase after harvest and continuously elevated expression of AbbHLH1 during the development until the disruption of mushroom velum, and the preferential expression in cap and gill tissues suggest the important function of AbbHLH1 in postharvest development of A. bisporus. The relationship of arginine catabolism-related genes with the early stage of postharvest continuing development also was revealed by expression determination. Subcellular localization showed that AbbHLH1 could be localized in nucleus. Importantly, the electrophoretic mobility shift and dual-luciferase reporter assays showed that AbbHLH1 activated the promoters of AbOAT, AbSPDS, and AbSAMDC and suppressed the expression of AbARG, AbUREA, and AbODC, probably for the modulation of arginine catabolism and thus control of postharvest mushroom development. Taken together, the available data provide valuable functional insight into the role of AbbHLH proteins in postharvest mushrooms.
Collapse
Affiliation(s)
- Yating Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Zhiai Xi
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Xiuhong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Yongguo Liu
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, People's Republic of China
| | - Shuai Yuan
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Shirui Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, People's Republic of China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China; Tianjin Gasin-DH Preservation Technology Co., Ltd, Tianjin 300300, People's Republic of China.
| |
Collapse
|
4
|
Chen J, Li JM, Tang YJ, Ma K, Li B, Zeng X, Liu XB, Li Y, Yang ZL, Xu WN, Xie BG, Liu HW, Guo SX. Genome-wide analysis and prediction of genes involved in the biosynthesis of polysaccharides and bioactive secondary metabolites in high-temperature-tolerant wild Flammulina filiformis. BMC Genomics 2020; 21:719. [PMID: 33069230 PMCID: PMC7568368 DOI: 10.1186/s12864-020-07108-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/28/2020] [Indexed: 11/28/2022] Open
Abstract
Background Flammulina filiformis (previously known as Asian F. velutipes) is a popular commercial edible mushroom. Many bioactive compounds with medicinal effects, such as polysaccharides and sesquiterpenoids, have been isolated and identified from F. filiformis, but their biosynthesis and regulation at the molecular level remains unclear. In this study, we sequenced the genome of the wild strain F. filiformis Liu355, predicted its biosynthetic gene clusters (BGCs) and profiled the expression of these genes in wild and cultivar strains and in different developmental stages of the wild F. filiformis strain by a comparative transcriptomic analysis. Results We found that the genome of the F. filiformis was 35.01 Mb in length and harbored 10,396 gene models. Thirteen putative terpenoid gene clusters were predicted and 12 sesquiterpene synthase genes belonging to four different groups and two type I polyketide synthase gene clusters were identified in the F. filiformis genome. The number of genes related to terpenoid biosynthesis was higher in the wild strain (119 genes) than in the cultivar strain (81 genes). Most terpenoid biosynthesis genes were upregulated in the primordium and fruiting body of the wild strain, while the polyketide synthase genes were generally upregulated in the mycelium of the wild strain. Moreover, genes encoding UDP-glucose pyrophosphorylase and UDP-glucose dehydrogenase, which are involved in polysaccharide biosynthesis, had relatively high transcript levels both in the mycelium and fruiting body of the wild F. filiformis strain. Conclusions F. filiformis is enriched in a number of gene clusters involved in the biosynthesis of polysaccharides and terpenoid bioactive compounds and these genes usually display differential expression between wild and cultivar strains, even in different developmental stages. This study expands our knowledge of the biology of F. filiformis and provides valuable data for elucidating the regulation of secondary metabolites in this unique F. filiformis strain.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Jia-Mei Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yan-Jing Tang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ke Ma
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Bing Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xu Zeng
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xiao-Bin Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
| | - Yang Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhu-Liang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
| | - Wei-Nan Xu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Bao-Gui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, P. R. China
| | - Hong-Wei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Shun-Xing Guo
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
5
|
Jabłońska-Ryś E, Sławińska A, Stachniuk A, Stadnik J. Determination of biogenic amines in processed and unprocessed mushrooms from the Polish market. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Min D, Ai W, Zhou J, Li J, Zhang X, Li Z, Shi Z, Li F, Li X, Guo Y. SlARG2 contributes to MeJA-induced defense responses to Botrytis cinerea in tomato fruit. PEST MANAGEMENT SCIENCE 2020; 76:3292-3301. [PMID: 32384210 DOI: 10.1002/ps.5888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/13/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Arginase plays key roles in methyl jasmonate (MeJA)-mediated quality maintenance in vegetables and fruits. MeJA treatment induced the Arginase 2 (SlARG2) expression, which is one of the most important encoding genes of arginase. In addition, the treatment with MeJA induced resistance to pathogenic infection in many plants. However, the functions of SlARG2 in MeJA-induced defense to Botrytis cinerea are unclear. In our work, control and SlARG2-silenced tomato fruits (Solanum lycopersicum) were treated with 0.05 mmoL L-1 MeJA before storage to assay the roles of SlARG2 in MeJA-induced defense responses to Botrytis cinerea. RESULTS Our results indicated that MeJA treatment induced both pathogenesis-related gene expression (PR1, PR2a, PR2b and PR3b), and the activity of defense-related enzymes, as well as upregulated arginine metabolism. Compared to control fruits, the treatment with MeJA also induced the activity of arginase, arginine decarboxylase (ADC) and ornithine aminotransferase (OAT), and expression of SlARG2, SlADC, ornithine decarboxylase (SlODC) and SlOAT, and consequently increased the accumulation of arginine, proline, glutamate, putrescine and spermine. However, the induction effects by MeJA were significantly reduced in fruits in which SlARG2 was silenced and severe disease symptoms were observed. CONCLUSION MeJA fumigation could inhibit disease development by inducing pathogenesis-related gene expression (PR1, PR2a, PR2b and PR3b) and defense-related enzymes activity, as well as upregulated arginine metabolism. In addition, SlARG2 silencing could inhibit the functions of MeJA in inducing the accumulation of the above substances. Overall, our study provided strong evidence that SlARG2 was essential for MeJA-induced tomato fruit defense responses to Botrytis cinerea. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dedong Min
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Wen Ai
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Jingxiang Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Jiaozhuo Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Xinhua Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Zilong Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Zedong Shi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Fujun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Xiaoan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| | - Yanyin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, PR China
| |
Collapse
|
7
|
Wang H, Kou X, Wu C, Fan G, Li T. Methyl jasmonate induces the resistance of postharvest blueberry to gray mold caused by Botrytis cinerea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4272-4281. [PMID: 32378217 DOI: 10.1002/jsfa.10469] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The effects of postharvest methyl jasmonate (MeJA) treatment (50 μmol L-1 ) on the control of gray mold caused by Botrytis cinerea in blueberry fruit were evaluated by analyzing (i) the levels of disease resistance signals; (ii) the activity of enzymes involved in antioxidant system, disease resistance and phenylpropanoid pathway, and (iii) the secondary metabolite content. RESULTS The results indicated that MeJA treatment significantly restrained the development of gray mold decay in blueberries. The treatment induced a nitric oxide (NO) burst and increased the endogenous hydrogen peroxide (H2 O2 ) content in the earlier period of storage. The enhanced NO and H2 O2 generation by MeJA treatment might serve as a signal to induce resistance against B. cinerea infection. Furthermore, in inoculated fruit, MeJA treatment significantly promoted antioxidant enzymes and defense-related enzyme activity, which included superoxide dismutase, catalase, ascorbate peroxidase, chitinase, and β-1,3-glucanase, and the degree of membrane lipid peroxidation was reduced. The MeJA treatment enhanced the phenylpropanoid pathway by provoking phenylalanine ammonialyase, cinnamate 4-hydroxylase, and 4-coumarate CoA ligase activity, which was accompanied by elevated levels of phenolics and flavonoids in blueberry fruit. CONCLUSION These results suggested that MeJA could induce the disease resistance of blueberries against B. cinerea by regulating the antioxidant enzymes, defense-related enzymes, and the phenylpropanoid pathway through the activation of signaling molecules.
Collapse
Affiliation(s)
- Hanbo Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Caie Wu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, PR China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, PR China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, PR China
| | - Gongjian Fan
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, PR China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, PR China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, PR China
| | - Tingting Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, PR China
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, PR China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, PR China
| |
Collapse
|
8
|
Asghari M. Impact of jasmonates on safety, productivity and physiology of food crops. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Exogenous adenosine triphosphate application retards cap browning in Agaricus bisporus during low temperature storage. Food Chem 2019; 293:285-290. [PMID: 31151613 DOI: 10.1016/j.foodchem.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
Abstract
Exogenous adenosine triphosphate (ATP) treatment at 0, 250, 500, 750, and 1000 µM retarded cap browning in mushrooms by 0, 34, 26, 51 and 32 %, respectively, during storage at 4 °C for 18 days. Triggering signaling H2O2 accumulation arising from elevating NADPH oxidase enzyme activity during 6 days of storage at 4 °C may be pivotal for promoting shikimate dehydrogenase enzyme activity in mushrooms treated with ATP during 18 days of storage at 4 °C. Promoting melatonin accumulation (390 µg kg-1 FW vs. 160 µg kg-1 FW) in mushrooms treated with ATP during cold storage may attribute to signaling H2O2 accumulation. Higher DPPH scavenging capacity (72 % vs. 65 %) in mushrooms treated with ATP may attribute to higher phenols accumulation arising from higher phenylalanine ammonialyase/polyphenol oxidase enzymes activity concomitant with higher alternative oxidase gene expression during 18 days of storage at 4 °C.
Collapse
|